Interactive comment on “A new method to determine the aerosol optical properties from multiple wavelength O$_4$ absorptions by MAX-DOAS observation” by Chengzhi Xing et al.

Anonymous Referee #2

Received and published: 6 March 2019

This paper presents a comparative analysis of O$_4$ absorptions from MAX-DOAS observations and aerosol optical properties from a ground-based sun photometer and in-situ measurements. Then, the co-variation between the O$_4$ absorption and aerosol properties was used to determine the aerosol conditions (clear, non-haze, haze, heavy-haze, etc). This work addresses an interesting topic. But, the concept of this study has some major flaws as I listed below. I don’t recommend for publication before those major concerns are addressed.

Major criticism:
1. The approach to infer aerosol loading condition from the O$_4$ absorptions is too far from quantitative, although authors mentioned to develop a lookup table to retrieve aerosol optical properties in the future. Aerosol loading information in the level of conditions defined in this study (clear, non-haze, haze, heavy-haze, etc) can be easily told from human eyes. Therefore, the aerosol information inferred from the method of this study has no scientific value.

2. Physically, the study methodology is not as much as sound. The O$_4$ absorption derived from the MAX-DOAS observations are indeed contaminated by aerosols. So in their method, authors intend to use an aerosol-impacted O$_4$ absorption data to infer the aerosol properties. I think a better way to get information from the MAX-DOAS observation is to retrieve aerosol information (if there is aerosol information) along with the O$_4$ absorption. Or from another perspective, to study the impact of aerosols to the retrieval accuracy in the O$_4$ absorption.

3. I am not convinced with the use of change speed, acceleration, and change rate of the acceleration of diurnal scattering coefficient (equations 2-4) for describing the aerosol property change. These variables only make the trivial diurnal analysis more complicated.

4. The presentation quality needs improvement. This paper has many grammar issues. I try to catch them in the technical comments below.

Specific comments:
1. It seems different datasets have different sampling times. It is not clear based on what time length the data are aggregated and compared. Please clarify this.

2. Line 160-165: the weather conditions are called clear DAYS, . . . Rainy DAYS. Does it mean that all the data are analysis with on a daily basis? If yes, it may be not appropriate, because different weather conditions can happen within a day. If no, these categories should not be called xx Days.

3. I would suggest change “non-haze” into “light-haze”, as "non-haze” means clear.
And this condition has an average AOD of 0.35; calling light-haze is more proper.

4. Why the elevation angle = 1 degree is chosen for O4 DSCD used in this study? Please clarify it in the article.

Technical corrections:

Line 24: I don’t understand the meaning of “O4 Differential Slant Column Densities (DSCDs) at UV and visible bands varied in the order of . . .”. Do you mean the magnitude of their correlation coefficients decrease in the order of . . .?

40: aerosols and Aerosol Optical -> aerosol loading and Aerosol Optical
40-41: Different aerosols behave -> Different aerosol types behave
43: heat the air contributing to -> heat the air, and contributes to
44: profile causing -> profile, causing
48: Please note that AE often refers to Angstrom Exponent.
49: Angstrom -> Angstrom Exponent
51: atmosphere in vertical. -> atmosphere.
52: SSA could represent -> SSA is defined as
55: the four general aerosol types of biomass burning aerosol, urban-industrial aerosol, dust aerosol and aerosol of marine origin are exhibiting -> different aerosol types (such as biomass burning, urban-industrial, dust, and sea-salt aerosols) exhibit
63: pronounced SSA -> SSA
71: with maxima at -> around
73: O4 absorptions can be yielded by the DOAS method and further the aerosol vertical profiles at four different wavelength bands (xx). -> O4 absorptions in four bands (xx, xx, xx, and xxmm ) can be estimated, and aerosol vertical profiles can be further derived.
189: at UV -> in the UV
Figure 3: please indicate the time is Beijing Time (UTC+8)
248: weather types -> weather conditions
255: on the O4 -> for the O4
255: at UV band -> in the UV band; at visible -> in the visible
306: weather type -> condition
325: table. to retrieve -> table to retrieve
330: at UV and visible wavelength bands -> in the UV and visible bands
335: heavy-haze days to. -> heavy-haze condition.
341: correlation slope -> linear-regression slope