Supplement:

Airborne measurements of particulate organic matter by PTR-MS: a pilot study

Felix Piel1,2, Markus Müller1, Tomas Mikoviny3, Sally Pusede4, Armin Wisthaler2,3

1Ionicon Analytik GmbH, Innsbruck, 6020, Austria
2Institute for Ion Physics and Applied Physics, University of Innsbruck, Innsbruck, 6020, Austria
3Department of Chemistry, University of Oslo, Oslo, 0315, Norway
4Department of Environmental Sciences, University of Virginia, Charlottesville, VA 22904-4123, U.S.A.

\textit{Correspondence to:} Armin Wisthaler (armin.wisthaler@kjemi.uio.no)
Figure S1. Track of NASA DC-8 flight #1271 carried out on 26 June 2018 between 10:36 and 15:54 hours local time over California. The color coding indicates the pressure altitude.
Figure S2. Photo taken from the cockpit when the NASA DC-8 skimmed the plume emanating from the Lions Fire over the Sierra Nevada Mountains in California (Photo credit: Megan Schill/NASA SARP)
Figure S3. Scheme of the inlet system used for the CHARON PTR-ToF-MS analyzer installed aboard the NASA DC-8. The inlet system consists of i) the UH/LARGE aerosol sampling probe with a plenum for sample distribution, ii) the NOAA/ESRL/CSD flow control system which ensures isokinetic flow conditions and iii) our own pressure-controlled inlet (PCI) from which the CHARON PTR-ToF-MS analyzer takes its sample flow. FM: flow meter; PC: pressure controller, MD4: Vacuubrand MD-4 diaphragm pump; TriScroll 600: Agilent TriScroll 600 scroll pump.
Figure S4. Average mass spectrum recorded by the CHARON PTR-ToF-MS instrument when the Lions Fire plume was sampled on 26 June 2018 between 13:03:50 and 13:04:35 hours local time. The mass spectrum is given in raw counts per second (cps), with only the 90-s pre-plume signal average being subtracted (excess signal). The dashed red line corresponds to a mass loading of 100 ng sm$^{-3}$ at the respective m/z, assuming the same signal response factor (sensitivity, in cps ng$^{-1}$ sm3) as for acetone (acetone-equivalents).
Figure S5. Plot of aromaticity equivalent vs. number of carbon atoms summarizing the qualitative and quantitative organic composition of submicrometer particles detected in the Lions Fire plume. Aliphatic, monoaromatic and polyaromatic species are shown in red, yellow and blue, respectively. Mass distributions as a function of #C atoms and of aromaticity equivalent are shown in the bar graphs above and to the right of the main figure, respectively.
Figure S6. Elementally resolved mass concentration of organic aerosol as measured by CHARON PTR-ToF-MS in the boundary layer of the San Joaquin Valley. The upper panel (a) shows the distribution as recorded between 10:48 and 11:20 hours local time. The lower panel (b) shows the distribution as measured between 14:02 and 15:01 hours local time.
<table>
<thead>
<tr>
<th>m/z</th>
<th>molecular formula</th>
<th>name</th>
<th>reference</th>
</tr>
</thead>
<tbody>
<tr>
<td>101.024</td>
<td>C₆H₆O₃⁺</td>
<td>hydroxybutenedial</td>
<td>Yee 2013</td>
</tr>
<tr>
<td>101.059</td>
<td>C₆H₆O₂⁺</td>
<td>methyl methacrylate</td>
<td>Gilman 2015</td>
</tr>
<tr>
<td>103.040</td>
<td>C₆H₇O₃⁺</td>
<td>propanoic acid, 2-oxo-methyl ester</td>
<td>Fitzpatrick 2007</td>
</tr>
<tr>
<td>113.026</td>
<td>C₆H₆O₃⁺</td>
<td>2,5-furandione, 3-methyl</td>
<td>Fitzpatrick 2007</td>
</tr>
<tr>
<td>117.059</td>
<td>C₆H₆O₃⁺</td>
<td>acetoxycetone</td>
<td>Fitzpatrick 2007</td>
</tr>
<tr>
<td>127.039</td>
<td>C₆H₅O₢⁺</td>
<td>hydroxymethylfurural</td>
<td>Schauer 2001</td>
</tr>
<tr>
<td>130.049</td>
<td>C₆H₆NO₃⁺</td>
<td>pyroglutamic acid</td>
<td>Jen 2018</td>
</tr>
<tr>
<td>131.033</td>
<td>C₆H₇O₄⁺</td>
<td>methoxy-hydroxy-butenedial</td>
<td>Yee 2013</td>
</tr>
<tr>
<td>133.054</td>
<td>C₆H₇O₄⁺</td>
<td>methylsuccinic acid</td>
<td>Jen 2018</td>
</tr>
<tr>
<td></td>
<td></td>
<td>glutaric acid</td>
<td>Kundu 2010</td>
</tr>
<tr>
<td>137.061</td>
<td>C₈H₇O₂⁺</td>
<td>hydroxycetophenones</td>
<td>Jen 2018, Fine 2002</td>
</tr>
<tr>
<td>137.061</td>
<td>C₈H₇O₂⁺</td>
<td>phenylacetic acid</td>
<td>Fine 2004</td>
</tr>
<tr>
<td>141.060</td>
<td>C₇H₇O₃⁺</td>
<td>3-methoxycatechol</td>
<td>Yee 2013</td>
</tr>
<tr>
<td>145.068</td>
<td>C₁₀H₇O⁺</td>
<td>1/2-naphthol</td>
<td>Fitzpatrick 2007, Fine 2002</td>
</tr>
<tr>
<td>145.124</td>
<td>C₉H₁₂O₂⁺</td>
<td>n-octanoic acid</td>
<td>Oros and Simoneit 2001</td>
</tr>
<tr>
<td>147.061</td>
<td>C₉H₁₁O₄⁺</td>
<td>adipic acid</td>
<td>Graham 2002, Kundu 2010</td>
</tr>
<tr>
<td>151.079</td>
<td>C₉H₁₁O₂⁺</td>
<td>phenylpropanoic acid</td>
<td>Fine 2002</td>
</tr>
<tr>
<td></td>
<td></td>
<td>p-coumaric alcohol</td>
<td>Jen 2018</td>
</tr>
<tr>
<td></td>
<td></td>
<td>vinylglauciacol</td>
<td>Fine 2004</td>
</tr>
<tr>
<td>155.071</td>
<td>C₉H₇O₃⁺</td>
<td>protocatechic acid</td>
<td>Jen 2018</td>
</tr>
<tr>
<td>159.137</td>
<td>C₉H₁₉O₂⁺</td>
<td>vanillyl alcohol</td>
<td>Oros and Simoneit 2001</td>
</tr>
<tr>
<td>161.058</td>
<td>C₁₀H₁₀O₂⁺</td>
<td>syringol</td>
<td>Fine 2002</td>
</tr>
<tr>
<td>163.035</td>
<td>C₉H₇O₃⁺</td>
<td>nonanoic acid</td>
<td>Jen 2018, Oros and Simoneit 2001</td>
</tr>
<tr>
<td>163.061</td>
<td>C₉H₁₁O₅⁺</td>
<td>dihydroxynaphthalene</td>
<td>Jen 2018</td>
</tr>
<tr>
<td>163.061</td>
<td>C₉H₁₁O₅⁺</td>
<td>umbelliferone</td>
<td>Jen 2018</td>
</tr>
<tr>
<td>167.087</td>
<td>C₁₃H₁₁⁺</td>
<td>fluorene</td>
<td>Fine 2002</td>
</tr>
<tr>
<td>169.056</td>
<td>C₈H₇O₄⁺</td>
<td>vanillic acid</td>
<td>Oros and Simoneit 2001</td>
</tr>
<tr>
<td>173.153</td>
<td>C₁₀H₂₁O₂⁺</td>
<td>n-decanoic acid</td>
<td>Oros and Simoneit 2001</td>
</tr>
<tr>
<td>179.087</td>
<td>C₁₄H₁₁⁺</td>
<td>anthracene</td>
<td>Schauer 2001, Oros and Simoneit 2001</td>
</tr>
<tr>
<td>181.086</td>
<td>C₁₀H₁₃O₃⁺</td>
<td>coniferyl alcohol</td>
<td>Jen 2018, Oros and Simoneit 2001</td>
</tr>
<tr>
<td></td>
<td></td>
<td>guaiacylectone</td>
<td>Schauer 2001, Oros and Simoneit 2001</td>
</tr>
<tr>
<td></td>
<td></td>
<td>propiovanillone</td>
<td>Fine 2002</td>
</tr>
<tr>
<td></td>
<td></td>
<td>dihydroconiferyl alcohol</td>
<td>Jen 2018</td>
</tr>
<tr>
<td></td>
<td></td>
<td>ethylsyringol</td>
<td>Oros and Simoneit 2001</td>
</tr>
<tr>
<td></td>
<td></td>
<td>homovanillnyl alcohol</td>
<td>Oros and Simoneit 2001</td>
</tr>
<tr>
<td>193.077</td>
<td>C₇H₁₃O₆⁺</td>
<td>quinic acid</td>
<td>Jen 2018</td>
</tr>
<tr>
<td>195.062</td>
<td>C₁₀H₁₁O₄⁺</td>
<td>methyl caffeate</td>
<td>Jen 2018</td>
</tr>
<tr>
<td>197.121</td>
<td>C₁₁H₁₇O₂⁺</td>
<td>propylsyringol</td>
<td>Fine 2002</td>
</tr>
<tr>
<td>205.074</td>
<td>C₉H₁₃O₆⁺</td>
<td>3-methyl-1,2,3-butanetricarboxylic acid</td>
<td>Wan 2019</td>
</tr>
<tr>
<td>209.078</td>
<td>C₁₁H₁₃O₄⁺</td>
<td>sinapinaldehyde</td>
<td>Fine 2002</td>
</tr>
<tr>
<td>253.098</td>
<td>C₂₀H₁₃⁺</td>
<td>benzoyprene</td>
<td>Oros and Simoneit 2001</td>
</tr>
<tr>
<td>253.202</td>
<td>C₁₉H₁₅⁺</td>
<td>simonellite</td>
<td>Oros and Simoneit 2001</td>
</tr>
<tr>
<td>257.248</td>
<td>C₁₆H₃₃O₂⁺</td>
<td>n-hexadecanoic acid</td>
<td>Schauer 2001, Oros and Simoneit 2001</td>
</tr>
<tr>
<td>271.258</td>
<td>C₁₇H₃₅O₂⁺</td>
<td>n-heptadecanoic acid</td>
<td>Schauer 2001, Oros and Simoneit 2001</td>
</tr>
<tr>
<td></td>
<td></td>
<td>methyl hexadecanoate</td>
<td>Fine 2002</td>
</tr>
<tr>
<td>285.279</td>
<td>C₁₈H₃₇O₂⁺</td>
<td>n-octadecanoic acid</td>
<td>Schauer 2001, Oros and Simoneit 2001</td>
</tr>
<tr>
<td>285.279</td>
<td>C₁₈H₃₇O₂⁺</td>
<td>methyl heptadecanoate</td>
<td>Fine 2002</td>
</tr>
<tr>
<td>287.281</td>
<td>C₂₁H₁₅⁺</td>
<td>pregnene</td>
<td>Oros and Simoneit 2001</td>
</tr>
<tr>
<td>309.356</td>
<td>C₂₂H₁₅⁺</td>
<td>n-docos-1-ene</td>
<td>Oros and Simoneit 2001</td>
</tr>
<tr>
<td>311.327</td>
<td>C₂₁H₄₃O⁺</td>
<td>n-heneicosan-2-one</td>
<td>Oros and Simoneit 2001</td>
</tr>
</tbody>
</table>
References

