Journal cover Journal topic
Atmospheric Measurement Techniques An interactive open-access journal of the European Geosciences Union
Journal topic

Journal metrics

Journal metrics

  • IF value: 3.248 IF 3.248
  • IF 5-year value: 3.650 IF 5-year 3.650
  • CiteScore value: 3.37 CiteScore 3.37
  • SNIP value: 1.253 SNIP 1.253
  • SJR value: 1.869 SJR 1.869
  • IPP value: 3.29 IPP 3.29
  • h5-index value: 47 h5-index 47
  • Scimago H index value: 60 Scimago H index 60
Discussion papers
© Author(s) 2019. This work is distributed under
the Creative Commons Attribution 4.0 License.
© Author(s) 2019. This work is distributed under
the Creative Commons Attribution 4.0 License.

Research article 05 Feb 2019

Research article | 05 Feb 2019

Review status
This discussion paper is a preprint. It is a manuscript under review for the journal Atmospheric Measurement Techniques (AMT).

Flow-induced errors in airborne in-situ measurements of aerosols and clouds

Antonio Spanu1, Maximilian Dollner1, Josef Gasteiger1, T. Paul Bui2, and Bernadett Weinzierl1 Antonio Spanu et al.
  • 1University of Vienna (UNIVIE), Aerosol Physics and Environmental Physics, Wien, Austria
  • 2NASA Ames Research Center, Mountain View, CA, USA

Abstract. Aerosols and clouds affect atmospheric radiative processes and climate in many complex ways and still pose the largest uncertainty in current estimates of the Earth’s changing energy budget.

Airborne in-situ sensors such as the Cloud, Aerosol, and Precipitation Spectrometer (CAPS) or other optical spectrometers and optical array probes provide detailed information about the horizontal and vertical distribution of aerosol and cloud properties. However, flow distortions occurring at the location where these instruments are mounted on the outside of an aircraft may directly produce artifacts in detected particle number concentration and also cause droplet deformation and/or break-up during the measurement process.

Several studies have investigated flow-induced errors assuming that air is incompressible. However, for fast-flying aircraft, the impact of air compressibility is no longer negligible. In this study, we combine airborne data with numerical simulations to investigate the flow around wing-mounted instruments and the induced errors for different realistic flight conditions. A correction scheme for deriving particle number concentrations from in-situ aerosol and cloud probes is proposed, and a new formula is provided for deriving the droplet volume from images taken by optical array probes, reducing errors by up to one order of magnitude. Shape distortions of liquid droplets can either be caused by errors in the speed with which the images are recorded or by aerodynamic forces acting at the droplet surface caused by changes in the airflow around the instrument. These forces can lead to the dynamic breakup of droplets causing artifacts in particle number concentration and size. Furthermore, an estimation of the critical breakup diameter, as a function of flight conditions is provided.

Experimental data show that flow speed at the instrument location is smaller than the ambient flow speed. Our simulations confirm the observed difference and reveal a size-dependent impact on particle speed and concentration. This leads, on average, to a 25 % overestimation of the number concentration of particles larger than ~10 μm} diameter and causes distorted images of droplets and ice crystals if the flow values recorded at the instrument are used. With the proposed correction scheme both errors are significantly reduced by a factor 10.

Although the presented correction scheme is derived for the DLR Falcon research aircraft (SALTRACE campaign) and validated for the DLR Falcon (A-LIFE campaign) and the NASA DC-8 (ATom campaign), the general conclusions hold for any fast-flying research airplane.

Antonio Spanu et al.
Interactive discussion
Status: open (until 02 Apr 2019)
Status: open (until 02 Apr 2019)
AC: Author comment | RC: Referee comment | SC: Short comment | EC: Editor comment
[Subscribe to comment alert] Printer-friendly Version - Printer-friendly version Supplement - Supplement
Antonio Spanu et al.
Antonio Spanu et al.
Total article views: 300 (including HTML, PDF, and XML)
HTML PDF XML Total BibTeX EndNote
227 69 4 300 1 3
  • HTML: 227
  • PDF: 69
  • XML: 4
  • Total: 300
  • BibTeX: 1
  • EndNote: 3
Views and downloads (calculated since 05 Feb 2019)
Cumulative views and downloads (calculated since 05 Feb 2019)
Viewed (geographical distribution)  
Total article views: 130 (including HTML, PDF, and XML) Thereof 130 with geography defined and 0 with unknown origin.
Country # Views %
  • 1
No saved metrics found.
No discussed metrics found.
Latest update: 22 Feb 2019
Publications Copernicus