Journal cover Journal topic
Atmospheric Measurement Techniques An interactive open-access journal of the European Geosciences Union
Journal topic

Journal metrics

Journal metrics

  • IF value: 3.400 IF 3.400
  • IF 5-year value: 3.841 IF 5-year
    3.841
  • CiteScore value: 3.71 CiteScore
    3.71
  • SNIP value: 1.472 SNIP 1.472
  • IPP value: 3.57 IPP 3.57
  • SJR value: 1.770 SJR 1.770
  • Scimago H <br class='hide-on-tablet hide-on-mobile'>index value: 70 Scimago H
    index 70
  • h5-index value: 49 h5-index 49
Discussion papers
https://doi.org/10.5194/amt-2019-245
© Author(s) 2019. This work is distributed under
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/amt-2019-245
© Author(s) 2019. This work is distributed under
the Creative Commons Attribution 4.0 License.

Research article 25 Jun 2019

Research article | 25 Jun 2019

Review status
This discussion paper is a preprint. It is a manuscript under review for the journal Atmospheric Measurement Techniques (AMT).

CALIPSO Level 3 Stratospheric Aerosol Product: Version 1.00 Algorithm Description and Initial Assessment

Jayanta Kar1,2, Kam-Pui Lee1,2, Mark A. Vaughan2, Jason L. Tackett1,2, Charles R. Trepte2, David M. Winker2, Patricia L. Lucker1,2, and Brian J. Getzewich1,2 Jayanta Kar et al.
  • 1Science Systems and Applications Inc., Hampton, VA, USA
  • 2NASA Langley Research Center, Hampton, VA, USA

Abstract. In August 2018, the Cloud-Aerosol Lidar and Infrared Pathfinder Satellite Observation (CALIPSO) project released a new level 3 stratospheric aerosol profile data product derived from nearly 12 years of measurements acquired by the space-borne Cloud-Aerosol Lidar with Orthogonal Polarization (CALIOP). This monthly averaged, gridded level 3 product is based on version 4.2 of the CALIOP level 1 and level 2 data products, which feature significantly improved calibration that now makes it possible to reliably retrieve profiles of stratospheric aerosol extinction and backscatter coefficients. This paper describes the science algorithm and data handling techniques that were developed to generate the CALIPSO version 1.00 level 3 stratospheric aerosol profile product. Further, we show that the retrieved extinction profiles capture the major stratospheric perturbations over the last decade resulting from volcanic eruptions, extreme smoke events, and signatures of stratospheric dynamics. Initial assessment of the product by inter-comparison with the stratospheric aerosol retrievals from the Stratospheric Aerosol and Gas Experiment III (SAGE III) on the International Space Station (ISS) indicates good agreement in the tropical stratospheric aerosol layer (30° N–30° S), where the average difference between zonal mean extinction profiles is typically less than 25 % between 20 km and 30 km. However, differences can exceed 100 % in the very low aerosol loading regimes found above 25 km at higher latitudes.

Jayanta Kar et al.
Interactive discussion
Status: open (until 20 Aug 2019)
Status: open (until 20 Aug 2019)
AC: Author comment | RC: Referee comment | SC: Short comment | EC: Editor comment
[Subscribe to comment alert] Printer-friendly Version - Printer-friendly version Supplement - Supplement
Jayanta Kar et al.
Jayanta Kar et al.
Viewed  
Total article views: 110 (including HTML, PDF, and XML)
HTML PDF XML Total BibTeX EndNote
86 23 1 110 1 1
  • HTML: 86
  • PDF: 23
  • XML: 1
  • Total: 110
  • BibTeX: 1
  • EndNote: 1
Views and downloads (calculated since 25 Jun 2019)
Cumulative views and downloads (calculated since 25 Jun 2019)
Viewed (geographical distribution)  
Total article views: 141 (including HTML, PDF, and XML) Thereof 141 with geography defined and 0 with unknown origin.
Country # Views %
  • 1
1
 
 
 
 
Cited  
Saved  
No saved metrics found.
Discussed  
No discussed metrics found.
Latest update: 17 Jul 2019
Publications Copernicus
Download
Short summary
This work describes the science algorithm for the recently released CALIPSO level 3 stratospheric aerosol product. It is shown that the retrieved extinction profiles capture the major stratospheric perturbations over the last decade resulting from volcanic eruptions, pyroCb smoke events, and signatures of stratospheric dynamics. An initial assessment is also provided by intercomparison with the latest aerosol retrievals from the SAGE III instrument aboard the International Space Station.
This work describes the science algorithm for the recently released CALIPSO level 3...
Citation