Journal cover Journal topic
Atmospheric Measurement Techniques An interactive open-access journal of the European Geosciences Union
Journal topic

Journal metrics

Journal metrics

  • IF value: 3.400 IF 3.400
  • IF 5-year value: 3.841 IF 5-year
    3.841
  • CiteScore value: 3.71 CiteScore
    3.71
  • SNIP value: 1.472 SNIP 1.472
  • IPP value: 3.57 IPP 3.57
  • SJR value: 1.770 SJR 1.770
  • Scimago H <br class='hide-on-tablet hide-on-mobile'>index value: 70 Scimago H
    index 70
  • h5-index value: 49 h5-index 49
Discussion papers
https://doi.org/10.5194/amt-2019-332
© Author(s) 2019. This work is distributed under
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/amt-2019-332
© Author(s) 2019. This work is distributed under
the Creative Commons Attribution 4.0 License.

Submitted as: research article 30 Sep 2019

Submitted as: research article | 30 Sep 2019

Review status
This discussion paper is a preprint. It is a manuscript under review for the journal Atmospheric Measurement Techniques (AMT).

Moving Lomb-Scargle Periodogram: A way to identify time-varying periodicities in unequally spaced time series of OH* temperatures

Christoph Kalicinsky, Robert Reisch, Peter Knieling, and Ralf Koppmann Christoph Kalicinsky et al.
  • Institute for Atmospheric and Environmental Research, University of Wuppertal, Germany

Abstract. We present an approach to analyse time series of OH* temperatures with unequal spacing. The approach enables the identification of significant periodic fluctuations and the derivation of time-resolved periods and amplitudes of these fluctuations. It is based on the classical Lomb-Scargle periodogram (LSP), a method that can handle unequally spaced time series. Here, we additionally use the idea of a moving window. The significance of the results is analysed with the typically used false alarm probability (FAP). We derived the dependencies of the FAP levels on different parameters that either can be changed manually (length of the analysed time interval, frequency range) or that change naturally (number of data gaps). By means of these dependencies we found a fast and easy way to calculate FAP levels for different configurations of these parameters without the need of a large number of simulations. The general performance of the approach is tested with different artificially generated time series and the results are very promising. Finally, we present results for nightly mean OH* temperatures that have been observed from Wuppertal (51° N, 7° E, Germany).

Christoph Kalicinsky et al.
Interactive discussion
Status: open (until 25 Nov 2019)
Status: open (until 25 Nov 2019)
AC: Author comment | RC: Referee comment | SC: Short comment | EC: Editor comment
[Subscribe to comment alert] Printer-friendly Version - Printer-friendly version Supplement - Supplement
Christoph Kalicinsky et al.
Christoph Kalicinsky et al.
Viewed  
Total article views: 124 (including HTML, PDF, and XML)
HTML PDF XML Total BibTeX EndNote
93 31 0 124 1 2
  • HTML: 93
  • PDF: 31
  • XML: 0
  • Total: 124
  • BibTeX: 1
  • EndNote: 2
Views and downloads (calculated since 30 Sep 2019)
Cumulative views and downloads (calculated since 30 Sep 2019)
Viewed (geographical distribution)  
Total article views: 98 (including HTML, PDF, and XML) Thereof 98 with geography defined and 0 with unknown origin.
Country # Views %
  • 1
1
 
 
 
 
Cited  
Saved  
No saved metrics found.
Discussed  
No discussed metrics found.
Latest update: 22 Oct 2019
Publications Copernicus
Download
Short summary
This study presents a new approach to analyse unequally spaced time series of OH* temperatures with respect to time-varying periodic fluctuations. The approach is based on the classical Lomb-Scargle periodogram and, additionally, the idea of a moving window is used. Furthermore, a fast and easy way to analyse the significance of the results is presented. The general performance of the approach is tested with artificially generated time series and results for real observations are presented.
This study presents a new approach to analyse unequally spaced time series of OH* temperatures...
Citation