Interactive comment on “Photophoretic spectroscopy in atmospheric chemistry – high sensitivity measurements of light absorption by a single particle” by Nir Bluvshtein et al.

Anonymous Referee #2

Received and published: 21 March 2020

Questions:
This seems to be only applicable to droplets that are neither strongly nor weakly absorbing (i.e. the \(k \) range of \(10^{-4} \) to \(10^{-5} \) stated in the abstract).

a. Is that the actual dynamic range?
b. Isn’t \(k \) for brown carbon (BrC) typically much larger than those values? I mention this because BrC is presented as the motivation for the development of the technique.
c. What atmospheric systems could this technique be applied to? I would imagine weak absorbers (e.g. aqueous sea salt aerosol) have a \(k \) that is too small while strong absorbers (the aforementioned BrC) have a \(k \) that is too large.
d. Why no measurements of, for example, aqueous humic acid?

Minor comments:
- no need to use a non-standard symbol like \(\chi \) for the size parameter when the standard \(x \) will do fine.
- Line 134: "retrieved by minimizing the difference between measured and calculated wavelength" I assume you mean minimizing the sum of squared differences?
- use of the times symbol in many equations is unnecessary.
- Line 225: What is the viscosity of PEG400?
- Line 269: "473-nm" to "473 nm"
- Figure 2 caption: intensity units are italics when they should not be.