Journal cover Journal topic
Atmospheric Measurement Techniques An interactive open-access journal of the European Geosciences Union
Journal topic

Journal metrics

Journal metrics

  • IF value: 3.400 IF 3.400
  • IF 5-year value: 3.841 IF 5-year
    3.841
  • CiteScore value: 3.71 CiteScore
    3.71
  • SNIP value: 1.472 SNIP 1.472
  • IPP value: 3.57 IPP 3.57
  • SJR value: 1.770 SJR 1.770
  • Scimago H <br class='hide-on-tablet hide-on-mobile'>index value: 70 Scimago H
    index 70
  • h5-index value: 49 h5-index 49
Preprints
https://doi.org/10.5194/amt-2020-150
© Author(s) 2020. This work is distributed under
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/amt-2020-150
© Author(s) 2020. This work is distributed under
the Creative Commons Attribution 4.0 License.

Submitted as: research article 19 May 2020

Submitted as: research article | 19 May 2020

Review status
This preprint is currently under review for the journal AMT.

A technical description of the Balloon Lidar Experiment BOLIDE

Bernd Kaifler1, Dimitry Rempel1, Philipp Roßi1, Christian Büdenbender1, Natalie Kaifler1, and Volodymyr Baturkin2 Bernd Kaifler et al.
  • 1Deutsches Zentrum für Luft- und Raumfahrt, Institut für Physik der Atmosphäre, Oberpfaffenhofen, Germany
  • 2Deutsches Zentrum für Luft- und Raumfahrt, Institut für Raumfahrtsysteme, Bremen Germany

Abstract. The Balloon Lidar Experiment (BOLIDE) was the first high-power lidar flown and operated successfully onboard a balloon platform. As part of the PMC Turbo payload, the instrument acquired high resolution backscatter profiles of Polar Mesospheric Clouds (PMCs) from an altitude of ∼38 km during its maiden ∼6 day flight from Esrange, Sweden, to Northern Canada in July 2018. We describe the BOLIDE instrument and its development and report on the predicted and actual in-flight performance. Although the instrument suffered from excessively high background noise, we were able to detect PMCs with a volume backscatter coefficient as low as 0.6 × 10−10 m−1 sr−1 at a vertical resolution of 100 m and a time resolution of 30 s.

Bernd Kaifler et al.

Interactive discussion

Status: open (until 14 Jul 2020)
Status: open (until 14 Jul 2020)
AC: Author comment | RC: Referee comment | SC: Short comment | EC: Editor comment
[Subscribe to comment alert] Printer-friendly Version - Printer-friendly version Supplement - Supplement

Bernd Kaifler et al.

Bernd Kaifler et al.

Metrics will be available soon.
Latest update: 03 Jun 2020
Publications Copernicus
Download
Short summary
The Balloon Lidar Experiment was the first lidar dedicated to measurements in the mesosphere flown on a balloon. During a 6 day flight it made high resolution observations of polar mesospheric clouds which form at high latitudes during summer in ~83 km altitude and are the highest clouds in Earth's atmosphere. We describe the instrument and assess its performance. We could detect fainter clouds with higher resolution than what is possible with ground-based instruments.
The Balloon Lidar Experiment was the first lidar dedicated to measurements in the mesosphere...
Citation