Supplement of
Analysis of functional groups in atmospheric aerosols by infrared spectroscopy: method development for probabilistic modeling of organic carbon and organic matter concentrations

Charlotte Bürki¹, Matteo Reggente¹, Ann M. Dillner², Jenny L. Hand³, Stephanie L. Shaw⁴, and Satoshi Takahama¹

¹ENAC/IIE Swiss Federal Institute of Technology Lausanne (EPFL), Lausanne, CH-1015, Switzerland
²Air Quality Research Center, University of California Davis, Davis, CA 95616, USA
³Cooperative Institute for Research in the Atmosphere, Colorado State University, Fort Collins, CO 80523, USA
⁴Electric Power Research Institute, Palo Alto, CA, 94304, United States

Correspondence: Satoshi Takahama (satoshi.takahama@epfl.ch)

Contents

S1 Contributions to the log-likelihood S1
S2 Prior distributions S2
S3 Cluster analysis S5
S4 Posterior predictions S10
S5 Spatial and temporal prevalence of cluster types S13
S1 Contributions to the log-likelihood

In this section we outline calculations for assessing contribution of individual samples to the likelihood function (eq. 6). Let \(r = (y - m_C) / \sigma \) represent the model residual normalized by the measurement precision. The contribution from a single sample to the overall likelihood \(p(y|\theta) = \prod_{i \in S} f_i \) is given by:

\[
 f_i = \left(\frac{1}{2\pi \sigma_i^2} \right)^{1/2} \exp \left[-\frac{1}{2} r_i^2 \right]
\]

Isolines of \(\ln(f) \) (dropping the subscript \(i \)) can be generated (Figure S1) for several combinations of \(\sigma \) and \(r \):

\[
 \ln f = -\frac{1}{2} \left[\ln(2\pi) + 2\ln(\sigma) + r^2 \right].
\]

(S1)

This quantity gives an indication for the magnitude of contribution by individual data point (with uncertainty \(\sigma \) and relative deviation \(r \)) to the overall log-likelihood. For example, a sample near the detection limit (\(m_C \sim 3\sigma_0 \)) compared to one at the limit of quantification (\(m_C \sim 10\sigma_0 \)) means \(\sigma = \sigma_0(1 + 3^2\kappa^2)^{1/2} \) and \(\sigma_0(1 + 10^2\kappa^2)^{1/2} \), respectively, from our heteroscedastic error model (eq. 7). For identical \(r \), the \(\sigma \) contribution of the higher concentration sample to \(\ln f \) is \(\sim 80\% \) of the lower one for \(\sigma_0 = 0.37 \mu g \text{ cm}^{-2} \) and \(\kappa = 0.07 \) (Section 3.2) but decreases to \(\sim 25\% \) for \(\kappa = 0.3 \).

![Figure S1. Isolines of \(\ln f \) according to eq. S1.](image)

S1
S2 Prior distributions

This section includes Figures S2–S5; and Table S1.

![Diagram](image)

Figure S2. MSECV curves (in units of µmole of FG, top row) and resulting prior probability distributions for \(k \) (bottom row). Horizontal lines in bottom row correspond to probability for a uniform distribution over the selected number of components.
Figure S3. Distribution of equilibrium vapor concentrations C^0 (µg m$^{-3}$) for molecules taken from Rogge et al. (1993) and Rogge et al. (1998) (“Primary”) and the MCM v3.3.1 database (Jenkin et al., 1997; Saunders et al., 2003) (“Secondary”). Only non-radical molecules with $C^0 \leq 10^{3.5}$ µg m$^{-3}$ are used in this study (excluded molecules below this threshold in the “Secondary” category represent radical species).

Figure S4. Number of molecular structures associated with undetected carbon atoms for all semivolatile compounds selected in Figure S3. Structures are colored by the elements that they contain. Structure names are described with illustrations in Table 1 of technical note by Ruggeri and Takahama (2016).
Figure S5. Estimates of OM/OC when normalized by m_C and αm_C. Secondary aerosol species contain many small but highly functional molecules, but the overall mode of the true OM/OC distribution is 1.96; the mode for primary aerosol species is 1.17.

Table S1. Average number of atoms attached to each type of bond assumed for various types of mixtures. $\lambda_{C,\text{COOH}} = \lambda_{C,\text{carbonyl}} = 1$. Table adapted from Takahama and Ruggeri (2017).

<table>
<thead>
<tr>
<th>Study</th>
<th>Mixture type</th>
<th>$\lambda_{C,\text{CH}}$</th>
<th>$\lambda_{C,\text{aCOH}}$</th>
</tr>
</thead>
<tbody>
<tr>
<td>Allen et al. (1994)</td>
<td>ambient</td>
<td>0.5</td>
<td></td>
</tr>
<tr>
<td>Russell (2003)</td>
<td>ambient</td>
<td>0.5</td>
<td>1</td>
</tr>
<tr>
<td>Reff et al. (2007)</td>
<td>indoor/ambient</td>
<td>0.48</td>
<td></td>
</tr>
<tr>
<td>Chhabra et al. (2011)</td>
<td>α-pinene SOA</td>
<td>0.63</td>
<td>0.63</td>
</tr>
<tr>
<td></td>
<td>guaiacol SOA</td>
<td>0.88</td>
<td>0.88</td>
</tr>
<tr>
<td>Russell and co-workers*</td>
<td>ambient</td>
<td>0.5</td>
<td>0.5</td>
</tr>
<tr>
<td>Ruthenburg et al. (2014)</td>
<td>ambient</td>
<td>0.5</td>
<td>0</td>
</tr>
<tr>
<td>Takahama and Ruggeri (2017)**</td>
<td>α-pinene SOA</td>
<td>0.39–0.5</td>
<td>0.09–0.52</td>
</tr>
</tbody>
</table>

* reflects assumptions by Russell et al. (2009), Liu et al. (2009), and Day et al. (2010).

** estimated from simulated molecular mixtures.
This section includes Figures S6–S9.

Figure S6. Number of samples in each cluster, minimum silhouette coefficient, and within sum-of-squares of each cluster as a function of the number of clusters formed. Gray points represent individual clusters, and red points and lines are values averaged across clusters.
Figure S7. Comparisons of relative tracer concentrations. “*” denotes PM$_{2.5}$-normalized quantities. Normalized values are first logarithmically-transformed to be approximately symmetric, and then autoscaled (mean-centered and normalized by standard deviation of the variable for the entire data set). Values greater than zero for a particular cluster indicates that this substance or ratio is enriched in samples belonging to this cluster, relative to the rest of the samples.
Figure S8. Composition of clusters.
Figure S9. Posterior distributions of parameters for each cluster from MCMC (blue histograms) and L-BFGS-B (red lines) compared to prior distributions (black lines).
Figure S10. Probability distributions of OM/OC ratios segregated by site type.
S4 Posterior predictions

After obtaining the posterior parameter distributions, probability distributions and intervals of predictions of the target variable y are obtained for model checking (Robert, 2007; Vehtari and Ojanen, 2012; Gelman et al., 2013). The posterior predictive distribution for new \tilde{y} from spectrum \tilde{x} is given by

$$p(\tilde{y}|y) = \int \theta p(\tilde{y}|\theta)p(\theta|y)d\theta.$$ \hspace{1cm} (S2)

For model checking, \tilde{y} corresponds to replications of the data used for fitting; the integral in eq. S2 can be numerically evaluated using the values of θ generated from MCMC. The expected value of this posterior distribution corresponds to m_C (eq. 5). While m_C is uniquely determined for a given realization of θ, ε and therefore \tilde{y} varies according to the sample drawn from a normal distribution characterized with the value of κ^2. The posterior predictive distribution is generally symmetric, and the mode or mean of \tilde{y} can simply be approximated by the mode or mean of the posterior parameter distributions (Figure S11).

More generally, for any scalar-valued property z (e.g., m_C or OM/OC) dependent on $\psi = \theta \setminus \{\kappa^2\}$, $p(z|y)$ and its corresponding central estimate or intervals can also be constructed by transforming the Markov sequence of the parameters: \{ $z(\psi^{[1]}), z(\psi^{[2]}), \ldots , z(\psi^{[n]})$ \} (Hoff, 2009). In applying this strategy toward the calculation of OM/OC ratios, we obtain posterior probability distributions for each sample. Due to the nonzero probabilities of several discrete values of k_{aCOH} and k_{COOH}, OM/OC estimates can become multimodal when contributions from these oxygenated FGs are substantial (examples shown in Figure S12). We find that the median or peak of the largest mode of the posterior distribution of OM/OC is well-approximated by the maximum a posteriori estimate (MAP; Section D) of the parameters (slope and correlation coefficient of 1.0) and so we report this value as the single-point estimate of OM/OC for each sample. The span of 95% prediction intervals (representing uncertainties in sample-specific OM/OC values due to uncertainties in FG-OC model parameters) generally corresponds to less than 6% the reported OM/OC for most samples, except for clusters 8 and 11 where many samples had interval spans extending up to 20 and 10% of the value of the mode, respectively. Cluster 8 had larger intervals due to the two noncontiguous sets of k_{aCOH} with substantial probabilities, leading to separation in the modes of OM/OC. In such instances these samples, may benefit from further disaggregation for parameter estimation or incorporation of observations more specific toward the oxygenated fraction to reduce posterior parameter uncertainties. The high uncertainty in prediction for samples in cluster 11 is due to the small number ($N = 8$) samples in this cluster, resulting in broad posterior parameter distributions. Hierarchical Bayesian modeling (Gelman and Hill, 2007) may be beneficial in leveraging relationship of small subgroups of samples to the greater population to better handle such cases.
Figure S11. Comparison of central values of the posterior predictive distribution with predictions from single-point estimates of parameters obtained from their respective distributions.
Figure S12. Posterior distributions for OM/OC. Red vertical lines indicate the reported value using MAP estimates of the parameters.
This section includes Figures S13 and S14.

Figure S13. Frequency of clusters as fraction of samples at each site and season. “urban-PHOE” refers to Phoenix, AZ, and “urban” refers to all other urban sites.
Figure S14. Frequency of clusters as fraction of samples during each year and season for six sites.
References

