Journal cover Journal topic
Atmospheric Measurement Techniques An interactive open-access journal of the European Geosciences Union
Journal topic

Journal metrics

Journal metrics

  • IF value: 3.400 IF 3.400
  • IF 5-year value: 3.841 IF 5-year
    3.841
  • CiteScore value: 3.71 CiteScore
    3.71
  • SNIP value: 1.472 SNIP 1.472
  • IPP value: 3.57 IPP 3.57
  • SJR value: 1.770 SJR 1.770
  • Scimago H <br class='hide-on-tablet hide-on-mobile'>index value: 70 Scimago H
    index 70
  • h5-index value: 49 h5-index 49
Discussion papers
https://doi.org/10.5194/amt-2019-470
© Author(s) 2020. This work is distributed under
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/amt-2019-470
© Author(s) 2020. This work is distributed under
the Creative Commons Attribution 4.0 License.

Submitted as: research article 23 Jan 2020

Submitted as: research article | 23 Jan 2020

Review status
This preprint is currently under review for the journal AMT.

Nitrate radical generation via continuous generation of dinitrogen pentoxide in a laminar flow reactor coupled to an oxidation flow reactor

Andrew T. Lambe1, Ezra C. Wood2, Jordan E. Krechmer1, Francesca Majluf1, Leah R. Williams1, Philip L. Croteau1, Manuela Cirtog3, Anaïs Féron3, Jean-Eudes Petit4, Alexandre Albinet5, Jose L. Jimenez6, and Zhe Peng6 Andrew T. Lambe et al.
  • 1Center for Aerosol and Cloud Chemistry, Aerodyne Research Inc., Billerica, MA, USA
  • 2Dept. of Chemistry, Drexel University, Philadelphia, PA, USA
  • 3Laboratoire Inter-Universitaire des Systèmes Atmosphériques (LISA), UMR CNRS 7583, Université Paris-Est-Créteil, Université de Paris, Institut Pierre Simon Laplace (IPSL), Créteil, France
  • 4Laboratoire des Sciences du Climat et de l’Environnement (CNRS-CEA-UVSQ), CEA Orme des Merisiers, Gif-sur-Yvette,France
  • 5Institut National de l’Environnement Industriel et des Risques (Ineris), Verneuil-en-Halatte, France
  • 6Dept. of Chemistry and Cooperative Institute for Research in Environmental Sciences (CIRES), University of Colorado,Boulder, CO, USA

Abstract. Oxidation flow reactors (OFRs) are an emerging tool for studying the formation and oxidative aging of organic aerosols and other applications. The majority of OFR studies to date involved generation of the hydroxyl radical (OH) to mimic daytime oxidative aging processes. On the other hand, use of the nitrate radical (NO3) in modern OFRs to mimic nighttime oxidative aging processes has been limited due to the complexity of conventional techniques that are used to generate NO3. Here, we present a new method that uses a laminar flow reactor (LFR) to continuously generate dinitrogen pentoxide (N2O5) in the gas phase at room temperature from the NO2 + O3 and NO2 + NO3 reactions. The N2O5 is then injected into a dark Potential Aerosol Mass OFR and decomposes to generate NO3; hereafter, this method is referred to as OFR-iN2O5 (i = injected). To assess the applicability of the OFR-iN2O5 method towards different chemical systems, we present experimental and model characterization of the integrated NO3 exposure, NO3:O3, NO2:NO3, and NO2:O2 as a function of LFR and OFR conditions. These parameters were used to investigate the fate of representative organic peroxy radicals (RO2) and aromatic alkyl radicals generated from volatile organic compound (VOC) + NO3 reactions, and VOCs that are reactive towards both O3 and NO3. Finally, we demonstrate the OFR-iN2O5 method by generating and characterizing secondary organic aerosol from the β-pinene + NO3 reaction.

Andrew T. Lambe et al.

Interactive discussion

Status: open (until 19 Mar 2020)
Status: open (until 19 Mar 2020)
AC: Author comment | RC: Referee comment | SC: Short comment | EC: Editor comment
[Subscribe to comment alert] Printer-friendly Version - Printer-friendly version Supplement - Supplement

Andrew T. Lambe et al.

Andrew T. Lambe et al.

Viewed

Total article views: 254 (including HTML, PDF, and XML)
HTML PDF XML Total Supplement BibTeX EndNote
179 73 2 254 21 1 6
  • HTML: 179
  • PDF: 73
  • XML: 2
  • Total: 254
  • Supplement: 21
  • BibTeX: 1
  • EndNote: 6
Views and downloads (calculated since 23 Jan 2020)
Cumulative views and downloads (calculated since 23 Jan 2020)

Viewed (geographical distribution)

Total article views: 172 (including HTML, PDF, and XML) Thereof 172 with geography defined and 0 with unknown origin.
Country # Views %
  • 1
1
 
 
 
 

Cited

Saved

No saved metrics found.

Discussed

No discussed metrics found.
Latest update: 17 Feb 2020
Publications Copernicus
Download
Short summary
We present a new method to continuously generate N2O5 in the gas phase that is injected into a reactor where it decomposes to generate nitrate radicals (NO3). To assess the applicability of the method towards different chemical systems, we present experimental and model characterization of the integrated NO3 exposure and other metrics as a function of operating conditions. We demonstrate the method by characterizing secondary organic aerosol particles generated from the β-pinene + NO3 reaction.
We present a new method to continuously generate N2O5 in the gas phase that is injected into a...
Citation