EVALUATION OF UV AEROSOL RETRIEVALS FROM AN OZONE LIDAR

Shi Kuang1*, Bo Wang1, Michael J. Newchurch1, Paula Tucker1, Edwin W. Eloranta2, Joseph P. Garcia2, Ilya Razenkov2, John T. Sullivan3, Timothy A. Berkoff4, Guillaume Gronoff4,5, Liqiao Lei4,6, Christoph J. Senff7,8, Andrew O. Langford7, Thierry Leblanc9, Vijay Natraj10

1 University of Alabama in Huntsville, Huntsville, Alabama, USA
2 University of Wisconsin-Madison, Madison, Wisconsin, USA
3 NASA Goddard Space Flight Center, Greenbelt, Maryland, USA
4 NASA Langley Research Center, Hampton, Virginia, USA
5 Science Systems and Applications Inc., Lanham, Maryland, USA
6 Universities Space Research Association, Columbia, Maryland, USA
7 NASA Earth System Research Laboratory, Boulder, Colorado, USA
8 Cooperative Institute for Research in Environmental Sciences, University of Colorado, Boulder, Colorado, USA
9 Jet Propulsion Laboratory, California Institute of Technology, Wrightwood, CA, USA
10 Jet Propulsion Laboratory, California Institute of Technology, Pasadena, California, USA

*Correspondence to: Shi Kuang (kuang@nsstc.uah.edu)

Abstract

Aerosol retrieval using ozone lidars in the ultraviolet (UV) band is challenging but necessary for correcting aerosol interference in ozone retrieval and for studying the ozone-aerosol correlations. This study describes the aerosol retrieval algorithm for a tropospheric ozone lidar, quantifies the retrieval error budget, and intercompares the aerosol retrieval products at 299 nm with those at 532 nm from a high spectral resolution lidar (HSRL). After the cloud-contaminated data is filtered out, the aerosol backscatter or extinction coefficients at a 30-m and 10-min resolution retrieved by the ozone lidar are highly correlated with the HSRL products, with a coefficient of 0.95 suggesting that the ozone lidar can reliably measure aerosol structures with high spatio-temporal resolution when the signal-to-noise ratio is sufficient. The actual uncertainties of the aerosol retrieval from the ozone lidar generally agree with our theoretical analysis. The backscatter color ratio (backscatter-related exponent of wavelength dependence) linking the coincident data measured by the two instruments at 299 and 532 nm is 1.34±0.11 while the Ångström (extinction-related) exponent is 1.49±0.16 for a mixture of urban and fire smoke aerosols within the troposphere above Huntsville, AL, USA.

1. Introduction

A tropospheric ozone differential absorption lidar (DIAL) makes measurements of vertical ozone profiles, typically at two wavelengths chosen between 277 and 300 nm with a separation less than 12 nm, by weighing several parameters such as the ozone absorption cross sections, solar background, dynamic range of the detection system, and interference from aerosols and other species (e.g., Alvarez et al., 2011; De Young et al., 2017; Fukuchi et al., 2001; Kempfer et al., 1994; McDermid et al., 2002; Proffitt and Langford, 1997; Strawbridge et al., 2018; Sullivan et al., 2014). Vertical
aerosol profiles are of high interest not only because they are needed for aerosol correction in ozone lidar retrievals, but also because simultaneous ozone and aerosol vertical profile measurements provide unique information on their interactions and sources of pollutant transport (Browell et al., 1994; Newell et al., 1999). However, there is currently no consensus on the reliability of the aerosol retrievals produced by ozone lidars due to the difficulty of solving the three-component lidar equation and the large variability in aerosol optical properties associated with the multiplicity of aerosol types and size distributions.

The most widely used solution for the elastic single-wavelength aerosol lidar equation is the analytic method developed by Klett (1981). The inversion method then inspired Fernald (1984) to publish a computer algorithm scheme to solve the more general two-component (aerosol and molecular) atmospheric lidar equation. The Klett (1981) inversion requires a priori for the lidar ratio (i.e., aerosol extinction-to-backscatter ratio, represented by “S” thereafter) to link the aerosol backscatter with its extinction for solving the lidar equation. Lasers used for aerosol lidars are preferred in the visible and infrared bands, typically 532 or 1064 nm, where the ozone absorption is negligible compared to molecular and Mie scattering. In the UV band for an ozone lidar, the ozone absorption may not be trivial. Some ozone lidars have an aerosol channel available, either independently or sharing receiving optics with the ozone channel (e.g., Browell et al., 1994; De Young et al., 2017; Gronoff et al., 2019; Kovalev and McElroy, 1994; Uchino and Tabata, 1991). For most of the traditional two-wavelength ozone lidars without an aerosol channel, although the aerosol retrieval algorithm has been discussed in a few literatures (e.g., Eisele and Trickl, 2005; Langford et al., 2019; Papayannis et al., 1999; Sullivan et al., 2014), the evaluation of the aerosol retrieval product and its error budget have rarely been addressed. Due to a significant wavelength difference with aerosol lidars, several aspects of the aerosol retrieval using an ozone lidar are worth noting. Firstly, the signal-to-noise ratio (SNR) for ozone lidars decays quicker with altitude due to more significant UV molecular (i.e., Rayleigh) scattering and ozone absorption resulting in a lower retrievable altitude than aerosol lidars. Secondly, because the molecular and ozone components become more important for a UV wavelength compared to visible and infrared wavelengths, the uncertainties in aerosol retrieval propagated from the calculation of these two components are expected to be larger for an ozone lidar than aerosol lidars. Thirdly, S and the wavelength dependence used for the ozone lidar wavelengths may be different from those used for the longer aerosol lidar wavelengths (Ackermann 1998; Eck et al., 1999).

The primary objectives of this article are to investigate the performance of our aerosol retrieval algorithm and quantify its error budget for the ozone lidar. The secondary goal is to seek the overall wavelength dependence between the aerosol optical properties measured by the ozone lidar at 299 nm and by a high spectral resolution lidar (HSRL) at 532 nm.

2. Instruments and Data Processing
2.1. Ozone Lidar

The Rocket-city Ozone (O3) Quality Evaluation in the Troposphere (RO-QET) lidar is located on the campus of the University of Alabama in Huntsville (UAH) at 34.725°N and 86.645°W at 206 m asl and is one of the six systems of the Tropospheric Ozone Lidar Network (TOLNet) (http://www-air.larc.nasa.gov/missions/TOLNet). This system measures ozone from 0.1 km up to about 12 km during nighttime and up to about 6 km during daytime with a temporal...
resolution of 2 min. The vertical resolution of the lidar retrievals varies from 150 m in the lower troposphere to 750 m in the upper troposphere in order to keep the measurement uncertainty within ±10% (Kuang et al., 2013).

The transmitter comprises two Raman-shifted lasers at 289 and 299 nm. Two 30-Hz, 266-nm Nd:YAG lasers pump two 1.8-m Raman cells, respectively, with mixtures of active gas and buffer gas to generate 289 and 299-nm lasers with an average pulse energy of about 5 mJ. The receiving system consists of three receivers with diameters of 2.5 cm, 10 cm, and 40 cm, respectively, and four photomultipliers (PMTs) similar to that described by Kuang et al. (2013) except that the solar filters have been replaced by 300-nm short-pass filters for all telescopes. Channels -1, 2, 3, 4 represent the 2.5-cm, 10% of the 10-cm, 90% of the 10-cm, and the 40-cm telescope channels, respectively. Since the modification of Channel-4 through the addition of narrow-band solar filters was not completed before the time period of this study, data from this channel was not used in this work, resulting in that the uncertainties for ozone retrievals above 6 km during daytime were often too large due to strong solar background. Lidar signal counting was accomplished by four Licel transient recorders (Liciel company, Germany) with both analog and photoncounting (PC) modes, with a sampling rate of 40 MHz corresponding to a 3.75-m fundamental resolution. Derivatives of the off-line analog signal serve to label clouds by setting an appropriate threshold. The cloud filtering process should be conducted carefully because an elastic lidar without a polarization channel is not capable of accurately distinguishing aerosols and clouds solely by their backscatter properties. Therefore, the data with clouds lower than 2 km was discarded. Five 2-min lidar data intervals were combined to give a 10-min lidar-signal integration time to improve the SNR. Further, six of the 3.75-m fundamental bins were integrated for all channels. In addition, dead-time correction (for PC signal only), background correction, analog-PC signal merging, and signal-induced noise correction were performed.

2.2. Introduction of the Aerosol Retrieval Algorithm and Uncertainty Estimation

The aerosol profiles were retrieved with an iterative DIAL algorithm. A brief description of this algorithm is provided in this section, with further details in Appendix A. A first-order Savitzky-Golay differentiation filter with a second-degree polynomial was applied to the logarithm of the signal ratios to compute the first-cut ozone profile. This initial ozone profile was substituted back into the three-component lidar equation to derive the profile of aerosol backscatter coefficients at 299 nm by assuming a constant S of 60 sr and boundary value of the aerosol backscatter coefficient at a far-range reference altitude, about 10 km. During the daytime, the ozone retrieval was limited by the lower SNR of the 289-nm channel, but the 299-nm channel had much better SNR due to lower atmospheric extinction and was able to measure aerosol up to higher altitudes. S is highly variable with aerosol characteristics, humidity, and wavelength (Ackermann, 1998; Strawbridge et al., 2018; Mishchenko et al., 1997). The $a\ priori$ value assumed for this study represents a mix of urban and smoke aerosols during the lidar observations (Ackermann, 1998; Burton et al., 2012; Cattrall et al., 2005; Groß et al., 2013; Müller et al., 2007). The $a\ priori$ is application dependent. In the aerosol retrieval uncertainty discussion in Appendix B, we assume a ±20% uncertainty for S based on an average standard deviation obtained from prior observations (Müller et al., 2007).

Molecular backscatter and extinction profiles were computed from local radiosonde data. Then, the aerosol profile was substituted into the lidar equation again to obtain a stable solution, usually within three iterations. This aerosol profile was further employed to calculate the aerosol correction for ozone retrievals using the first-order Taylor approximation (Browell et al., 1985) by assuming a power law wavelength dependence for the aerosol extinction and
choosing an appropriate Ångström exponent. Since this paper focuses only on aerosol retrieval, details of the ozone correction will be described in a future article. Finally, the aerosol profiles derived by the three altitude channels were merged to a single profile in the overlapping altitude zones, i.e., 0.5–1 km for Channels 1 and 2 and 1.5–2 km for Channels 2 and 3.

The primary uncertainty sources for the aerosol lidar retrievals are the uncertainties in lidar signal measurement, boundary value assumption for aerosol backscatter coefficient, air density measurement, \(S_{\text{a priori}} \), and ozone profile input. The relative importance of these sources are altitude dependent. In the planetary boundary layer (PBL) where the air is typically turbid, the \(S \) uncertainty is dominant while other sources are minor (only few percent). The uncertainty of \(S \) influences the uncertainty of the aerosol backscatter through a complicated relationship. However, the magnitude of the above two uncertainties can be approximately seen to be close. At the far range (higher than 7 km), lidar signal detection noise and inaccurate boundary value assumption are important. Influence from both of the above sources, especially the boundary value, on the aerosol retrieval quickly decreases as you go towards the ground from the far range. In the middle range (PBL top – 7 km), both the air density measurement error and lidar signal detection noise are essential. Uncertainty due to ozone profile input is relatively unimportant and is only few percent at most altitudes. Figure B1 presents an example of the aerosol backscatter uncertainty calculated from 10-min nighttime RO\text{QET} lidar data. The error budget estimate generally justifies the choice of using 6 km as the maximum altitude for RO\text{QET}-HSRL comparison since the total uncertainty for the RO\text{QET} aerosol retrieval could be unacceptably large (i.e., persistently larger than 100%).

2.3. HSRL

The University of Wisconsin HSRL (Eloranta, 2005) was deployed in Huntsville, AL from 19 June to 4 November 2013 and operated almost 24 hours every day to support the Studies of Emissions and Atmospheric Composition, Clouds and Climate Coupling by Regional Surveys SEAC3RS campaign (Kuang et al., 2017). The HSRL transmitter was a diode-pumped Nd:YAG laser at 532 nm with a pulse energy of about 50 \(\mu \)J and a pulse repetition frequency of 4 kHz. The expanded laser beam was transmitted coaxially with a 40-cm telescope with a tiny field of view of 100 \(\mu \)rad to reduce solar background. The HSRL spectral filtering can separate the molecular backscatter from the aerosol backscatter due to the molecular Doppler broadening effect while the particulate backscatter remains spectrally unBroadened. Aerosol backscatter coefficients can then be calculated as the difference between the total return and the molecular component (Grund and Eloranta, 1991). We intercompare the backscatter coefficients measured by the two instruments to avoid the extra uncertainty due to the \(S \) assumption for the HSRL. The HSRL provides aerosol products with a 30-m vertical resolution and 1-min temporal resolution from near the surface to 15 km. To achieve sufficient SNR for both HSRL and ozone lidar and to reduce the uncertainty arising from the clock bias of the controlling computers, we adopt 10-min temporal average and 30-m spatial average for both HSRL and ozone lidar in the intercomparison study. The HSRL has a backscatter measurement precision better than \(10^{-7} \) (m·sr\(^{-1}\)) for a 1-min signal average (Reid et al., 2017), which represents an estimated precision for the extinction coefficient of better than 2\(\times 10^{-6} \) m\(^{-1}\) for a 10-min average.

3. Intercomparison Results
We select four time periods 21–23 June, 14–15 August, 27–28 August, and 5–6 September 2013 to investigate the ozone lidar capability for measuring aerosol column and range-resolved profiles. All four cases have coincident ozone lidar and HSRL observation periods longer than 24 hours, fully covering the convective mixing layer development and collapse processes (Klein et al., 2019) and having significant smoke layers in the free troposphere. Due to the significant extinction and potential multiple scattering caused by clouds, the ozone lidar is incapable of measuring either ozone or aerosol accurately above clouds, especially thick clouds. Therefore, data contaminated by clouds is filtered out. At this time, the narrow-band interference filters had not been incorporated into the receiving system and the wide-band filter resulted in substantial solar background during the daytime; hence, we set 6 km asl as the maximum altitude for intercomparison. The uncertainty of the aerosol retrieval owning to lidar signal measurement error is dominant at far range and is determined by lidar SNR as shown in Appendix B.2. The solar background is an important noise resulting in the lidar signal measurement error during daytime and is partly responsible for the high aerosol retrieval uncertainty above 6 km as shown by the example in Figure B1. The 10-min HSRL profiles are interpolated to the times of the ozone lidar data.

First, we investigate the correlation of the integrated (or column) aerosol backscatter between the ozone lidar and HSRL to obtain a general relationship between their averages. Figure 1 shows that the RO$_2$QET- and HSRL-derived integrated backscatter coefficients for all four cases are highly correlated, with a Pearson correlation coefficient of 0.99. The 493 sampling profiles cover 82 hours of coincident ozone lidar and HSRL observations. We define the aerosol backscatter color ratio ($\tilde{\alpha}_A$) as (Burton et al., 2012):

$$\tilde{\alpha}_A = \frac{d(\ln\beta_A)}{d(\ln\lambda)} = -\frac{\ln\beta_299}{\ln(\beta_532/\beta_299)},$$

(1)

where β_299 and β_532 represent the aerosol backscatter coefficient at 299 and 532 nm, respectively. The subscript “A” represents the “aerosol” component to be distinguished with the “molecular” contribution which is represented by subscript “M” in the Appendix. $\tilde{\alpha}_A$ is an exponent denoting backscatter-related wavelength dependence, to be distinguished from the commonly-used Ångström exponent (Ångström, 1929) that refers to the wavelength dependence of optical thickness or extinction coefficient. $\tilde{\alpha}_A$ is also different from another often-used concept, “color ratio of the lidar ratios” which refers to the ratio of S at two different wavelengths. The slope of the regression (2.16) results in the best least-square fit value of 1.34 for $\tilde{\alpha}_A$ at 299 and 532 nm. The uncertainty of the column β_299 is expected to be smaller than the uncertainty for β_299 at a particular altitude and for a 10-min integration time (in Figure B1) since the average over longer time and altitude range greatly reduces the random noise. If the uncertainty of the column β_299 measurements is estimated to be 20% which is primarily due to the uncertainty of the S a priori (a systematic error), we can estimate the corresponding uncertainty for $\tilde{\alpha}_A$=1.34 to be ±0.11 by error propagation from Eq. (1). $\tilde{\alpha}_A$ has important applications in aerosol type classification from (spectral) aerosol lidar measurements (e.g., Cattrall et al., 2005; Hair et al., 2008; Müller et al., 2007). There is significant variation in $\tilde{\alpha}_A$ for 532–1064 nm reported in different studies, with numbers ranging from negative values to 2.3 (Burton et al., 2012; Cattrall et al., 2005; Müller et al., 2007). However, all of these studies show $\tilde{\alpha}_A$ for smoke and urban aerosols was larger than...
maritime and dust aerosols. Since most previous studies report β for wavelengths longer than 355 nm, β calculated in this study for 299–532 nm could provide valuable data for UV wavelengths.

In practice, aerosol extinction is a more meaningful parameter and more relevant for several applications than backscatter. For the HSRL, the extinction coefficients are linearly converted from the backscatter coefficients by assuming a constant $S=55$ sr with 20% uncertainty, in the same manner as Reid et al. (2017). The estimated Ångström exponent for 299 and 532 nm is 1.49±0.16, using the data in Figure 1 after considering uncertainties in S for both lidars. The Ångström exponent from this study (1.49±0.16) is within a reasonable range compared to previous studies.

For example, Ångström exponent was measured by Raman lidar to be between 1.35±0.2 and 1.56±0.2 at 355 nm for smoke aerosols in Canada (Strawbridge et al., 2018). Ångström exponent for urban aerosols was measured to be 1.4±0.5 in Europe and 1.7±0.5 in North America for 355 and 532-nm wavelengths (Müller et al., 2007).

Figure 2 presents the intercomparison of the aerosol backscatter retrieved by the HSRL and the RO$_3$QET lidar for the four cases in 2013. The HSRL-derived aerosol backscatter coefficients are scaled to 299 nm (represented by “HSRL-converted” thereafter) using the best-fit exponent value $\beta=1.34$. Some clouds lower than 2 km show up in the HSRL curtains but not in the RO$_3$QET curtains (e.g., 1500–2100 on 15 August and 1500–2100 on 28 August).

These low-cloud-contaminated data were discarded in the RO$_3$QET lidar pre-processing program because the retrievable range was not long enough. The profiles with clouds higher than 2 km measured by the RO$_3$QET were retained and the aerosol retrievals below the clouds were used for the range-resolving intercomparisons.

In terms of the aerosol measurement evaluation, we pay attention to the RO$_3$QET lidar’s two capabilities: measuring the PBL diurnal evolution and measuring free-tropospheric smoke layers. In Figure 2, the PBL heights measured by the two lidars, which are identified by large aerosol gradients, are highly consistent for all cases. The development of the convective mixing layer in the early morning, an important process responsible for surface ozone increase, can be visually identified in most RO$_3$QET curtains (e.g., 1400–1700 UTC or 0900–1200 local time in Figure 2-h). The aerosol structures and evolutions in the free troposphere measured by the RO$_3$QET lidar are highly similar to those measured by the HSRL. For example, the RO$_3$QET lidar captured an extremely thin aerosol layer ~5 km on 27–28 August (Figure 2-g), which probably originated from the Pacific Northwest fire and has been discussed by Reid et al. (2017). The large aerosol uncertainties for the RO$_3$QET lidar at far ranges are consistent with expectation. As demonstrated in Appendix B, aerosol retrieval uncertainties due to lidar signal measurement error and the boundary value chosen at the reference altitude, two of the most important sources of uncertainty, increase with altitude and may exceed 100% at ~7 km.

To evaluate the ozone lidar’s range-resolving capability for aerosol retrieval, we intercompared the aerosol backscatter coefficients, for all cases, from the two instruments with a 10-min temporal resolution and a 30-m vertical resolution after filtering out cloud-contaminated data as shown in Figure 3. The high correlation coefficient of 0.95 suggests that the RO$_3$QET lidar can capture the aerosol variability with high spatio-temporal resolutions. The correlation coefficient for the high vertical resolution retrievals is slightly less than that for the column average (0.99 in Figure 1) due to less average with respect to range.

Figure 4 presents the mean and 1-σ standard deviations of the relative differences between RO$_3$QET and HSRL, (RO$_3$QET-HSRL)/HSRL, to be compared with the theoretical 1-σ error calculated as outlined in Appendix B.
The HSRL measurements are considered as the “true” values to be compared with the RO3QET measurements. Both the theoretical and actual 1-σ values generally increase with altitude. The actual differences between RO3QET and HSRL measurements are mostly within or comparable to the theoretical calculation of the RO3QET measurement uncertainties. The structures of the theoretical uncertainties are consistent with the actual differences at most altitudes, with few exceptions. For example, the large discrepancies (red lines compared to blue lines in Figure 4) occurring at ~4.5 km in Figure 4 (c) and ~1.5 km in Figure 4 (d) are primarily because of small number division effects for the extremely clean atmospheric layers (also see Figure 2). Aerosol backscatter of clean air probably can be accurately measured by the HSRL, but, may be beyond the measurement sensitivity of RO3QET.

In Figure 4, the RO3QET-measured aerosols are generally higher than the HSRL-measured aerosols between 5 and 6 km so that the RO3QET-HSRL differences deflect to the right side with altitude. There were both clean air and smoke layers between 5 and 6 km for the four cases; therefore, the positive differences cannot be explained solely by the lower capability of RO3QET for measuring clean air. We hypothesize that another reason causing these differences is the underestimated backscatter color ratio for the smoke aerosols. We converted the HSRL backscatter from 532 to 299 nm using a constant backscatter color ratio, 1.34, which represents an average for the column-integrated backscatter. The most considerable contribution to integrated backscatter comes from PBL aerosols, which are mostly urban aerosols with a lower backscatter color ratio than either fresh or aged smoke (Burton et al., 2012; Cattrall et al., 2005). The uncertainty of the backscatter color ratio was not considered in the error budget of the aerosol retrieval. In addition, we ignored the measurement uncertainty of the HSRL. Therefore, the general agreement of the theoretical estimate of the aerosol retrieval uncertainties and the actual errors suggests that our analysis of the uncertainty sources in Appendix B is reasonable.

4. Conclusions

We have evaluated the aerosol retrievals at 299 nm from the RO3QET ozone lidar using aerosol retrievals at 532 nm from the highly precise University of Wisconsin HSRL from the coincident observations at Huntsville, AL in 2013. The integrated backscatter coefficients between 0.4 and 6 km asl (0.2 and 5.8 km agl) from the two instruments are highly correlated, with a coefficient of 0.99 after excluding cloud-contaminated data. Since the ozone lidar is not able to accurately measure either ozone or aerosol above clouds, cloud-contaminated data can significantly distort the relationship between the products from the two instruments. The aerosol profiles of backscatter coefficients at 30-min vertical and 10-min temporal resolution retrieved by the RO3QET are also highly correlated with those from the HSRL with a coefficient of 0.95 suggesting that the ozone lidar is capable of producing reliable aerosol structure information at high spatio-temporal resolution. Intercomparison of the backscatter product was chosen to avoid additional uncertainty caused by the lidar ratio (S) assumption needed for the HSRL aerosol extinction retrieval.

The aerosol retrieval algorithm and its error budget are shown in the Appendix. The primary uncertainty sources for the aerosol lidar retrieval are errors in lidar signal measurement, boundary value assumption, air density calculation, S a priori, and ozone profile input. The uncertainty in S assumption is a dominant source at near range while the lidar signal measurement and boundary value errors dominate at far range, as shown in Figure B1 for an example. Within the middle range (PBL top – about 7 km), the air density calculation error is essential and is larger or comparable to the lidar signal measurement error. The total uncertainty generally increases with altitude from about...
By assuming a constant S of 60 sr for the ozone lidar, the backscatter coefficients measured by the two instruments are related by a backscatter color ratio (backscatter-related exponent) of 1.34 ± 0.11 for 299 and 532 nm. The extinction-related Ångström exponent that is more relevant for various applications is estimated to be 1.49 ± 0.16 by assuming $S=55$ sr for the HSRL at 532 nm. These exponents represent a summertime average for a mixture of urban pollution and fire smoke. We did not separate the aerosol types, although we understand that S and Ångström exponent vary with the aerosol phase function and size distribution. The aerosol correction in the ozone lidar retrieval will be described in a subsequent paper.

Appendix A. Aerosol retrieval algorithm

The ozone DIAL solution can be written as follows:

$$n_r = \frac{-1}{2h} \frac{d}{d\ln r} \left[\ln \frac{P_{\text{on}}(r)}{P_{\text{off}}(r)} \right] + [B] + [E], \quad (A1)$$

where n_r is the ozone number density at range r, $\Delta \sigma$ is the differential ozone absorption cross section, $P_{\text{on}}(r)$ and $P_{\text{off}}(r)$ are the backscattered on-line and off-line lidar returns, and $[B]$ and $[E]$ represent the differential backscatter and extinction terms (Browell et al., 1985), respectively, including both molecular and aerosol components. The first term of the right side of Eq. (A1) is often called the signal term. The subscripts “on” and “off” represent 289 and 299 nm for this study. The aerosol extinction coefficients at 299 nm are calculated using the following procedure.

1) A first-order Savitzky-Golay differentiation filter with a second-degree polynomial and variable fitting window widths are applied on $\ln \frac{P_{\text{on}}(r)}{P_{\text{off}}(r)}$ to compute the signal term. This smoothing method can accommodate the rapid decay of the lidar signal with altitude to provide sufficient SNR for ozone retrievals by appropriate selection of smoothing window widths (Leblanc et al., 2016a).

2) By canceling the lidar constant using the two lidar equations at range r and $r+\Delta r$ for 299 nm, the aerosol backscatter coefficients at range r can be expressed as:

$$\beta_A(r) = -\beta_M(r) + \frac{Z(r)}{Z(r+\Delta r)} \left[\beta_A(r+\Delta r) + \beta_M(r+\Delta r) \right] \exp \left[-2\Delta r \left[\alpha_A \left(r + \frac{\Delta r}{2} \right) + \alpha_M \left(r + \frac{\Delta r}{2} \right) + \alpha_{o3} \left(r + \frac{\Delta r}{2} \right) \right] \right], \quad (A2)$$

where $\beta_A(r)$ and $\beta_M(r)$ are aerosol and molecular backscatter coefficients at range r, respectively; $Z(r) = P_{\text{off}} r^2$ is the range-corrected lidar signal at 299 nm; $\alpha_A(r+\Delta r/2)$, $\alpha_M(r+\Delta r/2)$, and $\alpha_{o3}(r+\Delta r/2)$ represent the average aerosol, molecular, and ozone extinction coefficients between range r and $r+\Delta r$, respectively. Assuming the 299-nm lidar ratio, $S = \alpha_A \beta_A$, is constant with the range at 60 sr for this study and further assuming:

$$\alpha_A(r + \frac{\Delta r}{2}) \approx \alpha_A(r + \Delta r) = S \beta_A(r + \Delta r), \quad (A3)$$

Eq. (A2) contains only two unknown variables: the aerosol backscatter coefficient $\beta_A(r+\Delta r)$ and ozone extinction coefficient $\alpha_{o3}(r+\Delta r/2)$, which requires knowledge of the ozone number density $n_r(r+\Delta r/2)$. Molecular backscatter and extinction can be computed from nearby radiosonde data or a model with acceptable accuracy. For the first iteration step, $n_r(r+\Delta r/2)$ can be computed from the signal term in Eq. (A1). By assuming a start value $\beta_A(\text{ref})$ at a reference
range and a constant S with range, $\beta_4(r)$ can be solved by Equation (A2). Then, the first $\beta_A(r)$ profile is substituted back into (A2) to compute the second estimate by using a more accurate form for $\alpha_4(r+\Delta r)$ as:

$$\alpha_A\left(r + \frac{\Delta r}{2}\right) = S[\beta_A(r + \Delta r) + \beta_4'(r)]/2.$$

(A4)

where $\beta_4'(r)$ represents the value from the first estimate. Typically, a stable solution for $\beta_4(r)$, which does not change significantly from one iteration step to the next, can be obtained with only three iterations of Eq. (A2) and (A4).

3) The correction terms, $[B]$ and $[E]$, in Eq. (A1) are calculated by the Browell et al. (1985) approximation, assuming a power law dependence with wavelength for the aerosol extinction and choosing an appropriate Ångström exponent. Since this paper focuses only on aerosol retrievals, the details of the ozone corrections will be described in a future article.

4) Aerosol profiles computed for the three altitude channels are finally merged to a single profile in their overlapping altitude zones, 0.5–1 km for Channels 1 and 2, 1.5–2 km for Channels 2 and 3.

Appendix B. Error budget of the aerosol retrieval

Now we investigate five primary error sources affecting each term on the right side of Eq. (A2). In the following section, we use the notation Δ to represent the absolute uncertainty and δ to represent the relative uncertainty. For a function Y, derived from several measurement variables x_1, x_2, \ldots, the uncertainty in Y can be estimated by the following expression using the first-order Taylor expansion approximation when these variables are independent:

$$\Delta Y^2 = (\Delta x_1 \frac{\partial Y}{\partial x_1})^2 + (\Delta x_2 \frac{\partial Y}{\partial x_2})^2 + \cdots.$$

(B1)

B.1 Lidar signal measurement error

The error source to determine the normalized lidar signal ratio term $\frac{Z(r)}{Z(r+\Delta r)}$ is the lidar signal measurement error, ΔP.

Although ΔP may be due to various processes such as inaccurate dead-time correction, inaccurate background subtraction, and signal-induced noise, its dominant component is the lidar signal statistical uncertainty (often called lidar signal detection noise) and is typically assumed to obey a Poisson distribution. Assuming no error in deciding r, by using Eq. (A2) and (B1) we obtain the uncertainty of the aerosol backscatter owing to lidar signal measurement error relative to the total backscatter as:

$$\frac{\delta B_{sg}^{A(r)}}{\beta_A(r) + \beta_M(r)} = \sqrt{[\delta P(r)]^2 + [\delta P(r + \Delta r)]^2},$$

(B2)

where $P(r)$ represents lidar signal counts at r after omitting the wavelength subscript (i.e., 299 nm) and $\delta P(r)$ is just the inverse of SNR. This means that the uncertainty of the aerosol backscatter coefficient due to lidar signal measurement is determined by the lidar SNR similarly to other remote sensing detection techniques. Consequently, its relative uncertainty can be written as:

$$\delta B_{sg}^{A(r)} = \left(\frac{1}{B(r)} + 1\right)\sqrt{[\delta P(r)]^2 + [\delta P(r + \Delta r)]^2},$$

(B3)

where $B(r) = \beta_A(r)/\beta_M(r)$ is the aerosol-to-molecular backscatter ratio. As expected, $\delta B_{sg}^{A(r)}$ has a reverse relationship with $\beta_M(r)$ since it is a relative uncertainty. Figure B1 shows an example of the uncertainty budget for a 10-min lidar data profile. The aerosol retrieval uncertainty due to the lidar signal measurement error generally increases with altitude primarily because of the rapidly decaying lidar SNR.
B.2 Boundary value error

According to Eq. (A2), the uncertainty of the aerosol backscatter at \(r, \beta_A(r) \), can be induced by the uncertainty of the backscatter at \(r + \Delta r, \beta_A(r + \Delta r) \), due to the iterative computation method. The error propagation between the adjacent altitudes can be determined by their partial differential relationship. Using the traditional far-end solution by assuming that the air is clean at a reference altitude, the aerosol uncertainty due to the inaccurate boundary value assumption propagates downward based on the following equation:

\[
\delta \beta^B_A(r) = \delta \beta_A(r + \Delta r) \left[1 + \frac{1}{B(r + \Delta r)} \right] \left[1 - 2S \Delta r \beta_A(r + \Delta r) \right] \left[1 + \frac{1}{B(r + \Delta r)} \right].
\]
(B4)

The yellow line in Figure B1 represents the relative uncertainty of backscatter retrieval due to the boundary value assumption, \(\delta \beta^B_A(r) \), when \(\delta \beta_A(r_b) = 1000\% \) (i.e., 10 times overestimate at \(r_b = 10 \) km). Despite a large overestimate at the reference altitude, \(\delta \beta^B_A(r) \) decreases toward the ground, to less than 10\% below 5.5 km and less than 1\% below 3.5 km. Simulations demonstrate that \(\delta \beta^B_A(r) \) for an underestimation of \(\delta \beta_A(r_b) \) (not shown) is better than that for an overestimation, indicating that the boundary value is preferred at a smaller value. As suggested by Eq. (B4), \(\delta \beta^B_A(r) \) is affected by both \(S \) and \(B \). Larger \(S \) (if it is correct) results in smaller \(\delta \beta^B_A(r) \) and, therefore, aerosol retrieval errors converge to zero faster. In other words, the smaller the value of \(S \) is, the more sensitive the aerosol retrieval is to the boundary value error. \(\delta \beta^B_A(r) \) decreases with an increase of \(B(r) \). This means that \(\delta \beta^B_A(r) \) is less affected by the assumed value of \(\beta_A(r_b) \) when the aerosol backscatter becomes more important relative to molecular backscatter, which occurs at longer wavelengths or under turbid air conditions. It is to be noted that \(\delta \beta_A(r_b) \) is between -1 and +\(\infty \) so that the distribution of \(\delta \beta^B_A(r) \) is asymmetric with the zero axis.

In terms of the influence of the boundary value error, we have compared our calculation with an analytical solution proposed by Kovalev and Moosmü ller (1994) (not shown); the results are almost identical. Aerosol retrieval uncertainty due to incorrect boundary value assumption tends to converge to zero towards the lidar. It is negligible at lower altitudes, especially in the PBL, when the air is turbid.

B.3 Air density error

According to Eq. (A2), the air density profile affects \(\beta_A(r), \beta_A(r+\Delta r) \), and the optical depth (or transmittance). Similarly, we can derive the relative uncertainty in aerosol backscatter owing to the uncertainty in the air density profile as:

\[
\delta \beta^B_A(r) = \sqrt{\frac{\delta \beta^M_A(r)}{B(r)}}, \quad \delta \beta^B_A(r) = \left[\frac{\delta \beta^B_A(r)}{B(r)} \right], \quad \delta \beta^B_A(r) = \left[\frac{\delta \beta^B_A(r)}{B(r)} \right]^2
\]
(B5)

\(S_m \) represents the molecular extinction-to-backscatter ratio, which is a constant \((8 \pi / 3)\). The two parts in the square root are the components due to the uncertainties at \(r \) and \(r + \Delta r \), respectively. Each component includes the influences from both molecular backscatter and optical depth. When \(\Delta r \) is small, the contribution of the optical depth error is much smaller than that of the molecular backscatter error so that (B4) can be approximated as:

\[
\delta \beta^B_A(r) = \sqrt{\frac{2 \beta^M_A(r)}{B(r)}}.
\]
(B6)
It is to be noted that $\Delta \beta_A(r)$ and $\Delta \beta_A(r+\Delta r)$ are independent errors as assumed in Eq. (B1). If they are correlated, Eq. (B5) will partly cancel out with their covariance term, which is not shown in (B1). Due to the nature of the iterative computation method, $\delta \beta_A^M (r + \Delta r)$ affects $\delta \beta_A^M (r)$ as noted in Eq. (B4), so that the aerosol retrieval uncertainty due to air density error will propagate downward. However, model simulation suggests that the systematic error of the air density calculation has little impact on the aerosol retrieval because of the cancelation of the effect at r and $r + \Delta r$. Eq. (B6) means the uncertainty in the calculation of molecular backscatter will mostly linearly propagate to aerosol backscatter. If the 2-σ precision of a radiosonde is 0.3 K and 0.5 hPa for temperature and pressure measurements (Hurst et al., 2011), the propagated uncertainty onto molecular backscatter is only about 0.1%. However, the real disturbance of an atmosphere deviating from the actual air density profile may be more significant since there are usually only a few radiosonde profiles available every day. Hence, we assume $\delta \beta_A(r)$ to be 1% and the resulting aerosol retrieval uncertainty is represented by the green line in Figure B1. $\delta \beta_A^M(r)$ can be tens of percent in the free troposphere and is an important error source for aerosol retrievals (Russell et al., 1979). $\delta \beta_A^M(r)$ is less than 10% in the PBL because of more turbid air in that region. Since $\delta \beta_A(r)$ is assumed to be a constant in this example, the variation of $\delta \beta_A^M(r)$ is mostly a result of varying $B(r)$, the aerosol-to-molecular backscatter ratio. Since $B(r)$ generally increases with an increase in wavelength, $\delta \beta_A^M(r)$ is expected to be smaller at longer wavelengths. Therefore, the aerosol retrieval is less sensitive to the air density error at longer wavelengths.

B.4 Lidar ratio error

By using Eqn. (A2) and (B1), the relative uncertainty in aerosol backscatter due to incorrect lidar ratio (S) assumption can be calculated as follows:

$$\delta \beta^S_A(r) = 2 \left[\frac{1}{B(r)} + 1 \right] \Delta S \beta_A(r) \Delta r. \quad \text{(B7)}$$

$\delta \beta^S_A(r)$ due to ΔS at only range r appears to be small, about 1%, when Δr is specified at 22.5 m. However, ΔS varying with altitude is mostly systematic and, therefore, $\delta \beta^S_A(r)$ at every altitude will propagate downward and these effects will accumulate. The error accumulation is not straightforward to compute as an analytical solution. However, these effects can be simulated numerically. S is highly variable and it is difficult to estimate its actual uncertainty range. In this study, we assume that $\delta S = 20\%$ (or $\Delta S = 12$ sr) according to a previous study (Müller et al., 2007). The light-blue line in Figure B1 shows that the accumulative uncertainties in the aerosol backscatter due to ΔS using Eq. (B7) and (B4) are close to the assumed 20% uncertainty for δS. $\delta \beta_A^S(r)$ is the largest error source in the PBL which is the near range of the lidar. $\delta \beta_A^S(r)$ decreases with an increase in wavelength because of increasing $B(r)$. In other words, $\delta \beta_A^S(r)$ is less sensitive to ΔS at longer wavelengths.

B.5 Ozone error

Similar to S, the ozone uncertainty affects only the transmittance term in Eqn. (A2) and its error propagation on aerosol backscatter retrieval can be expressed as:

$$\delta \beta_A^{O_3}(r) = 2 \left[\frac{1}{B(r)} + 1 \right] \Delta \tau_{O_3}(r) \Delta r. \quad \text{(B8)}$$

$\delta \beta_A^{O_3}(r)$ is proportional to the $\left[\frac{1}{B(r)} + 1 \right]$ factor and ozone absorption uncertainty, meaning that $\delta \beta_A^{O_3}(r)$ is smaller at longer wavelengths due to larger aerosol scattering ratio and smaller ozone absorption. When Δr is specified at 22.5
m, $\delta \beta_{AO3}(r)$ is less than 0.3%. We still simulate the vertical accumulation of $\delta \beta_{AO3}(r)$ using Eq. (B4). As noted earlier, the systematic errors of the DIAL ozone measurement tend to accumulate while the random errors tend to cancel out. The dominant error source for lidar measurements at the far range is typically the lidar signal detection noise, a type of random error. Therefore, for purposes of estimation, we assume a 5% constant DIAL retrieval uncertainty primarily covering the uncertainties due to ozone absorption cross section, non-ozone gas interference, and signal saturation effect (Leblanc et al., 2018; Wang et al., 2017). As shown in Figure B1, the simulated aerosol retrieval uncertainty due to ozone is relatively minor and is less than 5% at most altitudes.

In summary, the uncertainties in aerosol backscatter retrieval for the ozone lidar are controlled by ΔS at near ranges (i.e., in the PBL) where the air is most turbid and are determined by both the lidar signal detection error and inaccurate boundary value assumption at far ranges (higher than 7 km) where the air is typically clear. In the middle range of the lidar measurement (PBL top – 7 km), the air density calculation error may become a significant error source for aerosol retrieval and may have a comparable influence on the aerosol retrieval as the lidar signal measurement error. Relative to the above four uncertainty sources, ozone DIAL retrieval error is relatively unimportant especially in the lower altitudes where lidar SNR is large enough. All the uncertainty terms are affected by the aerosol-to-molecular backscatter ratio, $B(r)$, which represents the relative importance of the aerosol component in both extinction and backscatter processes. Based on the above uncertainty budget analysis, we conclude that the RO-QET lidar is capable of measuring aerosol profile reliably below 6 km with the current laser output power.

Acknowledgements
The authors thank the National Aeronautics and Space Administration (NASA)’s Science Mission Directorate for supporting the TOLNet program. A portion of the research was carried out at the Jet Propulsion Laboratory, California Institute of Technology, under a contract with the National Aeronautics and Space Administration (80NM0018D0004). The views, opinions, and findings contained in this report are those of the authors and should not be construed as an official NASA, National Oceanic and Atmospheric Administration, or U.S. Government position, policy, or decision.

References

Figure 1. Regression of the ozone lidar and HSRL derived integrated aerosol backscatter between 0.4 and 6 km asl using the best least-square fit resulting in a backscatter color ratio of 1.34 for 299–532-nm for four cases in 2013. All data was taken at Huntsville, AL, USA, during the summertime 2013.
Figure 2. HSRL-converted aerosol backscatter coefficients (a, b, c, d) compared to the RO3QET lidar derived aerosol backscatter coefficients at 299 nm (e, f, g, h), with 10-min temporal resolution and 30-m vertical resolution. The data was taken from 21–23 June (a, e), 14–15 August (b, f), 27–28 August (c, g), and 5–6 September (d, h) 2013. The HSRL-converted aerosol backscatter coefficients are scaled from the original retrievals at 532 nm to 299 nm using Eq. (1) and $\delta_{\beta}=1.34$.

https://doi.org/10.5194/amt-2020-40
Preprint. Discussion started: 26 March 2020
© Author(s) 2020. CC BY 4.0 License.
Figure 3. Regression of the ozone lidar measured and HSRL-converted aerosol backscatter coefficients (interpolated at 299 nm with $\beta = 1.34$) with 30-m vertical resolution and 10-min temporal resolution.

Points: 81594

- $R = 0.95$
- $R^2 = 0.91$
- $y = 0.0 + 1.08x$
Figure 4. Relative differences between the RO\textsubscript{3}QET and HSRL-converted aerosol backscatter measurements, \((\text{RO}\textsubscript{3}QET-HSRL)/\text{HSRL})\), made from (a) 21–23 June, (b) 14–15 August, (c) 27–28 August, and (d) 5–6 September, 2013. The gray and black lines represent the differences for the 10-min individual aerosol backscatter profiles and their mean, respectively. The blue lines represent the actual 1 \(\sigma\) of the differences compared to the theoretical 1 \(\sigma\) (red lines) of the RO\textsubscript{3}QET lidar aerosol measurement.
Figure B1. An example of (a) aerosol backscatter profile retrieved from a 10-min ozone lidar data at about 8:30 UTC on 22 June 2013 and (b) its retrieval error budget for different uncertainty sources. The lidar data was from the Channel-3 receiving system which covers most of the measurement altitude range and was arbitrarily chosen for a cloud-free condition.