Dear Anonymous Referee 1,

Thank you for your time and effort in helping us to improve this paper. We appreciate your comments and suggestions and modified the manuscript accordingly. The responses to all of your comments and marked up manuscript can be found in the supplement.

With kind regards,
Steffen Mauceri and co-authors

Anonymous Referee #1

Received and published: 5 July 2019

This paper describes the design of a neural network algorithm uses imaging spectrometer measurements to separately retrieve aerosol optical depth (AOD) for three aerosol types (dust, sulphate, brown carbon). The neural network is trained using synthetic spectra and applied to two images from the airborne instrument AVIRIS-NG over India. Overall, the methodology is clearly explained and the paper fits the scope of AMT, but in my opinion the study has a number of shortcomings which should be properly addressed before the paper can be published. The main problem is that, while the NN results are satisfactory on synthetic data, the retrievals on real measurements display large surface features. Other shortcomings are the lack of validation for the per type AOD retrievals and the assumption of spherical dust particles made in the creation of the training set, which may be inaccurate. Below are my detailed comments.

MAIN COMMENTS

- The surface features in the AOD retrieval are really striking, and it would be important to investigate whether the problem may be mitigated by changing the design of the NN. For example, I have the impression that, if you attempt a simple classification of the original image (e.g., into vegetation, bare soil, urban, water classes) and correlate the AOD retrieved on each pixel to the class the pixel belongs to, you may see a strong correlation. If this is the case, then it may mean that you need to pass the result of this simple classification as an additional input to the AOD-retrieval NN, or to train multiple NNs, one per class. This may reduce this effect in your retrievals, which in my opinion is too large at the moment.

Thank you for this suggestion. We investigated whether an explicit classification of the underlying surface type would help the aerosol retrieval. We used a simple 2-layer neural network that classified the surface type and added the classified surface type to the neural network input for the aerosol retrieval. While the surface type classification showed promising results there was no improvement for the aerosol retrieval form the radiative transfer calculations or AVIRIS-NG observations. Our guess is that the NN was always performing an implicit surface type retrieval to separate the aerosol signal from the surface contribution. Thus, the added features were redundant.

However, your later comment: “Why are you using radiance and not reflectance as an input?” made us go back and test whether this could make our neural network more robust when applying it to AVIRIS-NG observations. While the use of reflectance does not improve the aerosol retrieval from our radiative transfer calculations (test set) it mitigates the surface features in the retrieval from AVIRIS-NG. Thus, it is more robust and we now scale the radiances by solar zenith angle and sun-earth distance, similar to deriving apparent reflectance.

Finally, while we agree that it would be nice to completely remove the surface features, less complex atmospheric retrievals from hyperspectral imagery have the same problem. Thus, some remaining surface features in the AOT retrieval are to be expected. We added that to the manuscript:

P21, L6: “Some residual surface features are not entirely unexpected as less challenging atmospheric retrievals from imaging spectroscopy, for example water vapor (Thompson et al., 2015), often contain surface reflectance artifacts.”
The use of a spherical model for dust aerosols in the generation of the training set may also lead to inaccurate results when the NN is applied to real data (Kalashnikova and Sokolik, 2004, Dubovik et al., 2006, Lee et al., 2017). For this reason, I would recommend to retrain the NN by using a nonspherical model. References:

We updated our calculation for the dust aerosols to account for their non-sphericity, repeated the radiative transfer calculations, retrained the NN and updated the results of our analysis throughout the manuscript. We did not find systematic differences in the retrieved AOT of dust compared to the original (spherical) assumption.

P6, L4: Content added: “For dust we had to account for its non-spherical shape. We applied the T-matrix code of Mishchenko and Travis, (1998), for randomly oriented particles, to generate the MODTRAN SAP files. The range of ratios of semi-major to semi-minor axes, or aspect ratios (AR), was varied between 1.01 and 1.8. This range contains the representative AR of 1.4 (Okada et al., 2001), while the aspect ratio of 1.01 corresponds to a nearly spherical particle. In our application of the T-matrix code the second mode parameters (i.e. Rad$_2$ = 0.83 µm, σ$_2$ = 1.84, see Table 1) were used to specify the size distribution, and the AFCRL 1987 Sand indices are utilized.”

- An additional problem I see is that you try to estimate the AOT for each aerosol type, but you do not provide any indication of the credibility of the per-type retrievals performed with real measurements. While direct observations of "typed" AODs are probably not available, it would be important to at least have a look of what are the outputs of some reanalysis models (e.g. MERRA-2, CAMS) around the locations you considered and in the same dates. I imagine that these models may have a much coarser spatial grid than your images, but I guess they would be your only possible source of verification.

That is an excellent idea. We added a comparison to the CAMS model for the three individual aerosol types:

P27, L13: Content added: “5.5 Comparison to CAMS
We further compare the retrieved AOT to the Copernicus Atmosphere Monitoring Service (CAMS) product. The CAMS system provides global analysis and forecasting of AOT for organic matter, dust and sulfate and is further described in (Benedetti et al., 2009; Morcrette et al., 2009). CAMS accounts for aerosol emissions, transport, sedimentation and deposition of various aerosol types. In contrast to MODIS and AERONET, one can directly compare the CAMS AOT for a specified aerosol type to the retrieved AOT. We make use of the CAMS ‘near-real-time’ product at a spatial resolution of 0.125° available at: https://apps.ecmwf.int/datasets/data/cams-nrealtime/levtype=sfc/.

Figure 17 shows the comparison for the three considered aerosol types with the CAMS modeled AOT on the y-axis and AVIRIS-NG retrieved AOT on the x-axis. There seems to be general agreement between CAMS and AVIRIS-NG with AVIRIS-NG retrievals being on average 0.03 higher. The standard deviation of the difference between CAMS and AVIRIS-NG for the 21 analyzed scenes is 0.02, 0.04, 0.05 for carbon, dust and sulfate, respectively. For AOT below 0.1, CAMS and AVIRIS-NG differ significantly for carbon and dust with AVIRIS-NG retrieving higher AOT.
Figure 17: AOT modeled by CAMS (y-axis) vs AOT retrieved by AVIRIS-NG (x-axis). The standard deviation of the CAMS modeled AOT within 6 hours and 0.125° of the AVIRIS-NG observations are shown with vertical bars and the standard deviation for the AVIRIS-NG retrievals with horizontal bars.

MINOR COMMENTS

- P1, L21. “... absorption ... are ...” -> “... is ...”.

P1, L21: Changed

- P1, L24-25. “Instead, a common practice . . .”. Maybe you mean that one takes the darkest pixel in the image, assumes that the observed radiance over that pixel only comes from the atmosphere and subtracts that radiance from all the other pixels in the image. If so, make that explicit in the paper. If not, clarify what you mean instead.

Removed statement for clarity

P1, L24: Changed to: “Instead, aerosol properties are approximated from visibility (e.g., Gao, Heidebrecht and Goetz, 1993; Adler-Golden et al., 1999) or derived from climatology.”

- P1, L28, “great” -> “larger”.

P1, L28: Changed

- P2, L24. Please also mention the advances made possible by multiangle polarimetry, which provides an enhanced capability of separating the aerosol signal from the surface signal, and a better sensitivity to the aerosol microphysical parameters (Kokhanovsky et al., 2015, Dubovik et al., 2019). References:
Other approaches aim to use the vast information content from space-borne multiangle polarimetric observations that provide enhanced capability of separating aerosol signal from surface signal, and a better sensitivity to aerosol microphysical parameters. However, retrieving aerosol properties from such observations is highly complex and operational products have not yet reached the accuracy implied by theoretical calculations (Dubovik et al., 2019; Kokhanovsky et al., 2015).

Do you also foresee applying the proposed method to existing satellite imagers such as EO-1 Hyperion, or the recently launched PRISMA?

To increase accuracy of global aerosol retrievals, we propose a retrieval algorithm that will be applicable to current and future hyperspectral space-borne instruments, such as Hyperspectral Precursor and Application Mission (PRISMA) (Labate et al., 2009), EO-1 Hyperion (Folkman et al., 2001), Climate Absolute Radiance and Refractive Observatory (CLARREO) (Wielicki et al., 2013) and the Hyperspectral Infrared Imager (HyspIRI) (Lee et al., 2015).

I would suggest to change “t_aer” to “tau_aer” in the legend.

The problem with this study of the sensitivity of the TOA radiance to the aerosol type is that the microphysical properties of the aerosol types are prescribed. Thus, your capability of distinguishing them in your simulation may be greatly overestimated compared to what happens in nature, where I don’t think you will see dust, brown carbon etc. always with the same size distribution. Even the refractive index of certain aerosol types (dust in particular) is highly variable, so it would be better to incorporate this variability in the training set (as you already tried to do with the surface properties) in order to have a better hope of making your NN scheme more robust. Note that the aerosol size, in particular, mainly influences the spectral slope of your radiance. Thus, it may well be that your retrieval just tries to distinguish between three "size classes" of aerosols, which you map to "aerosol types" through a rather arbitrary 1:1 correspondence. Also for this reason, it is really important to compare your retrieved aerosol speciation on real data to the outputs of some reanalyses. This would be the only way to obtain at least a preliminary indication that your AOD retrieval distinguished into types actually works in reality.

We agree that radiative transfer calculations will always under sample the variety found in nature. However, to limit the number of radiative transfer calculations and computation time we limited calculations to three aerosol types with a representative size distribution for every aerosol type. Exploring different refractive indices and size distributions is beyond the scope of this paper. However, as you suggested, we compared our output to the CAMS reanalysis model, which shows promising results. (see Maine Comments)

I guess you mean “biophysical properties of vegetation”.

Given that your application concerns aerosols, you should also mention previous work on NNs for aerosol retrievals (Radosavljevic et al., 2010, Chimot et al., 2017, Di Noia et al., 2017). References:
Information added: “Neural networks have also been applied to retrieve aerosol layer height from Ozone Monitoring Instrument (OMI) observations (Chimot et al., 2017), estimate multiple aerosol parameters as a prior for an iterative Phillips-Tikhonov retrieval (Di Noia et al., 2017) and to estimate AOT from MODIS observations (Lary et al., 2009; Radosavljevic et al., 2010).”

- P8, L8-9, “training-set” -> “training set”, “validation-set” -> “validation set”.

Changed throughout the manuscript

- P8, L16. Why are you using radiance and not reflectance as an input? Why are you using ground distance and ground elevation (which should have a relatively minor effect on the top-of-atmosphere radiance or reflectance), but are not using viewing zenith angle and viewing azimuth angle, which may have a greater effect?

We switched from standardizing radiance by its mean to scaling radiance by sun-earth distance and SZA. This makes the retrieval more robust to the AVIRIS-NG observations and is similar to using reflectance as our input. We use ground elevation and surface-sensor-distance since they provide additional information to the NN. While both variables might have a limited impact on top-of-atmosphere radiances, our radiative transfer calculations are performed for the altitude of the airborne AVIRIS-NG instrument where the effect of ground distance and elevation is greater. We don’t provide the viewing zenith angle and viewing azimuth angle as an input to the NN since we assume a nadir looking sensor.

-P9, Eqs. 8 and 9. I have the impression that the "n" in Eq. 9 is not the same "n" as in Eq. 8. Please adopt an unambiguous notation and explain the meaning of any symbol you use.

P9, Eq9: Changed the second “n” into an “m” and added both to the text: “

\[
R(\theta) = \|	heta\|_2 = \sqrt{\sum_{i=1}^{m} \theta_i^2}
\] (1)

For our network \(\hat{Y}_j\) and \(Y_j\) are the \(n\) true and predicted AOT, respectively. We further add the L2 norm \(\|	heta\|_2\) of the vector of the \(m\) neural network weights, \(\theta\), to our cost function (see Equation 9), also referred to as \(L2\) regularization or \(\text{weight decay}\).”

- P9, L6. Add that theta is a vector containing all the weights of the NN (right?). Furthermore, in the next sentence I don’t think theta should be the subscript “i” in the L2 norm.

P9, L17: Removed the subscript “i” and added that \(\theta\) is a vector: “For our network \(\hat{Y}_j\) and \(Y_j\) are the \(n\) true and predicted AOT, respectively. We further add the L2 norm \(\|	heta\|_2\) of the vector of the \(m\) neural network weights, \(\theta\), to our cost function (see Equation 9), also referred to as \(L2\) regularization or \(\text{weight decay}\).”

- P9, L7, add “or weight decay” after “L2 regularization”.

P9, L18, Changed
- P9, L8. “The L2 regularization is weighted” -> “The L2 regularization term $R(\theta)$ is weighted”

P10, L1: Changed

- P11. Consider splitting Figure 4 into three plots (one per aerosol type). The plot for carbonaceous aerosol looks completely hidden.

P11, Fig 4: Great idea. We split Figure 4 into three plots and changed the visualization to a ‘heatmap’ for even better interpretability:

![Figure 4: AOT for carbon, dust and sulfate aerosols, retrieved by the model vs true AOT from the test set. The cyan line shows the linear fit to the data with slope and y-intercept given in the respective titles.](image)

- P13, L11-12. In addition to just reducing the number of sampling points, it would be more interesting to also change the spectral resolution of the instrument (I mean, the width of a slit function you may convolve your synthetic spectra with). This would make your setup more similar to that of existing satellite imagers, which typically have a spectral resolution of ~ 10 nm.

We repeated our test cases for a spectral resolution of 10 nm. To limit the total number of neural networks we had to train we reduced the original exploration of sampling resolution and instrument noise slightly. However, we found no significant differences to the test cases with a spectral resolution of 5 nm.

P13, L18: We added this information to the text: “While we found dependencies of retrieval performance to varying amounts of noise and number of wavelength channels, the spectral resolution had no significant effect. On average the models trained with a spectral resolution of 5 nm had a standard error in retrieved AOT that was only 0.001 smaller than for the cases with a spectral resolution of 10 nm. Therefore, we limit the following discussion to the results of the 12 neural networks trained on radiative transfer calculations with the AVIRIS-NG spectral resolution of approximately 5 nm and note that these values are also representative for an instrument with a 10 nm spectral resolution.”

- P14, L7. Since you are using synthetic data with a spherical dust model, it would be important to repeat your experiment with a more realistic model for dust. Otherwise the numbers you provide for the retrieval accuracy are not really meaningful, as they cannot be really taken as an indication of what would happen in a real scenario.

We updated our calculation for the dust aerosols to account for their non-sphericity (see Maine Comments).
L15. You say, “It is inherently difficult to interpret the inner workings of neural networks”. Actually, the derivative of the NN output with respect to its input can be computed analytically (Blackwell, 2012, Di Noia et al., 2013). This may enable more systematic sensitivity analyses, as it means that the NN retrieval can be rigorously linearized around its actual input (spectrum + viewing geometry). It may be also useful to feed the values retrieved by the NN back to a radiative transfer model. Combined with the NN input Jacobian mentioned above, this may enable estimating the sensitivity of the NN retrieval to the true state vector (Jiménez and Eriksson, 2001).

References:

Our approach is very similar to the proposed Jacobian analysis by Blackwell. However, the Jacobian analysis (and our approach) are limited in that they only allow to calculate sensitivities for a certain operating point (input that we linearize around). Since the neural network is non-linear it is “inherently difficult” to understand how the neural network will behave in any situation (compared to e.g. linear regression). Blackwell acknowledges the importance of choosing the right operating point in Chapter 6 and 7. Nevertheless, we agree that neural networks are partially interpretable and tried to shed some light on the proposed neural network with our preformed sensitivity analysis.

P15, L9: Citation added for Blackwell, 2012.

- P17, L9. “To apply the model to real imagery, one would ideally train the model further on real observations”. I don’t think this is necessarily true. If your forward simulations and your knowledge of the instrument are realistic enough, using synthetic data should be feasible (again, you can look at Chimonet et al. (2017) or Di Noia et al. (2017) for examples). Furthermore, training on real data is guaranteed to introduce sampling biases and co-location errors that may counterbalance the advantage of implicitly incorporating the real instrument characteristics in the training set. Furthermore, for the particular task of retrieving AOD separated into types it may be even impossible to find a training dataset with real observations.

The introduction of a sampling bias is something we hadn’t considered when making the above statement. We removed the paragraph about fine tuning.

- P18, Section 5.1. There is one aspect that is not totally clear to me. You perform the PCA of AVIRIS-NG observations and retain 16 principal components. Do I correctly understand that what you then pass to the NN are not directly the principal components but the radiance spectra reconstructed from the 16 principal components? If so, please add a sentence somewhere in the section to make this clear.

P18, L18: Thanks for catching that. Clarified paragraph and changed to: “The first 16 principal components explain approximately 99.9% of the variability in the observations. We reconstruct the AVIRIS-NG observed radiances from these principal components. That effectively removes principal components higher than 16 from all analyzed AVIRIS-NG imagery. Afterwards, the radiance for every pixel is treated as an independent observation and scaled and standardized (Equation 10 and 11) to match the training set.

Apart from this, I have a more fundamental question. You use the PCA as a tool to denoise AVIRIS-NG imagery, which is fine to do, and derive the PCA coefficients from the AVIRIS imagery itself. However, you trained your NN with synthetic spectra, and in order to apply your NN to real observations it is important to make sure that your real data look as similar as possible to the data you used to train the NN. How confident are you that your PCA-based denoising does not change the statistical distribution of the reconstructed radiances compared to that assumed in the training set? It would be interesting to check what happens to the synthetic spectra you used to train the NN if you compress them and reconstruct them with the PCA transformation you derived from the AVIRIS imagery. If they change significantly, then this may be a warning flag that there may be problems when you apply your NN to real measurements pre-processed with your PCA transformation.
We investigated the sensitivity of the neural network to removing principal components higher than 16 and found no evidence of systematic differences. The denoising was motivated to eliminate vertical stripes in the aerosol retrievals that initially showed up in the scenes of Figure 11 and 12. (P18, L26) “Experiments with more and fewer principal components indicated that the model was insensitive to the exact number of remaining principal components.”

- P18, L17. Are you sure components 17 and 18 in Fig. 9 do not contain useful information? They seem to display some "structured" spatial patterns.

The first 16 principal components capture 99.9% of the variability. We acknowledged in the manuscript that the choice for the cut-off is rather arbitrary: (P18, L23) “We acknowledge that the choice of retaining the first 16 principal components is rather arbitrary and should ideally be made on a per flight basis. However, for practical reasons we decided to use one threshold for all imagery considered in this study. The threshold is a tradeoff between removing valuable information and reducing noise. Experiments with more and fewer principal components indicated that the model was insensitive to the exact number of remaining principal components.”

- P25, L17. The correlation value looks misleading, as it looks mainly driven by the two high-AOT data points in the upper right.

P26, L18: We added the following disclaimer: “However, the correlation might be mainly driven by the few high-AOT comparisons.”

Furthermore, we tested the correlation for significance and found the correlation to be significant at the 0.05 p-value.
Neural Network for Aerosol Retrieval from Hyperspectral Imagery

Steffen Mauceri¹², Bruce Kindel¹ Kindel², Steven Massie¹ Massie², Peter Pilewskie¹²

¹ Department of Atmospheric and Oceanic Sciences, CU Boulder, Boulder, Colorado, USA
² Laboratory for Atmospheric and Space Physics, Boulder, Colorado, USA

Correspondence to: Steffen Mauceri (Steffen.Mauceri@lasp.colorado.edu)

Abstract. We retrieve aerosol optical thickness (AOT) independently for brown carbon-, dust and sulfate from hyperspectral image data. The model, a neural network, is trained on atmospheric radiative transfer calculations from MODTRAN 6.0 with varying aerosol concentration and type, surface albedo, water vapor and viewing geometries. From a set of test radiative transfer calculations, we are able to retrieve AOT with a standard error of better than ±0.05. No a priori information of the surface albedo or atmospheric state is necessary for our model. We apply the model to AVIRIS-NG imagery from a recent campaign over India and demonstrate its performance under high and low aerosol loadings and different aerosol types.

1 Introduction

Remotely sensed surface spectral reflectance is used in many scientific disciplines including, geology, forestry, water studies and urban studies (Davis et al., 2002; Renz and Ryerson, 1999). The surface reflectance can be either directly measured at the ground with portable field spectrometers or indirectly measured from air- and space-borne platforms. Observations at air- and space-borne instrument altitudes are sensitive not only to the signal from the surface but also the intervening atmosphere between surface and sensor. Thus, to derive surface reflectance from air- and space-borne observations, the data must be corrected for atmospheric absorption and scattering effects. The main objective of atmospheric correction is the accurate removal of absorption and scattering by aerosols and gases. While absorption by water vapor and other gases is highly wavelength dependent, with relatively strong, discrete, absorption bands, aerosols extinction (the sum of absorption and scattering) is a smooth, continuous function of wavelength. This makes it challenging to separate it from the surface contribution. Most current atmospheric corrections ignore the aerosol variability within a scene. Instead, a common practice is to use an in-scene reference reflectance target on the ground. If a reference target is not available, aerosol properties are approximated from visibility (e.g., Gao, Heidebrecht and Goetz, 1993; Adler-Golden et al., 1999) or derived from climatology. Such approximations can lead to large errors in retrieved surface reflectance, particularly for aerosol optical thickness (AOT) greater than 0.4, commonly found, for example, over east Asia (Bilal et al., 2014; Van Donkelaar et al., 2010). While instrument performance has steadily improved over the years, resulting in higher signal to noise ratios, improvements in the treatment of aerosols in atmospheric correction routines has not kept pace. To improve the retrieval of surface reflectance...
products from air- or space-borne observations, the spatial variability of AOT and wavelength dependent single-scattering albedo and phase function or its moments within a scene have to be known. Aerosols also pose a major uncertainty in climate predictions through their direct scattering and absorption of solar and thermal radiation and indirect effects on cloud albedo (Twomey, 1977) and clouds lifetime (Albrecht, 1989; Pincus and Baker, 1994). Their contribution to radiative forcing is now the biggest uncertainty to the total anthropogenic forcing between 1750 and 2011 (Myhre et al., 2013). The magnitude of the direct interaction of aerosol with radiation depends not only on their abundance, but also their single scattering properties and the spectral reflectance of the underlying surface (Haywood and Boucher, 2000; Nan and A., 2015). Better quantification of the global distribution and optical properties of aerosols is a top priority to further improve climate projections.

Finally, aerosols are an important health risk factor (Pope III et al., 2009). For eastern Asia, the World Health Organization Air Quality PM$_{2.5}$ (amount of aerosols with a diameter less than 2.5 µm) Interim Target-1 (World Health Organization, 2006) is exceeded for 50% of the population (Van Donkelaar et al., 2010), leading to an increase in mortality of approximately 15%.

On a global scale, an estimated 7 million deaths were attributed to air pollution in 2016 (World Health Organisation, 2018). A better understanding of aerosol sources and their mixing in urban areas can inform decision makers and perhaps mitigate these hazards.

Currently, aerosols are routinely retrieved from ground and space-borne platforms. Ground based aerosol retrievals from AERosol ROBotic NETwork (AERONET) (Holben et al., 1998) have the lowest uncertainty in retrieved AOT of less than 0.02 (Eck et al., 1999) but are spatially restricted. Space-borne instruments like the Moderate resolution Imaging Spectroradiometer (MODIS) (Salomonson et al., 1989) and the Multiangle Imaging SpectroRadiometer (MISR) (Diner et al., 1998) provide global coverage but retrievals from their measurements require separating the aerosol signal from the surface contribution. This results in large differences between the derived aerosol products from different instruments (Chu et al., 2003; Levy et al., 2005, 2013; Prasad and Singh, 2007; Remer et al., 2005). Other approaches aim to use the vast information content from space-borne multiangle polarimetric observations that provide enhanced capability of separating aerosol signal from surface signal, and a better sensitivity to aerosol microphysical parameters. However, retrieving aerosol properties from such observations is highly complex and operational products have not yet reached the accuracy implied by theoretical calculations (Dubovik et al., 2019; Kokhanovsky et al., 2015). Hence, accurate aerosol retrieval from space-borne platforms is still an active research topic.

To increase accuracy of global aerosol retrievals, we propose a retrieval algorithm that will be applicable to current and future hyperspectral space-borne instruments, such as Hyperspectral Precursor and Application Mission (PRISMA) (Labate et al., 2009), EO-1 Hyperion (Folkman et al., 2001), currently under development, such as the Climate Absolute Radiance and Refractive Observatory (CLARREO) (Wielicki et al., 2013) and the Hyperspectral Infrared Imager (HyspIRI) (Lee et al., 2015). Exploiting the large data volumes and hundreds of spectral bands of these instruments requires new fast retrieval algorithms. To meet these needs, we propose using neural networks. In this study, we present a neural network that is used to
independently retrieve dust, carbonaceous- and sulfate aerosols from hyperspectral imagery over land, with no a priori knowledge of the surface type or atmospheric state. The neural network can retrieve multiple collocated aerosol types and their contribution to the total AOT within a given scene. After fitting the neural network parameters, also referred to as training, the model can be used to retrieve AOT in real time without further radiative transfer calculations. We apply the neural network to Airborne Visible / Infrared Imaging Spectrometer Next Generation (AVIRIS-NG) (Hamlin et al., 2011) imagery from a recent campaign over India and demonstrate its performance under high and low aerosol loadings and different aerosol types. AVIRIS-NG, a follow-on to the Airborne Visible / Infrared Imaging Spectrometer (AVIRIS) (Green et al., 1998), has a spectral range of 380 – 2510 nm, a spectral resolution of 5 nm and spatial resolution of 4 m to 20 m depending on flight altitude.

The structure of our paper is as follows: Section 2 describes the forward radiative transfer calculations used to train an inverse model, the neural network. Sections 3 and 4 detail the architecture, training procedure and performance of the inverse model. Furthermore, we explore how instrument noise and sampling resolution influence model performance. In Section 5 we apply the inverse model to AVIRIS-NG observations and compare results to AERONET and MODIS retrieved AOT. In section 6 we provide our conclusion.

2 Forward Model

To train a neural network for aerosol retrieval we need a dataset consisting of the model input – output pairs, or samples, of the inverse model. These samples need to span a wide variety of atmospheric states, viewing geometries and surface albedos. To generate such a dataset, we employ a forward model described in the following section.

2.1 Radiative Transfer Calculations

The forward model radiative transfer calculations were performed with the MODerate spectral resolution atmospheric TRANsmittance algorithm and computer model (MODTRAN) 6.0 (Berk et al., 2014) from 400 nm to 2500 nm. Multiple scattering was implemented with MODTRAN’s DISORT algorithm (Stamnes et al., 1988), utilizing a conservative number of 32 streams. We chose the ‘Tropical’ atmospheric profile. The solar zenith angle (SZA) was varied between 25° and 50° and water vapor varied between 0.4 g cm⁻² and 4.1 g cm⁻². The distance between ground and sensor (ground distance) was varied between 3 km and 6 km and the ground elevation between 0 m and 2000 m. The AOT at 550 nm varied between 0 and 1.0. Three types of aerosols, brown carbon, dust and sulfate (see Section 2.3) were modeled as an external mixture, with a fraction between 0 and 100%. For every parameter permutation we perform three radiative transfer calculations for a constant surface albedo of 0, 0.5 and 1. In the following, the calculated at sensor radiances for a surface albedo of 0, 0.5 and 1 are denoted as ...
The three simulations are then used to calculate at sensor radiance for any given surface albedo utilizing the MODTRAN interrogation technique (Verhoef and Bach, 2003). We first extract three atmospheric parameters, namely the spherical albedo, ρ, two-way transmittance, τ, and path radiance, L_p:

$$\rho = \frac{2}{f - 1 + 2} \quad \text{with} \quad f = \frac{L_1 - L_0}{2 \cdot (L_{0.5} - L_0)}$$

(1)

$$\tau = (L_1 - L_0) \cdot (1 - \rho)$$

(2)

$$L_p = L_0$$

(3)

Afterwards, we calculate the at sensor radiance, L, for the generated surface spectra, r (see next Section):

$$L = L_p + \frac{\tau \cdot r}{1 - \tau \cdot \rho}$$

(4)

Finally, the radiance is convolved with a gaussian kernel with a full width half maximum (FWHM) of 5.6 nm in the UV and 5.8 nm in IR, similar to the AVIRIS-NG spectral resolution.

2.2 Surface Spectra

To simulate a wide variety of surface types we need a multitude of surface spectra. However, the number of freely available surface spectra is limited. The risk of using too few surface spectra is that the model might not be able to extract general surface characteristics. Applied to scenes with a previously unseen surface spectra, the model would perform poorly. Furthermore, most catalogs provide pure surface spectra from pure surface materials, also referred to as endmember spectra. This case is not representative for most air- or space-borne observations over land where multiple surface types are present in a single instrument pixel. Therefore, we generate a catalog of mixed surface spectra by randomly combining a limited number of measured spectra from different sources. The combination is performed by taking the randomly weighted mean of two randomly chosen endmember spectra at a time, until we have a total of 100,000 mixed surface spectra.
Endmember spectra were obtained from https://ecosis.org/ and https://speclib.jpl.nasa.gov. The datasets include 844 vegetation reflectance spectra from Hawaii (Dennison and Gardner, 2000), 173 vegetation spectra from Hawaii volcanoes national park (Grimm, 2017), 1065 urban surfaces from Santa Barbara (Herold et al., 2004b) and 270 rock and soil spectra (Meerdink et al., in prep.; Baldridge et al., 2009). To remove high-frequency noise in the surface spectra due to low signal at some wavelengths (Herold et al., 2004a) we smooth the surface spectra with a Gaussian kernel as done by Thompson et al., (2018).

An example of soil, sand and vegetation reflectances from the catalogs are shown on the left in Figure 1. The right side shows nine examples of how the three spectra are combined to generate mixed surface spectra.

![Figure 1: (Left): Surface reflectance for three different surface types (soil, sand and vegetation) from measured and smoothed surface spectra. (Right): Nine surface spectra, randomly generated from the three spectra on the left. Wavelengths with strong water vapor absorption are marked in grey.](image)

2.3 Aerosol Parameterization

The optical properties of the three aerosols types that served as inputs to MODTRAN were calculated using three size distributions based upon Dubovik et al., (2002) and the indices of refraction contained in HITRAN 2016 (Gordon et al., 2017). While aerosols cannot be strictly separated into types, we use these properties as representatives for dust, carbonaceous and sulfate aerosols. HITRAN 2016 includes H_2SO_4 indices at 300 K for sulfate aerosols and sand indices for dust aerosols from the AFCRL 1985 compilation (Fenn et al., 1985). The indices for sulfate and dust were selected because they cover the full wavelength range (0.2 to 40 μm) which is convenient for the use with MODTRAN. For brown carbon aerosols, from now on simply referred to as carbon, the indices are reported up to 1.2 μm by Alexander, Crozier and Anderson (2008). For longer wavelengths we extrapolated the real and imaginary parts.
Given the size distributions and the refractive indices, an extended version of the HITRAN-RI program (Massie and Hervig, 2013) was applied to calculate extinction, absorption, scattering spectra, and the Legendre moments of the phase function used in MODTRAN 6.0 calculations for carbon and sulfate. The calculations are based in Mie theory and thus assume homogenous spherical aerosol particles. For dust we had to account for its non-spherical shape. We applied the T-matrix code of Mishchenko (Mishchenko and Travis, 1998), for randomly oriented particles, to generate the MODTRAN SAP files. The range of ratios of semi-major to semi-minor axes, or aspect ratios (AR), was varied between 1.01 and 1.8. This range contains the representative AR of 1.4 (Okada et al., 2001), while the aspect ratio of 1.01 corresponds to a nearly spherical particle. In our application of the T-matrix code the second mode parameters (i.e. \(\text{Rad}_2 = 0.83 \, \mu m, \sigma_2 = 1.84 \), see Table 1) were used to specify the size distribution, and the AFCRL 1987 Sand indices are utilized.

Table 1 summarizes the inputs to the aerosol calculations, i.e. parameters for a size distribution with two log-normal distributions. Given the input size distribution and indices the resulting extinction spectra were distributed uniformly from the surface to 2 km altitude, with an additional stratospheric sulfate aerosol optical thickness of 0.006 distributed throughout the stratosphere.

<table>
<thead>
<tr>
<th>Aerosol Type</th>
<th>(\text{Den}_1)</th>
<th>(\text{Rad}_1)</th>
<th>(\sigma_1)</th>
<th>(\text{Den}_2)</th>
<th>(\text{Rad}_2)</th>
<th>(\sigma_2)</th>
<th>Indices</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sulfate</td>
<td>1.00</td>
<td>0.64</td>
<td>1.58</td>
<td>1.25</td>
<td>0.37</td>
<td>2.13</td>
<td>AFCRL 1987 H(_2)SO(_4) 300 K</td>
</tr>
<tr>
<td>Dust</td>
<td>1.00</td>
<td>0.08</td>
<td>0.86</td>
<td>1.52</td>
<td>7.5</td>
<td>1.84</td>
<td>AFCRL 1987 Sand</td>
</tr>
<tr>
<td>Brown Carbon</td>
<td>1.00</td>
<td>0.086</td>
<td>1.49</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>Alexander Brown Carbon</td>
</tr>
</tbody>
</table>

To highlight the optical properties of the simulated aerosols, Figure 2 shows the MODTRAN simulated radiances for the three different aerosol types overlying a black surface. The observed radiance is simulated at an altitude of 3 km with a SZA of 25° and ground elevation at sea level. An AOT of 1.0 was selected for each aerosol type. The single scattering albedos close to unity of sulfate and dust have a larger effect on the simulated radiance, compared to the lower single scattering albedo of carbon. For a highly reflective surface, the effects would be reversed, and we would see the strongest deviation from the case of no aerosols for carbon.
2.4 Simulating Instrument Noise

Unlike radiative transfer calculations, the measured signal from real instruments contains noise. Therefore, we add noise to the radiative transfer calculations that is similar to the noise in the AVIRIS-NG instrument.

The noise is approximated by a three-parameter fit (see Equation 5) (Thompson et al., 2018) and derived from more complex AVIRIS-NG noise models (Mouroulis et al., 2000, 2003; Tennant et al., 2008).

\[
\sigma(L(\lambda), \lambda) = a(\lambda) \ast (b(\lambda) \ast L(\lambda))^{0.5} + c(\lambda) \tag{5}
\]

The computed noise, \(\sigma(L(\lambda), \lambda)\), is a function of three wavelength dependent parameters and observed radiance, \(L(\lambda)\), which is a function of wavelength as well. Following a normal distribution, we randomly add the calculated noise to the radiative transfer calculated radiances:

\[
L_{\text{noise}}(\lambda) = L(\lambda) + \mathcal{X} \quad \text{with} \quad \mathcal{X} \sim \mathcal{N}(0, \sigma(L(\lambda), \lambda)) \tag{6}
\]
On average, the signal to noise level for a typical scene is about 100 in the ultraviolet, 200 in the visible, 300 in the near infrared and peaks at about 1600 nm with a signal to noise level of 700.

3 Inverse Model

After using the forward model to generate a dataset to train the neural network, we are now able to train an inverse model that relates radiance spectra to AOT for the three aerosol types.

3.1 Model Architecture

A subclass of neural networks, called multilayer perceptrons, have been shown to be able to approximate any linear or non-linear function (Hornik et al., 1989). After the training phase multilayer perceptrons can be used in real time at low computational cost. This makes this model architecture ideal for our application. Neural networks have previously been used in many studies to extract information from remote sensing observations. For example to estimate cloud optical thickness and type (Minnis et al., 2016; Taravat et al., 2015), to un-mix surface types (Licciardi and Del Frate, 2011; Palsson et al., 2018) and to retrieve biophysical properties of vegetation (Verger et al., 2011; Xiao et al., 2014). Neural networks have also been applied to retrieve aerosol layer height from Ozone Monitoring Instrument (OMI) observations (Chimot et al., 2017) used to estimate multiple aerosol parameters as the prior for an iterative Phillips-Tikhonov retrieval (Di Noia et al., 2017) and to estimate AOT from MODIS observations (Lary et al., 2009; Radosavljevic et al., 2010).

A multilayer perceptron is comprised of many individual operations, or neurons, that multiply their inputs by a matrix, or weights, sum the results and add an additional vector, called bias. A non-linear function, the activation function, is applied to the results, or outputs, of these neurons, permitting non-linear projections from the input space to the output space. In a network, the output of neurons can be used as the input to other neurons. Hence, neurons are organized in layers. In general, more layers, and more neurons per layer, allow for more complex information retrieval. However, if the network becomes too complex for a given dataset and task, it will perform poorly for new model inputs. The right number of neurons and layers as well as other parameters, or hyperparameters, have to be determined empirically for every application. Thus, we altered the hyperparameters, trained the neural network on the majority of the samples, the training-set, and evaluated the model performance with samples that are separate from the training-set, the validation-set. Once we could no further reduce a user-defined cost function, we froze the hyperparameters.

Our neural network consists of five layers between the input and output layer, or hidden layers, containing 128 neurons in the first four hidden layers each and 96 neurons in the last hidden layer. The input layer consists of 322 neurons and the output layer consists of 3 neurons. The first five layers are fully connected, meaning that all layer outputs are used as layer inputs of the succeeding layer. The sixth layer is separated into three groups with 32 neurons each (see Figure 3). The inputs to the
neural network are the radiance at 319 wavelengths, the SZA, ground distance and ground elevation. The output of the network is the independently retrieved AOT of the three aerosol types.

![Model architecture of the neural network for aerosol retrieval. The inputs consist of the SZA, ground distance, ground elevation and the radiance at 319 individual wavelengths. The network has five hidden layers with 128 neurons in the first four layers and 96 neurons in the last hidden layer. The outputs of the network are the AOT for carbon-, dust- and sulfate aerosols.](image)

To allow for non-linearities we add a rectified linear unit (ReLU) as the activation function, $g(x)$, which can be expressed as:

$$
g(x) = \begin{cases}
 x, & \text{if } x \geq 0 \\
 0, & \text{if } x < 0
\end{cases}$$

where x is the output of a neuron. During training we minimize the cost function, given by:

$$
cost = \alpha * R(\theta) + \frac{1}{2n} \sum_{i} (Y_i - Y_j)^2 $$ \hspace{1cm} (8)$$

$$
R(\theta) = \|\theta\|^2 = \sum_{i} \theta_i^2 + \sum_{j} \theta_j^2 $$ \hspace{1cm} (9)$$

For our network Y_j and Y_i are the n true and predicted AOT, respectively. We further add the L2 norm $\|\theta\|^2$ to the vector of the m neural network weights, θ_i, to our cost function (see Equation 9), also referred to as L2 regularization or weight decay.
This helps to avoid overfitting to the training set. The L2 regularization term, \(R(\theta) \), is weighted by \(\alpha \) (see Equation 8) which is another hyperparameter that had to be determined empirically.

3.2 Pre-processing

From the 425 AVIRIS-NG channels we exclude calculated radiances at wavelengths with strong water vapor absorption. At these wavelengths, the majority of the surface spectra used in this study did not report or linear interpolate, surface reflectance. Furthermore, we exclude radiances at wavelengths that show strong signs of noise in the AVIRIS-NG data. A total of 319 wavelength channels remain. We then scale the radiance of a particular observation, \(L_j \), by dividing through the cosine of the SZA and multiplying with the square of the Sun-Earth distance, \(d \) (Equation 10). This scales the magnitude of \(L_j \) while preserving its spectral shape. Afterwards, we standardize the scaled observations, \(\tilde{R}_j \), for the training process. During training, this results in a better conditioned cost function and allows the neural network to converge faster to a solution. Standardizing is performed by were then normalized to zero mean and unit variance, subtracting the mean, \(\mu_j \), and dividing by the standard deviation, \(\sigma_j \), at every wavelength, (Equation 11). The mean and standard deviation was calculated from the complete set of radiative transfer calculations. The normalization was applied twice, once per spectrum for every individual observation, \(R_j \) (Equation 10) and once per wavelength for the whole data set, \(R \) (Equation 11).

\[
R_j = \frac{L_j \cdot d_j^2}{\cos \text{(SZA)}}
\]

\[
\tilde{R}_j = \frac{R_j - \mu_j}{\sigma_j} \quad \text{with} \quad \mu_j = \text{mean}(R_j) \quad \text{and} \quad \sigma_j = \text{std}(R_j)
\]

The first normalization normalizes the magnitude of the radiance of a particular observation while preserving its spectral shape. This forces the neural network to interpret the spectral shape rather than its magnitude. The second normalization optimizes the observations for the training process and allows the neural network to converge faster to a solution.

3.3 Training, Validation and Test

The MODTRAN radiance samples were split into a trainings-, validation- and test-set. The validation- and test-set contain 10,000 randomly chosen samples each and the trainings-set consists of 280,000 samples. Training is performed with Googles’
TensorFlow framework (Abadi et al., 2016). We gradually minimize the cost function by adjusting the randomly initialized weights and bias terms with the gradient-based optimizer Adam from Kingma and Ba (2014), at a learning rate of 0.001. During training we evaluate the neural network performance on the validation set and update the model architecture and training parameters. Once, the cost function cannot be further minimized, training is complete.

4 Results and Discussion

After training of the neural network is completed, we evaluate its performance on the test set. For the samples in the test set, that were not present during training, we find a linear correlation coefficient of 0.87, 0.98 and 0.96 for the AOT of carbon, dust and sulfate, respectively (see Figure 4). The standard error for carbon-, dust- and sulfate aerosols is 0.05, 0.02 and 0.03, respectively. Thus, the model accuracy is higher for dust and sulfate, which have a larger single scattering albedo compared to carbon.

![Figure 4](image)

Figure 4: AOT for carbon, dust and sulfate aerosols, retrieved by the model vs true AOT from the test set. The cyan line shows the linear fit to the data with slope and y-intercept given in the respective titles for simulated radiances, given different surface types, viewing geometries and atmospheric states.

We further investigate the model’s performance for retrieved AOT under varying amounts of the three aerosol types. The absolute error in retrieved AOT for the three aerosol types is shown in the top row of Figure 5. Horizontal gradients (vertical bands) indicate that the model’s performance for the retrieval of a single aerosol type depends on the concentrations of the other aerosols in a given observation. Vertical gradients indicate that the model’s performance is dependent on the AOT of the aerosol that we are trying to retrieve. For the error on retrieved carbon (Figure 5 a) and sulfate (Figure 5 c) we find dependencies on AOT while the error in the retrieval for dust (Figure 5 b) appears insensitive to its AOT. Examining the retrieval error in percent of AOT (bottom row) we find that all three aerosol retrievals have higher relative errors for lower AOT and a standard error of about 40% for an AOT of 0.1. We further analyzed the model’s performance over a SZA range from 25° – 50°, ground...
elevation from 0 – 2000 m and ground distance from 3000 – 6000 m. No significant correlation between model error and the three parameters was found.

Figure 5: Error in retrieved AOT for carbon, dust and sulfate aerosols on the test set. (a, b, c) shows the absolute error while (d, e, f) shows the error in [%]. The color-mapping is held constant for each row and varies across the three columns.

4.1 Model Performance for Varying Surface Types

To investigate systematic, surface dependent biases in the model we derive AOT for the three aerosol types over various unmixed surface types. The data consist of 250,000 samples. The standard error and mean between true and predicted AOT for different surfaces types is summarized in Figure 6. For the retrieval of carbon, we find the largest standard error for asphalt with ±0.0811 and the largest systematic bias for grass of +0.024. For dust the largest systematic bias is less than +0.012 and occurs for scenes with vegetation and concrete. The standard error is similar for all surface types and approximately ±0.023. The systematic biases for the retrieval of sulfate aerosols are all mostly negative with asphalt and concrete and shingle causing the largest bias of −0.01. Overall, the standard error for the retrieval of carbon over most surfaces is larger compared to the other two aerosol types. This is not surprising, considering the overall lower performance of the model for the retrieval of carbon aerosols. Note that the model’s performance should be evaluated from the more realistic case of mixed surface spectra as was done in the previous section.
4.2 Effect of Spectral Resolution, Sampling Resolution and Instrument Noise

Here we examine how spectral resolution, sampling resolution and instrument noise affect model performance. The underlying motivation is to estimate the model’s performance for instruments other than AVIRIS-NG, which might have a 10 nm spectral resolution, fewer wavelength channels as well as a higher or lower signal to noise ratio. Hence, we train and analyze the model’s performance for an additional 230 networks with varying noise, spectral resolution and sampling resolution.

To simulate the fewer wavelength bands, the training-samples were reduced in sampling resolution, leaving 319, 107, 36 and 12 uniformly spaced, wavelengths per sample. Furthermore, to account for different signal to noise ratios, we changed the simulated AVIRIS-NG equivalent noise level (see Equation 5 and 6) by multiplying it with 0 (no noise), 1 and 3 and 9 before applying it to our training- and test-samples. Finally, we performed all calculations once for the AVIRIS-NG spectral resolution of approximately 5 nm and for a spectral resolution of 10 nm. All neural network parameters were kept constant, except the input layer, which had to be adapted to the reduced number of wavelengths. Training was stopped when the error on the validation set could not be reduced any further or we reached a maximum of 10,000 epochs, meaning that every training-sample was used during training 10,000 times. While we found dependencies of retrieval performance to varying
amounts of noise and number of wavelength channels, the spectral resolution had no significant effect. On average the models trained with a spectral resolution of 5 nm had a standard error in retrieved AOT that was only 0.001 smaller than for the cases with a spectral resolution of 10 nm. Therefore, we limit the following discussion to the results of the 12 neural networks trained on radiative transfer calculations with the AVIRIS-NG spectral resolution of approximately 5 nm and note that these values are also representative for an instrument with a 10 nm spectral resolution.

The standard error in the test-set of the respective neural networks is shown in Figure 7. The left column shows the standard error for the complete test-set (AOT is varied between 0 and 1) while the right column shows the standard error for low aerosol loadings, with AOT ranging between 0 and 0.3. As expected, we find a decrease in model accuracy for fewer wavelengths and more noise. This decrease in model accuracy, with respect to the idealized case of 319 wavelength bands and no noise, is nearly symmetrical for our chosen test cases. Thus, if we reduce the number of wavelength bands by a factor of three the model has similar accuracy compared to if we add AVIRIS-NG equivalent noise and if we reduce the number of wavelength bands by a factor of nine the model has similar accuracy compared to applying three times AVIRIS-NG equivalent noise, and so on. This holds true for all aerosol types. Overall, the model has the highest accuracy for the retrieval of dust. To put the calculated standard errors in the left column into perspective: if the model would randomly guess the combined AOT of all three aerosols between 0 and 1 and simply divide by three, the standard error would be ±0.10. Thus, all trained models show higher accuracy than guessing randomly. If we had a model that would be able to retrieve the combined AOT without error, and then simply divide by three, the standard error would be ±0.07. For the retrieval of carbon, the models with 124 wavelengths bands and 39 times AVIRIS-NG equivalent noise showed such a standard error. This is an indication that the AOT from carbon aerosols cannot be isolated from other aerosols for instruments with only 124 wavelengths and 39 times AVIRIS-NG equivalent noise. The retrieval of dust and sulfate requires fewer wavelength bands and can tolerate more noise compared to the retrieval of carbon, with dust having a better standard error than ±0.07 for all cases other than 4 wavelength bands combined with 9 times AVIRIS-NG equivalent noise. Overall, the standard errors imply that the retrieval of combined AOT is possible with few wavelengths and poor signal to noise ratio for all three aerosol types.

For aerosol retrieval under low AOT conditions (right column in Figure 7), a model that would guess the combined AOT randomly between 0 to 0.3 and divide by three, would have a standard error of ±0.06 and a model that can determine the combined AOT perfectly and then simply divides by three would have a standard error of ±0.03. Most combinations of wavelength bands and instrument noise have standard errors that exceed this threshold of ±0.03 for the retrieval of carbon. This highlights the limitations of the model for the separation of carbon aerosol types for low levels of AOT. Additionally, it stresses the importance of low noise hyperspectral instruments, such as AVIRIS-NG.
Figure 7: Standard error for retrieved AOT of 12 individually trained neural networks with (319, 107, 36, 12) wavelength bands and varying amount of simulated AVIRIS-NG equivalent noise (0, 1, 3) (see Equation 5 and 6) from the test set. Left column shows the standard error when AOT is varied between 0 and 1. Right column shows the standard error for AOT between 0 and 0.3.

4.3 Sensitivity Analysis

It is inherently difficult to interpret the inner workings of neural networks. However, by perturbing the inputs and observing the changes of the outputs one can infer the relative importance of an input for a given model [Blackwell, 2012]. We perform such a sensitivity analysis by increasing one input at a time by 1%, while keeping the other 321 inputs unchanged. The model output is then calculated for the entire test set and compared to the retrieval without the perturbation. For example, AOT of carbon is derived while the model input, representing the observed radiance at 500 nm, is increased by 1%. All other model
inputs, for example radiance at 600 nm and 700 nm or SZA, are kept unchanged. We perform such a sensitivity analysis once for the model trained without noise (an ideal instrument) and once for the model trained with AVIRIS-NG equivalent noise. The sensitivity to every input is shown in Figure 8. For the model trained without noise (top, third and fifth row) we find more sensitivity at 687 nm and 762 – 767 nm for the retrieval of carbon and dust while sulfate shows more sensitivity to the latter. All aerosol types. These wavelengths correspond to the oxygen B-and A-band located at 685 nm – 695 nm and 759 - 771 nm, respectively. Multiple studies have suggested the use of these absorption bands for the retrieval of AOT and its vertical structure (Dubuisson et al., 2009; Heidinger and Stephens, 2000; Min et al., 2004). Overall, we note higher sensitivity at shorter wavelengths and reduced sensitivity for wavelengths longer than 2000 nm. This is what we would expect, given the higher contribution of the aerosols to radiance at shorter wavelengths (see Figure 2). The sensitivity to small perturbations of SZA, ground distance and ground elevation is small compared to the radiances. From these three model inputs, surface elevation is indicated to be the most important for the retrieval of dust and sulfate. For the model trained with AVIRIS-NG equivalent noise we find approximately an order of magnitude lower sensitivity at shorter wavelengths compared to their respective counterparts trained without noise (Note the different y-scales for the six sensitivity plots). This demonstrates how the model adapted to small perturbations (noise) at individual wavelengths by becoming less sensitive to these perturbations. For longer wavelengths, the change in sensitivity is less pronounced, with higher or similar sensitivities compared to the model trained without noise. In general, we observe a relative shift in sensitivity from shorter towards longer wavelengths when instrument noise is added. The shift in sensitivity to longer wavelengths might be a direct effect of the noise distribution of AVIRIS-NG which allows for a higher signal to noise ratio at longer wavelengths. Additionally, there is an overall smoother shift in sensitivity between neighboring wavelengths. This can be interpreted as the model relying on multiple neighboring wavelengths to obtain their shared information content, rather than interpreting wavelengths individually.
Figure 8: Sensitivity for retrieved AOT of carbon, dust and sulfate to all model inputs. The x-axis shows the model inputs (radiances at shown wavelength, SZA, ground distance and ground elevation). The y-axis shows the difference in retrieved AOT when increasing a given input by 1% while keeping all other inputs unchanged. Note that the scaling of the y-axis is different for every panel.

Commented [SM12]: updated
5 Applying the Model to Real Imagery

To apply the model to real imagery one would ideally train the model further on real observations from the instrument used for the final aerosol retrieval. This would allow the model to adapt to the unique instrument characteristics, for example, calibration offsets, instrument response function or wavelength shifts not captured in the radiative transfer calculations. This process is often referred to as fine tuning. It would require observations over a wide variety of surface types, viewing geometry, and aerosol properties as well as ground truth data of the AOT of the three aerosol types. While there is a multitude of AVIRIS-NG observations from a recent India campaign with widely varying aerosol properties and surface types, the number of observations that coincide with AERONET stations that could provide the necessary ground truth is very limited. We therefore refrain from fine tuning the model and apply the trained neural network directly to AVIRIS-NG observations from a flight campaign in 2016 over India in collaboration with Space Applications Centre, Indian Space Research Organization (SAC, ISRO). The results are compared to MODIS and AERONET retrieved AOT and a reanalysis product.

5.1 Preprocessing of AVIRIS-NG Observations

To remove remaining noise in the AVIRIS-NG observations we use a principal component analysis (PCA) (Wold et al., 1987) and inspect the generated eigen-images manually. The PCA is only applied to the 319 wavelength channels that we used to train the model on. As stated before, these channels were down selected from the 425 AVIRIS-NG channels to avoid wavelength bands with strong water absorption and instrument noise. While the first 16 components explain approximately 99.9% of the variability and are dominated by image features (see Figure 9), most higher principal components are dominated by systematic noise (vertical stripes along the flight path). We reconstruct the AVIRIS-NG observed radiances from these first 16 principal components. This effectively removes principal components higher than 16 from all analyzed AVIRIS-NG imagery. Afterwards, the radiances for every pixel is treated as an independent observation and normalized, scaled and standardized (Equation 10 and 11) to match the training set. We acknowledge that the choice of retaining the first 16 principal components is rather arbitrary and should ideally be made on a per flight basis. However, for practical reasons we decided to use one threshold for all imagery considered in this study. The threshold is a tradeoff between removing valuable information and reducing noise. Experiments with more and fewer principal components indicated that the model was insensitive to the exact number of remaining principal components.
Figure 9: First 36 eigen-images from an AVIRIS-NG flight on 10/01/2016 near Coimbatore, India. Shown is a spatially resolved scene of 100 x 100 ground pixel, approximately 500 x 500 m. Instrument artifacts (vertical stripes) are visible for eigen-images greater than 16 (for example 19 and 22).

5.2 Novelty Detection

Our model is trained on a limited set of training examples. The set of surface types available for training is not complete. Generally speaking, library spectra of surface materials vastly under-represent the spectral variability of surface materials found in nature. The variety of surface materials is just too great to include in any single library. Applying the model to scenes with new surface types, which have significant differences compared to the surface types in the training set can lead to false
aerosol retrieval by the model. Hence, it is important to measure the similarity of a given AVIRIS-NG scene to the training examples and discard individual image pixel that are far outside of the training space. This is referred to as novelty detection. For this purpose, we train a second neural network proposed by Japkowicz et al., (1995) on the training samples with AVIRIS-NG equivalent noise. The network architecture is an auto-associative multilayer perceptron (Kramer, 1992) with three hidden layers and shown in Figure 10. All three hidden layers use a ReLU activation function and consist of 512, 32 and 512 neurons, each. The input- and output-layer consist of 322 neurons, each. The network takes 319 radiances at individual wavelengths (measurements of one image pixel), SZA, ground distance and ground elevation as input parameters and is trained to reproduce these parameters after some computation by the network. The network is trained in a manner similar to the model for aerosol retrieval and uses the same optimization algorithm and cost function (see Equation 8) with \(n = 322 \), and \(Y_f \) and \(Y_g \) being the original and reproduced radiances and SZA, ground distance and ground elevation. The first three layers (Input, Compression and Bottleneck) act similarly to deriving the first 32 principal components but are non-linear. The last two layers (Decompression and Output) can be interpreted as reproducing the radiances only from their first 32 principal components, but again, are non-linear. After the replication of the input parameters we compare those to the original inputs and calculate the mean square error between the two. During training, the neural network learns to minimize this error. For example, the neural network learns that the radiance at 2100 nm is highly correlated with the radiance at 2300 nm. Thus, it can reconstruct (decompress) both radiances with only one value passed in from the Bottleneck layer with little error. Once the neural network is trained and applied to previously unseen features it will compress and decompress features that are similar to the training set (high correlation between 2100 nm and 2300 nm) with a smaller error than features that are different (low correlation between 2100 nm and 2300 nm). Finally, a threshold for the error is determined as a tradeoff between the number of remaining aerosol retrieval and the number of remaining outliers. Samples above the determined threshold are considered new and not considered for the aerosol retrieval.
Figure 10: Auto-associative neural network for novelty detection used for novelty detection. The input and output layer consist of SZA, ground distance, ground elevation and radiances at 319 wavelengths. The network has three hidden layers with 512, 32, 512 neurons per layer.

5.3 Results

Figure 11 and Figure 12 show the aerosol retrieval for two of the 21 analyzed AVIRIS-NG scenes. The scene in Figure 11 was captured on 02/04/2016 near Kota, India. It shows a detail of the flight with 100 x 500 pixels and an approximate ground resolution of 5 m per pixel. The median and standard deviation of the retrieval is indicated at the top of the first four panels, showing the combined AOT and un-mixed AOT for carbon, dust and sulfate. The normalized mean square error from the auto-associative neural network for novelty detection and a true color image is shown on the right as well. Image pixels that lie above a user defined threshold are highlighted in red and discarded. For the scene shown in Figure 11 the discarded image pixels consist of water features in the middle and bottom portions of the scene as well as some agricultural sites. The detection of water by the neural network for novelty detection is to be expected, since the spectral shape of water is very different to most land surfaces and was not part of the training set. The aerosol retrieval still includes surface features. For example, it overestimates carbon aerosols over what appears to be a street (top-middle of second plot from the left). Some residual surface features are not entirely unexpected as less challenging atmospheric retrievals from imaging spectroscopy, for example water vapor (Thompson et al., 2015), often contain surface reflectance artifacts. The detail shown in Figure 12 is from an AVIRIS-NG flight near Gundlupet, India from 01/10/2016. The model for novelty detection excluded mostly individual fields with bare soil. Similar to the figure above, we find some residual surface features in the retrieval. Both images show the limitation of the model in distinguishing small variations in AOT from different surface types. To minimize the residual surface features a median filter could be applied in post processing at the cost of lower spatial resolution.
Figure 11: Aerosol retrieval with the model from AVIRIS-NG imagery near Kota, India, 02/04/2016. The median and standard deviation of the retrieval is indicated at the top of each panel. The normalized output of the neural network for novelty detection is shown in the panel, second from the right. Values above a chosen threshold are discarded from the aerosol retrievals and highlighted in red (e.g., a river in the middle of the images). A true color image of the scene is shown as well for reference.

Commented [SM14]: updated
5.4 Comparison to AERONET and MODIS

We compare the combined aerosol retrievals from AVIRIS-NG to AERONET and MODIS retrievals. AERONET is a network of ground-based sun photometers distributed around the globe (Holben et al., 1998). AERONET instruments derive AOT at multiple wavelengths with an uncertainty of 0.01 to 0.02 (Eck et al., 1999). These low uncertainties make AERONET stations a common source for validation of air- and space-borne AOT retrieval (Bilal et al., 2014; Chu et al., 2003; Levy et al., 2013). However, there are sparse AERONET locations in India. We, therefore, add a second source of AOT retrievals to the comparison from MODIS observations. MODIS makes daily and nearly global observations from two platforms, Aqua and Terra. MODIS has a spectral range from 410 nm to 14.5 µm over 36 discrete wavelength bands. Its ground resolution is better than 1 km, depending on the wavelength band (Salomonson et al., 1989). Two algorithms are utilized to derive AOT form MODIS observations. The Dark Target (Kaufman et al., 1997) algorithm is used for dark ground targets such as vegetation and water. The Deep Blue (Hsu et al., 2004, 2006) algorithm is applied to measurements over dark and bright surfaces although it was originally developed for the aerosol retrieval over bright desert regions. Over land, MODIS retrieved AOT has an expected standard error of 0.05 + 15% of AOT (Levy et al., 2013). MODIS has larger uncertainties than AERONET, but the retrievals are in closer spatial and temporal proximity to the AVIRIS-NG flights.

For the period of the 21 AVIRIS-NG flights only three AERONET stations within India were operational. These are Gandhi College at 25.9°N 84.1°E, Jaipur at 26.9°N 75.8°E and Pune at 18.5°N 73.8°E. We make use of the daily means of their Level 2.0 data product, which is cloud-cleared and manually inspected. The locations of all three stations are shown in Figure 13 together with the location of all 21 AVIRIS-NG flights considered in the study. For a given flight we consider the AOT retrieved from all three AERONET stations within 1 and 2 days of the flight date. The time averaged, retrieved AOT of each AERONET station, $\tau_{aer,i}$, is weighted proportionally to the square of the distance, d_i, between station and flight:

$$\tau_{aer} = \frac{\sum_{i=1}^{3} \tau_{aer,i} * d_i^{-2}}{\sum_{i=1}^{3} d_i^{-2}}$$

(12)
Figure 13: Location of AERONET stations and AVIRIS-NG flights. The AERONET stations are marked with blue diamonds, a 4 deg and 2 deg (approximately 440 km and 220 km) radius around each station is indicated with a black and blue circle. The AVIRIS-NG flight locations are shown with red x. AVIRIS-NG flights outside the circles are not considered for the comparison to AERONET.

The comparison between AOT retrieved by AERONET and the AVIRIS-NG flights is shown in Figure 14 and Figure 15 for AERONET retrievals within 1 day and 2 days, respectively. For the comparison within 1 day of the AVIRIS-NG flights only four AERONET stations reported their measured AOT. Only one comparison falls within the specified 1-day window and is within 2 deg (= 220 km) of the flight location (red circle). The three other comparisons are for flights with a distance ranging from 2 deg to 4 deg between the AERONET station and the AVIRIS-NG flight. The standard deviation of all considered AERONET retrievals that we compare to for a given flight is indicated by the vertical bars. The standard deviation within a scene for the analyzed AVIRIS-NG flights is shown with horizontal bars. For the 4 comparisons we find a root mean square difference (RMSD) of 0.14. However, due to the large spatial distance between AERONET stations and the considered AVIRIS-NG flights this value has to be interpreted with caution and comes with large uncertainties. Nevertheless, we included this comparison for completeness and hope to have more collocated flights of AVIRIS-NG and AERONET stations in the future.
Considering AERONET observations within 2 days of the flights we are able to compare eight flights in total with three flights within 2 deg and 5 flights within 2 to 4 deg. The RMSD for all eight comparisons is 0.08. Again, we caution that the distance between AERONET stations and AVIRIS-NG flights is significant. For the comparison within 2 days, the closest comparison has a distance of about 40 km and is shown in Figure 15 (circled red and furthest to the right).

Figure 14: AOT retrieved by AERONET (see Equation 12) and the AOT retrieved from AVIRIS-NG with the model. The standard deviation of the considered AERONET measurements is shown with vertical bars and the standard deviation for the retrieval with AVIRIS-NG with horizontal bars. All comparisons between AERONET and AVIRIS-NG flights are located within 4 deg (~440 km) and within 1 day from each other. The one comparison within 2 deg (~220 km) is circled in red.
Figure 15: AOT retrieved by AERONET (see Equation 12) and the AOT retrieved from AVIRIS-NG with the model. The standard deviation for AERONET is shown with vertical bars and the standard deviation for the retrieval with horizontal bars. All comparisons between AERONET and AVIRIS-NG flights are located within 4 deg (≈ 440 km) and within 2 day from each other. The three comparisons within 2 deg (≈ 220 km) are circled in red.

For the comparison to MODIS we make use of the Collection 6, ‘MODIS/Terra and MODIS/Aqua Level-2 (L2) Aerosol Product’ (Levy et al., 2015, 2013). More specifically, we use the science data set ‘AOD_550_Dark_Target_Deep_Blue_Combined’ within the specified aerosol product. These data have a spatial resolution of 10 x 10 km and are derived utilizing the Dark Target and Deep Blue algorithm. All AOT retrievals come with a Quality Assurance Confidence (QAC), which is a measure of the algorithm performance. The QAC is determined by the number of examined pixel, fitting error and whether the solution falls into realistic physical conditions (Levy et al., 2013). In our study, we only consider derived AOT with the highest QAC = 3 and consider retrievals within 1 day and 0.2 deg ≈ 22 km of the AVIRIS-NG flights. The spatiotemporal cutoff is chosen as close in time and space as possible, while avoiding AVIRIS-NG flights with no collocated MODIS retrievals. This results in an average of 55 and minimum of 13 MODIS retrievals per AVIRIS-NG flight that we compare to. The comparison for the 21 AVIRIS-NG flights to the MODIS retrieved AOT is shown in Figure 16. The data have a correlation of 0.78 and a RMSD of 0.15. The two AOT retrievals have a significant correlation of 0.81 and a RMSD of 0.12. However, the correlation might be mainly driven by the few high-AOT comparisons. The correlation and RMSD is similar to comparisons between AERONET and MODIS for India, with a correlation of 0.86 and RMSD of 0.19 (Gupta et al., 2018). Furthermore, AVIRIS-NG shows a positive bias of 0.07 compared to MODIS, which itself has a positive bias compared to AERONET (Gupta et al., 2018; Wang et al., 2019). This indicates that the AVIRIS-NG retrievals might overestimate combined AOT. Whether this bias holds true for a larger sample size and whether it is grounded...
in the model or the calibration of AVIRIS-NG warrants further investigation. Interestingly, the two outliers at the bottom of Figure 16, where MODIS reports almost no aerosols are only 20 km and 1 day apart from each other. (Gupta et al., 2018). It has to be noted that the presented model was trained purely on radiative transfer calculations and not adjusted or calibrated to match the aerosol retrieval from MODIS or AERONET in any way. As with the comparison to AERONET, the comparison to MODIS comes with caveats. In essence, MODIS faces the same challenges as our model, namely detecting the weak signal of aerosols in the presence of a strong signal from the underlying surface. Furthermore, MODIS AOT retrievals have a different spatial resolution and stem from observations recorded at different times than the AVIRIS-NG flight tracks, even fewer wavelengths to make this retrieval. Nevertheless, in the absence of higher accuracy collocated measurements we included the comparison to MODIS.

5.5 Comparison to CAMS

We further compare the retrieved AOT to the Copernicus Atmosphere Monitoring Service (CAMS) product. The CAMS system provides global analysis and forecasting of AOT for organic matter, dust and sulfate and is further described in (Benedetti et al., 2009; Morcrette et al., 2009). CAMS accounts for aerosol emissions, transport, sedimentation and deposition of various aerosol types. In contrast to MODIS and AERONET, one can directly compare the CAMS AOT for a specified
aerosol type to the retrieved AOT. We make use of the CAMS ‘near-real-time’ product at a spatial resolution of 0.125° available at: https://apps.ecmwf.int/datasets/data/cams-nrealtime/leftype=sfc/.

Figure 17 shows the comparison for the three considered aerosol types with the CAMS modeled AOT on the y-axis and AVIRIS-NG retrieved AOT on the x-axis. There seems to be general agreement between CAMS and AVIRIS-NG with AVIRIS-NG retrievals being on average 0.03 higher. The standard deviation of the difference between CAMS and AVIRIS-NG for the 21 analyzed scenes is 0.02, 0.04, 0.05 for carbon, dust and sulfate, respectively. For AOT below 0.1, CAMS and AVIRIS-NG differ significantly for carbon and dust with AVIRIS-NG retrieving higher AOT.

![Figure 17](image)

Figure 17: AOT modeled by CAMS (y-axis) vs AOT retrieved from AVIRIS-NG spectra with the neural network (x-axis). The standard deviation of the CAMS modeled AOT within 6 hours and 0.125° of the AVIRIS-NG observations are shown with vertical bars and the standard deviation for the AVIRIS-NG retrievals with horizontal bars.

6 Conclusion

We demonstrated the retrieval of AOT from externally mixed dust, sulfate and carbonaceous aerosols from hyperspectral imagery with no a priori information of surface albedo or atmospheric state. We showed how sampling resolution and instrument noise influences the retrieval and, as expected, we find a decrease in model performance for fewer wavelengths and increased instrument noise. These results underline the need for low noise hyperspectral instruments. A sensitivity analysis gave insight in which wavelengths are important and how the neural network compensates for instrument noise; shifting sensitivity to multiple neighboring wavelengths and to longer wavelengths. We applied our model to AVIRIS-NG observations from a recent campaign over India and compared the retrieved AOT to AERONET and MODIS retrievals. The comparison to AERONET show a RMSD in AOT of 0.0914 and 0.08 for collocated flights within 1 and 2 days, respectively. The comparison to MODIS finds a RMSD of 0.125. From a test set of radiative transfer calculations, we are able to retrieve AOT independently for dust, sulfate and brown carbon with a standard error of 0.03, 0.03 and 0.05, respectively. At execution time
the presented neural network methodology can be executed at almost no computational cost. On a high-end consumer laptop (MacBook Pro CPU: i7 at 2.6 GHz) one can extract AOT, with the presented model, at about 250,000 spectra per second.

The results shown here are promising but also underline the difficulties of retrieving aerosol properties, especially over land: aerosol extinction is a weak, slowly varying spectral signal. Hyperspectral measurements can reduce uncertainty in aerosol remote sensing, and we demonstrate that neural networks provide an efficient means for extracting information from large, multi-dimensional data sets, such as hyperspectral data cubes. As future satellite capabilities increase to acquire high spatial resolution hyperspectral data, there is a need to be able to process the large amount of data in a reasonable amount of time. Neural Networks can provide a solution for this task.

6.1 Future work

The current set of AVIRIS-NG flights in India has only a limited number of AERONET stations in close proximity to the various flight paths. To further validate our model, more collocated comparisons to AERONET observations are necessary. Deployed on a global platform, such as the upcoming CLARREO pathfinder or HyspIRI mission, many collocated observations with AERONET could systematically validate the retrieval and further improve the model performance through fine tuning. Furthermore, in situ microphysical measurements are necessary to validate the retrieved aerosol types. Finally, the presented methodology can be expanded in the future to retrieve other atmospheric and surface properties, such as water vapor, cloud properties and surface reflectance.

Acknowledgment

This research was supported in part by NASA Award 80NSSC17K0569

References

Palsson, B., Sigurdsson, J., Sveinsson, J. R. and Ulfarsson, M. O.: Hyperspectral Unmixing Using a Neural Network Autoencoder, IEEE

