Molecular Characterization of Alkyl Nitrates in Atmospheric Aerosols

by Ion Mobility Mass Spectrometry

Xuan Zhang1,*, Haofei Zhang2,3, Wen Xu4, Geoffrey S. Tyndall1, John J. Orlando1, John T. Jayne4, Douglas R. Worsnop5, and Manjula R. Canagaratna4,*

1 Atmospheric Chemistry Observation & Modeling Laboratory, National Center for Atmospheric Research, Boulder, CO 80301, USA
2 Department of Chemistry, University of California, Riverside, CA 92521, USA
3 Environmental Toxicology Program, University of California, Riverside, CA 92521, USA
4 Center for Aerosol and Cloud Chemistry, Aerodyne Research Inc., Billerica, MA 01821, USA

Correspondence to: Xuan Zhang (xuanz@ucar.edu)
Manjula R. Canagaratna (mrcana@aerodyne.com)
Abstract

We demonstrate the capability of the Ion Mobility Mass Spectrometry (IMS-MS) for molecular characterization of reactive and short-lived alkyl nitrates (ANs) in atmospheric aerosols. We show significantly enhanced production of ion adducts from a selection of alkyl nitrates by clustering with inorganic anions such as chloride and nitrate during negative electrospray, a special chemical ionization mechanism in the condensed phase. This approach enables the detection of ANs that have low tendency to form molecular ions on their own by electrospray ionization. Molecular identity of each AN adduct is well constrained by the developed collision cross section vs. mass to charge ratio correlation, which provides a two-dimensional separation of the –ONO₂ containing compounds on the basis of their molecular size and geometry. Structural information of AN molecules is further probed by the identification of characteristic fragments produced from the collision induced dissociation of parent AN adducts. Application of the IMS-MS technique is exemplified by the identification of hydroxy nitrates in secondary organic aerosols produced from isoprene photochemistry.
1. Introduction

Alkyl nitrates (ANs; ANs = RONO₂) constitute a major fraction and serve as a temporary reservoir of total reactive nitrogen oxides in the atmosphere (Perring et al., 2013). ANs are primarily produced from the hydroxyl radical (OH) initiated oxidation of volatile organic compounds (VOCs) in the presence of nitrogen oxides (NOₓ) during daytime and the nitrate radical (NO₃) initiated oxidation of alkenes during nighttime. Once formed, ANs are primarily subjected to further chemical transformation leading to the recycling of NOₓ, partitioning into the particle phase forming secondary organic aerosols (SOA), or deposition resulting in the loss of atmospheric NOₓ. Characterization of alkyl nitrates is of crucial importance in understanding regional NOₓ budget, tropospheric ozone production, as well as chemical mechanisms leading to the SOA formation (Brown et al., 2009; Farmer et al., 2011; Rollins et al., 2012; Rosen et al., 2004).

A suite of analytical techniques, such as thermal dissociation laser-induced-fluorescence spectroscopy (TD-LIF) (Thornton et al., 2000; Day et al., 2002; Wooldridge et al., 2010), chemical ionization mass spectrometry (CIMS) (Beaver et al., 2012; Loza et al., 2014; Krechmer et al., 2015; Nguyen et al., 2015; Schwantes et al., 2015; Teng et al., 2015; Xiong et al., 2015; Schwantes et al., 2017), and gas chromatography coupled with electron capture detection (GC-ECD) (Atlas, 1988; O’Brien et al., 1995), have been employed for in situ measurement of total and individual ANs in the gas phase. Observations of ANs in the particle phase, however, are rather limited due to the intensive denitrification during the preparation and analysis of particle samples. Efforts have been made to characterize the total amount of ANs and the number of –ONO₂ functional groups using TD-LIF and Fourier transform infrared spectroscopy (FTIR) (Rollins et al., 2010; Russell et al., 2011). The NO₂⁻/NO⁺ ratio derived from the aerosol mass spectrometry (AMS) measurements has also been used as an indicator for the presence of alkyl nitrates in submicrometer particles (Farmer et al., 2010; Kiendler-Scharr et al., 2016; Xu et al., 2017). These techniques have provided important insights into the prevalence and abundance of ANs in atmospheric aerosols, although the molecular information of individual ANs is lacking. Recent development on the filter inlet for gases and aerosols (FIGAERO) interfaced with the CIMS instrument has allowed for on-line speciation and quantification of functionalized alkyl nitrates in the particle phase (Lee et al., 2016). While the molecular composition of any given compounds can be inferred from the mass spectra, structural information on isomeric and...
isobaric species that are commonly produced from atmospheric chemical transformation is not available from CIMS measurements.

In this study, we present the first demonstration of the Ion Mobility Mass Spectrometry (IMS-MS) interfaced with an Electrospray Ionization (ESI) source for the molecular characterization of alkyl nitrates in the condensed phase. We show the significant production of AN clusters of the form [M+Cl]−, [M+NO3]−, [M+I]−, and [M+Ac]−, respectively, with selected anions including chloride, nitrate, iodide, and acetate. The anion attachment represents a new option for the detection of the −ONO2 functionality that is unlikely to produce measurable amount of molecular ions on its own during ESI. The optimal anion concentration to essentially promote the ion adduct formation is on the order of milli-molar, which is significantly higher than the level of those naturally present in ambient aerosols. We develop an intrinsic collision cross section vs. mass to charge ratio correlation based on the ion mobility measurements of five AN standards, providing a two-dimensional identification of unknown molecules that are likely containing the −ONO2 moiety. Additionally, the molecular identity of ANs can be verified via the characteristic fragment produced from the collision induced dissociation of the parent ion adducts. We apply the IMS-MS technique to identify ANs in SOA produced from isoprene photochemistry.

2. Experiments

2.1. Materials

Organic nitrate and nitro standards stored in acetonitrile ampules, including 100 µg/mL 1-mononitroglycerin (MNG), 100 µg/mL 1,3-dinitroglycerin (DN), 1000 µg/mL pentaerythritol tetranitrate (PETN), 1000 µg/mL hexahydro-1,3,5-trinitro-1,3,5-triazine (RDX), and 1000 µg/mL 2,4-dinitrotoluene (DNT), were purchased from SigmaAldrich. They are further diluted with methanol (HPLC grade, J. T. Baker) to 5 µM or less. Stock solutions of ammonium acetate (>99%, SigmaAldrich), ammonium chloride (>99%, SigmaAldrich), sodium nitrate (>99%, SigmaAldrich), and sodium iodide (>99%, SigmaAldrich) were prepared at a concentration of 10 mM in methanol. They were used as additives at typical concentrations of 0.01 – 0.1 mM in the AN methanol solution to facilitate ion adducts formation.

2.2. Experiments

SOA samples containing alkyl nitrates were generated from the OH-oxidation of isoprene under high-NOx conditions in the NCAR 10 m³ Atmospheric Simulation
Chamber (Zhang et al., 2018). H$_2$O$_2$ was used as the OH source by evaporating 133 µL aqueous solution (30 wt% in water, SigmaAldrich) into the chamber with 5 L/min purified air for ~120 min, resulting in a starting concentration of ~4 ppm. Isoprene was injected into the chamber by evaporating ~17 µL liquid standard (≥99%, SigmaAldrich) with 5 L/min purified air for ~20 min, resulting an initial concentration of ~500 ppb. NO was injected into the chamber from a concentrated NO cylinder source (NO = 133.16 ppm, balance N$_2$) to achieve an initial concentration of ~500 ppb. Seed aerosol was injected into the chamber by atomizing 0.06 M aqueous ammonium sulfate solution to provide sufficient surface area for the partitioning of alkyl nitrates. The chamber contents were allowed to mix for ~30 min before the onset of irradiation. After ~2 hr photooxidation, NO was nearly depleted (>5 ppb) and the irradiation was ceased. SOA produced was then collected on Teflon filters (47-mm diameter, 0.5-µm pore size, MILLIPORE) through active sampling at a flow rate of 10 L/min for ~3 hr (Schilling Fahnestock et al., 2014; Zhang et al., 2014; Huang et al., 2016; Thomas et al., 2016). Filters were stored in a -20°C freezer prior to analysis. SOA samples were extracted in 20 mL HPLC-grade methanol by 45 min of sonication at ~273 K and then concentrated to ~5 mL with the assistance of a ~2 L/min N$_2$ stream.

2.3. Instrumental

The Electrospray Ionization Drift-Tube Ion Mobility Spectrometer (DT-IMS) interfaced to a Time-of-Flight Mass Spectrometer (TOFMS) was utilized in the characterization of ANs. The instrument was designed and manufactured by Tofwerk (AG, Switzerland), with detailed descriptions and schematics provided by previous studies (Kaplan et al., 2010; Groessl et al., 2015; Krechmer et al., 2016; Zhang et al., 2016b; Zhang et al., 2017). Here we will present the instrument operation protocols specific to the ANs measurement.

AN standards and SOA filter extracts were delivered to the ESI source via a 250 µL gas-tight syringe (Hamilton) held on a syringe pump (Harvard Apparatus) at a flow rate of 1 µL min$^{-1}$. The optimal ESI potential to readily generate stable ion adducts while minimizing the corona discharge was found to be ~1800 V. The negatively charged mist generated at the emitter tip is introduced into the drift tube through a Bradbury-Nielson ion gate located at the entrance with the assistant of 1 L min$^{-1}$ nitrogen sheath gas. The BN ion gate was operated at the Hadamard Transform mode, with a closure voltage of 50 V and a gate pulse frequency of 1.2×103 Hz. The drift tube was held at a constant temperature (340±3 K) and atmospheric pressure (~766 Torr). A counter flow of N$_2$ drift gas was introduced at the end of the drift region at a flow rate of 1.2 mL min$^{-1}$. Ion
mobility separation was carried out at the field strength ranging from 300 to 400 V cm\(^{-1}\). After exiting from the drift tube, ions were focused into a pressure-vacuum interface that includes two segmented quadrupoles (Q\(_1\) and Q\(_2\)) through an ion lens and a nozzle. Note that the potential gradient applied to the ion lens and nozzle should be limited to 500 V or less to prevent intensive fragmentation of the molecular ions. The frequency and amplitude were set as \(1.5 \times 10^6\) Hz and 196 V for Q\(_1\) and \(1.5 \times 10^6\) Hz and 250 V for Q\(_2\), respectively. Collision induced dissociation (CID) can be performed by adjusting the voltages on the ion optical elements between the two quadruple stages. Over the course of a CID program, the quadrupoles were set to \(1.3 \times 10^6\) Hz and 120 V for Q\(_1\) and \(1.2 \times 10^6\) Hz and 150 V for Q\(_2\), respectively, to ensure good transmission of low masses (\(m/z < 100\)).

The ESI-IMS-TOFMS instrument was operated in the \(m/z\) range of 20 to 1500 with a total recording time of 60 s for each dataset. The mass spectrometer was calibrated using sodium nitrate, ammonium phosphate, sodium dodecyl sulfate, sodium taurocholate hydrate, and ultramark 1621 in the negative mode. The ion mobility measurements were calibrated using tetrabutyl ammonium chloride as the instrument standard and 2,4-lutidine as the mobility standard (Zhang et al., 2016b). Mass spectra and ion mobility spectra were collected by Auality DAQ v2.1.0 and post processed by Tofware v2.5.3.

3. Results and Discussion

3.1. Ion adduct formation

The strong electron affinity of the –ONO\(_2\) functional group makes alkyl nitrate a potential candidate for being analyzed in the negative electrospray ionization mode. However, the ESI(−) mass spectra of the AN standards investigated here are typically characterized by various fragments and clusters due principally to the thermally labile –ONO\(_2\) moiety. As shown in Figure 1, no molecular ion ([M]\(^-\) or [M-H]\(^-\)) is observed on the ESI(−) mass spectra of 1-mononitroglycerin (MNG), 1,3-dinitroglycerin (DN), and pentaerythritol tetranitrate (PETN). Instead, a small peak appears as a cluster ion of the form [M+NO\(_2\)-H]\(^-\). It is worth noting that addition of water to the mobile phase does not promote the molecular ion formation, rather significant nitrate losses via hydrolysis were observed. With the addition of trace amount of salts, i.e., ammonium chloride (NH\(_4\)Cl), sodium nitrate (NaNO\(_3\)), sodium iodide (NaI), and ammonium acetate (NH\(_4\)Ac), the overall signal intensities were significantly enhanced through the production of a suite of adduct ions of the form [M+Cl]\(^-\), [M+NO\(_3\)]\(^-\), [M+I]\(^-\), and [M+Ac]\(^-\), respectively. The relative sensitivities of individual adduct ions increase by ultimately two orders of
magnitude, compared with the pure standard in methanol solution. Here the observed ion adduct formation in ESI can be considered as a special case of chemical ionization occurring in solution before the charge separation process takes place.

Table 1 lists the characteristic adduct ions formed from three AN standards (MNG, DNG, and PETN) in methanol solution with selected additives (NH$_4$Ac, NH$_4$Cl, NaI, and NaNO$_3$). Ion adducts are ubiquitously observed from all of the ANs investigated, regardless of the number of –ONO$_2$ functional groups attached on the molecule. Nitrate (NO$_3^-$) and chloride (Cl$^-$) anions were found to be the most effective additives to promote ion adduct formation. Nitrate clusters exhibit the highest signal intensity and lowest limit of detection, especially for the poly-nitrates and functionalized alkyl nitrates investigated. Chloride clusters are characterized by two distinct ions with a mass difference of 2 amu and abundance ratio of 3:1 due to the natural presence of isotopes 35Cl and 37Cl. Also given in Table 1 are the detected negative ions from two organic nitro compounds, i.e., hexahydro-1,3,5-trinitro-1,3,5-triazine (RDX) and 2,4-dinitrotoluene (DNT). In contrast to RDX, which undergoes intensive clustering processes with Cl$^-$, I$^-$, and NO$_3^-$ during negative ESI, one dominant molecular ion ([M-H]$^-$) was observed on the ESI(−) mass spectra of DNT.

The effect of the additive concentrations (NO$_3^-$ and Cl$^-$) on the ion adduct formation was investigated using an equimolar mixture (5 µM each) of PETN and RDX as representative of nitrates and nitro compounds, respectively, in methanol solution (Figure 2). In the absence of any additives, the presence of background anions from either impurities in the solvent or thermal decomposition of alkyl nitrates leads to a detectable amount of ion adducts. With the anion levels on the order of micromolar, ion adducts become dominant in the ESI(−) mass spectra. The optimal anion concentration was found to be in the range of 0.01 mM to 0.1 mM. Progressively rising anion concentrations (>1mM) essentially suppress adduct formation due to the competition for limited resources, such as space and charge (Cech and Enke, 2001). Note that the measured drift time for each ion adduct is consistent at anion concentrations ranging from 1 µM to 1 mM, indicative of the absence of ion-molecule clustering in the IMS drift tube.

3.2. Collision cross section vs. mass to charge ratio trend line

Collision cross section (Ω_{N_2}) represents the effective area for interactions between a charged molecule and the surrounding buffer gases (e.g., N$_2$ herein). It is derived from the mobility measurement in the IMS drift tube, where ions with open conformation undergo more collisions with buffer gas molecules and hence travel more slowly than the
Figure 3 shows that the measured Ω_{N_2} of the AN adducts, regardless of the AN molecular structures and types of anions that promote the adduct formation, appear along the $\Omega_{N_2} - m/z$ trend line predicted by the core model (deviations less than 5.2%). Also shown here are the predicted $\Omega_{N_2} - m/z$ trend lines for mono/multi-carboxylic acids and organic sulfates, which readily produce molecular ions via deprotonation ($[M-H]^{-}$) during negative ESI. Alkyl nitrates can be distinguished from carboxylic acids and sulfates based on their distinct collision cross sections vs. mass to charge ratio relationship. Note that other important chemical classes of atmospheric interest, such as amines, alcohols, aldehydes, and peroxides, are suitable for analysis in the positive ESI and their trend lines are not given here.

3.3. Characteristic fragments upon collision-induced dissociation

Molecular structures of selected AN ion adducts were further probed with the assistance of the collision-induced dissociation (CID) analysis, which was performed after the drift tube but prior to the time-of-flight chamber. The resulting daughter ion appears at the same drift time as the parent ion, allowing for a straightforward correlation of any given ion with its fragments. As shown in Figure 4, the nitrate ion (NO$_3^-$) at m/z 62 is exclusively observed upon CID of the parent ion adducts formed from MNG, DNG, and PETN by clustering with Cl$^-$, NO$_3^-$, and Ac$^-$.

The NO$_3^-$ fragment resulting from decomposition of the corresponding parent ion adduct can be well separated from that originally added to the AN solution based on their entirely different ion mobilities (as reflected by the measured drift time). Thus NO$_3^-$ is considered as a characteristic fragment upon CID of the parent AN adduct ion and serves as a tracer to verify the presence of the –ONO$_2$ functional group in unknown compounds.

The anions (Cl$^-$, NO$_3^-$, and Ac$^-$) that promote the clustering chemistry were not observed upon CID of the parent AN adducts. Figure 5 shows the profiles of four ion adducts, i.e., [MNG+Cl]$^-$, [MNG+Ac]$^-$, [PETN+Cl]$^-$, and [PETN+I]$^-$, as well as their resulting fragments under a sequence of CID potential gradient. As expected, the abundance of the transmitted parent ion adducts decreases as the CID voltage rises. NO$_3^-$
appears as the largest product ion, and its enhanced abundance with increasing CID voltage is balanced by the decrease in signals of the corresponding parent ion adduct. Cl⁻ and Ac⁻ remain minor peaks over the entire range of displayed CID potential gradient. Under low-energy collisions, the parent AN ion adduct principally follows two fragmentation pathways, leading to either Cl⁻/Ac⁻/I⁻ with the neutral AN molecule or the deprotonated AN molecular ion ([M-H]⁻) via the neutral loss of HCl / HAc / HI. The absence of Cl⁻ and Ac⁻ indicates higher gas-phase basicity of Cl⁻ / Ac⁻ than [M-H]⁻. As a result, the mechanism yielding [M-H]⁻ is the dominant fragmentation pathway of AN ion adducts (with an exception for [PETN+I]⁺). The resulting molecular ion [M-H]⁻ decomposes promptly to NO₃⁻ due to the presence of the fragile R–ONO₂ bond.

3.4. Application to isoprene SOA

The OH-initiated oxidation of isoprene produces a population of isoprene peroxy radicals (RO₂), the fate of which depends on the level of nitric oxide. Under high-NO conditions as performed in the chamber experiments here, RO₂ radicals preferentially react with NO leading to major first-generation products including isoprene hydroxy nitrates, among which the two β-hydroxy nitrates dominate the isomer distribution. Due to the presence of a double bond, the hydroxy nitrates could undergo OH addition followed again by reactions of RO₂ radicals with NO, leading to a spectrum of products, of which some highly functionalized molecules such as the dihydroxy dinitrate are potential SOA precursors (Wennberg et al., 2018).

A pair of ion adducts at m/z 261 ([M+³⁵Cl]⁻) and m/z 263 ([M+³⁷Cl]⁻) with the abundance ratio of 3:1 is observed in the mass spectra of the isoprene SOA extracts in methanol with 0.2 mM sodium chloride as the additive. These two adducts share an identical mobility (DT = ~25.8 ms), which also appears as a small peak (DT = ~25.7 ms) in the mobility spectra of the NO₃⁻ ion (bottom panel of Figure 6). Further inspection of the ‘mobility-selected’ mass spectra of the parent ion adduct at m/z 261 reveals that NO₃⁻ is the major fragment ion (top panel of Figure 6). With the application of a CID potential sequence, the intensity of the precursor ion at m/z 261 decreases and that of the fragment ion at m/z 62 increases (middle panel of Figure 6), a similar pattern observed for the AN standards. We thereby tentatively assign the parent ion adduct at m/z 261 to a second-generation oxidation product, dihydroxy dinitrate (C₁₂H₁₀O₆N₂, see the chemical structure given in Figure 6), which is produced from the addition of OH to the two double bonds of isoprene followed by RO₂⁺NO reactions. It is interesting to note that a small shoulder peak appears at ~26.0 ms in the mobility spectra of the ion adduct at m/z 261 (bottom
panel of Figure 6), likely representative of the C$_5$H$_{10}$O$_8$N$_2$ isomers generated from the much less favored OH-addition channels that produce primary RO$_2$ radicals. Quantitative analysis of the dihydroxy dinitrate is complicated by the matrix interference during the ESI process and chromatographic separation prior to infusion to the ESI source is required (Zhang et al., 2015; Zhang et al., 2016a), which is beyond the capability of the current instrument setup. Further note that first-generation hydroxy nitrates were not detected, due to their relatively high volatility and thus quite limited partitioning onto the particle phase. On the other hand, multiple peaks were observed in the mobility spectra of the NO$_3^-$ ion (bottom panel of Figure 6), and their drift times are higher than that of the ion assigned to the dihydroxy dinitrate, implying that some high-molecular-weight nitrate products were likely fragmented in the quadrupole interface.

4. Conclusions

The anion attachment chemistry was previously used in the negative ESI operation to effectively induce ion formation from neutral molecules that lack acidic sites (Zhu and Cole, 2000). Here we build upon the use of anion attachment, a special chemical ionization mechanism in solution, to characterize the condensed-phase alkyl nitrates at molecular level. The propensity of the –ONO$_2$ moiety to cluster with a diverse selection of anions, including Cl$^-$, I$^-$, NO$_3^-$, and Ac$^-$, was observed during the negative electrospray ionization process, and the measured total ion signals were enhanced by ultimately two orders of magnitude. Compared with conventional mass spectrometric techniques, the coupled ion mobility and mass-to-charge ratio measurements provide a two-dimensional separation of alkyl nitrates from other chemical classes commonly detected in negative ESI, such as organic sulfates and carboxylic acids. With the assistance of the collision-induced dissociation analysis, upon which the resulting product ions share the identical drift time as the precursor ion, molecular structures of ANs can be further probed. Regardless of the types of anions attached to the AN molecules, dissociation of the parent adduct ion yields a characteristic fragment, NO$_3^-$ at m/z 62, which can be used to verify the presence of the –ONO$_2$ functional group in any given molecule. These new features enable the unambiguous identification of alkyl nitrates in a complex organic mixture, as exemplified by the detection of hydroxynitrates in isoprene derived SOA. The IMS-MS technique for the measurement of condensed-phase ANs is in its early stages of development. Accurate quantification of a given AN molecule by minimizing the ion suppression and improving the long-term stability of ESI is needed for future work.
Acknowledgements

The National Center for Atmospheric Research is operated by the University Corporation for Atmospheric Research, under the sponsorship of the National Science Foundation.

References

<table>
<thead>
<tr>
<th>Compound</th>
<th>Molecular Formula</th>
<th>Ion Formula</th>
<th>m/z</th>
<th>LOD * (µM)</th>
<th>Ω_{N_2}^b (Å²)</th>
<th>Structure</th>
</tr>
</thead>
<tbody>
<tr>
<td>1-Mononitroglycerin</td>
<td>C₃H₇NO₅</td>
<td>[M+Cl]</td>
<td>172.0</td>
<td>0.8</td>
<td>129.4</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>[M+NO₂-H]</td>
<td>182.0</td>
<td>0.7</td>
<td>132.7</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>[M+Ac]</td>
<td>196.0</td>
<td>0.3</td>
<td>139.2</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>[M+Cl]</td>
<td>217.0</td>
<td>1.1</td>
<td>151.1</td>
<td></td>
</tr>
<tr>
<td>1,3-Dinitroglycerin</td>
<td>C₃H₆N₂O₇</td>
<td>[M+NO₂-H]</td>
<td>227.0</td>
<td>4.3</td>
<td>156.6</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>[M+NO₃]</td>
<td>244.0</td>
<td>0.6</td>
<td>151.7</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>[M+I]</td>
<td>308.9</td>
<td>0.8</td>
<td>177.0</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>[M+Cl]</td>
<td>315.0</td>
<td>1.1</td>
<td>181.7</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>[M+NO₂-H]</td>
<td>351.0</td>
<td>0.5</td>
<td>183.7</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>[M+NO₃]</td>
<td>361.0</td>
<td>0.9</td>
<td>190.7</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>[M+I]</td>
<td>386.0</td>
<td>0.2</td>
<td>190.9</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>[M+Cl]</td>
<td>442.9</td>
<td>0.1</td>
<td>216.2</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>[2M+Cl]</td>
<td>667.0</td>
<td>1.0</td>
<td>262.6</td>
<td></td>
</tr>
<tr>
<td>Pentaerythritol</td>
<td>C₅H₈N₄O₁₂</td>
<td>[M-H]</td>
<td>315.0</td>
<td>1.1</td>
<td>181.7</td>
<td></td>
</tr>
<tr>
<td>tetranitrate (PETN)</td>
<td></td>
<td>[M+Cl]</td>
<td>351.0</td>
<td>0.5</td>
<td>183.7</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>[M+NO₂-H]</td>
<td>361.0</td>
<td>0.9</td>
<td>190.7</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>[M+NO₃]</td>
<td>378.0</td>
<td>0.2</td>
<td>190.9</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>[M+I]</td>
<td>442.9</td>
<td>0.1</td>
<td>216.2</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>[2M+Cl]</td>
<td>667.0</td>
<td>1.0</td>
<td>262.6</td>
<td></td>
</tr>
<tr>
<td>2,4-Dinitrotoluene</td>
<td>C₇H₆N₂O₄</td>
<td>[M-H]</td>
<td>181.0</td>
<td>0.6</td>
<td>137.0</td>
<td></td>
</tr>
<tr>
<td>(DNT)</td>
<td></td>
<td>[M+Cl]</td>
<td>257.0</td>
<td>0.3</td>
<td>149.8</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>[M+NO₂-H]</td>
<td>267.1</td>
<td>1.4</td>
<td>156.3</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>[M+NO₃]</td>
<td>284.0</td>
<td>0.2</td>
<td>160.8</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>[M+I]</td>
<td>348.9</td>
<td>0.1</td>
<td>181.9</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>[2M+Cl]</td>
<td>479.0</td>
<td>1.6</td>
<td>203.5</td>
<td></td>
</tr>
<tr>
<td>Hexahydro-1,3,5-</td>
<td>C₆H₈N₆O₆</td>
<td>[M-H]</td>
<td>181.0</td>
<td>0.6</td>
<td>137.0</td>
<td></td>
</tr>
<tr>
<td>trinitro-1,3,5-triazine</td>
<td></td>
<td>[M+Cl]</td>
<td>257.0</td>
<td>0.3</td>
<td>149.8</td>
<td></td>
</tr>
<tr>
<td>(RDX)</td>
<td></td>
<td>[M+NO₂-H]</td>
<td>267.1</td>
<td>1.4</td>
<td>156.3</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>[M+NO₃]</td>
<td>284.0</td>
<td>0.2</td>
<td>160.8</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>[M+I]</td>
<td>348.9</td>
<td>0.1</td>
<td>181.9</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>[2M+Cl]</td>
<td>479.0</td>
<td>1.6</td>
<td>203.5</td>
<td></td>
</tr>
</tbody>
</table>

*The limit of detection (LOD) is calculated as LOD = \(\sigma \times (S/N)/k \), where S/N is the signal-to-noise ratio, which is taken as 3 here, \(k \) is the response factor of IMS-MS towards individual ion adducts produced from 5 µM standard nitrate solution during negative ESI, and \(\sigma \) is the standard deviation of the IMS-MS response over the course of 60 s measurements.

b The collision cross section (Ω_{N_2}) is calculated through the modified zero field (so called Mason-Schamp) equation, see more details in Zhang et al. (2016).
Figure 1. Negative ESI mass spectra of 5 µM 1-mononitroglycerin (MNG), 1,3-dinitroglycerin (DNG), and pentaerythritol tetranitrate (PETN) dissolved in pure methanol (gray), methanol with 0.1 mM ammonium acetate (NH₄Ac, purple), methanol with 0.1 mM ammonium chloride (NH₄Cl, blue), methanol with 0.1 mM sodium nitrate (NaNO₃, orange), and methanol with 0.1 mM sodium iodide (NaI, green). These three alkyl nitrates, which do not readily produce significant amount of molecular ions on their own during negative ESI, are observed as clusters with acetate (Ac⁻), chloride (Cl⁻), nitrate (NO₃⁻), and iodide anions (I⁻) in the ESI(−) spectra.
Figure 2. (A) Signals of the ion adducts produced from RDX and PETN by clustering with chloride (Cl^-) and nitrate (NO_3^-) as a function of the corresponding anion concentrations ranging from 1 μM to 1 mM. (B) Drift time distributions of the ion adducts $[\text{RDX+Cl}]^-$, $[\text{PETN+Cl}]^-$, $[\text{RDX+NO}_3^-]$, and $[\text{PETN+NO}_3^-]$ are consistent at different anion concentrations.
Figure 3. Measured collision cross sections (Ω_{N_2}) of the AN ion adducts as a function of their mass-to-charge ratios appear along the predicted $\Omega_{\text{N}_2} - m/z$ trend line. Also shown here are the predicted $\Omega_{\text{N}_2} - m/z$ trend lines for carboxylic acids and organic sulfates, which are major chemical classes of atmospheric interest detected in the negative ESI mode.
Figure 4. Characteristic fragment ions produced from MNG, DNG, and PETN by clustering with acetate (Ac\(^-\)), chloride (Cl\(^-\)), iodide (I\(^-\)), nitrate (NO\(_3\)^-), and nitrite (NO\(_2\)^-) upon collision induced dissociation performed at a CID voltage of 20 V.
Figure 5. Peak intensities of the precursor ion adducts \([\text{MNG}+\text{Cl}]^-\), \([\text{MNG}+\text{Ac}]^-\), \([\text{PETN}+\text{Cl}]^-\), and \([\text{PETN}+\text{I}]^-\) as well as their fragment ions as a function of the collision energy as displayed by the CID voltage.

\[\text{CID Voltage (V)}\]
Figure 6. (Top panel) The ‘mobility-selected’ mass spectra of the parent ion adduct at \(m/z \ 261 \) and its major fragment at \(m/z \ 62 \) in isoprene SOA extracts with \(\sim 0.2 \) mM sodium chloride as the additive. (Middle panel) Profiles of the precursor ion adduct at \(m/z \ 261 \) and its product ion at \(m/z \ 62 \) as a function of the CID voltage. (Bottom panel) Drift time spectra of the ion adduct at \(m/z \ 261 \), its isotope ion adduct at \(m/z \ 263 \), and the fragment ion at \(m/z \ 62 \).