Response to Reviewers

Manuscript: amt-2019-106
Manuscript title: Classification of iron oxide aerosols with a single particle soot photometer using supervised machine learning

The discussion below includes the comments from the reviewer (bold) and my responses to the specific comments (red). Modifications to the manuscript text are given in italics, and line numbers refer to the original document.

Response to Reviewer #1:

The author demonstrates for the first time the usefulness of supervised machine learning algorithms for post-processing of the waveform data acquired by the single-particle soot photometer, with particular attention to the classification of iron oxide aerosols. First, the author provides a detailed review of the previous works and clarifies the issues to be solved/mitigated in this work. Second, the author defines the (physical and mathematical) features embedded in the signal waveforms and explain the machine learning algorithm applied to them. Finally, the author shows the suggested algorithm can reduce the chance of misclassification of the iron oxide aerosols than the conventional simpler algorithm. Along with the presentation of the results, the author also fully explains the limitation of the applicability due to a particular selection of laboratory samples used to train the algorithm. The manuscript is very logically written, and all the figures are easy to understand. Considering the superior quality of discussion and presentation, I can recommend the publication of this work. However, I request minor revisions to improve the readability and influence to a broader audience (including other SP2 users).

I would like to thank the reviewer for their positive comments and very useful suggestions to improve the clarity and flow of the manuscript. I have addressed their specific comments below.

Minor comments: Most of the contents in sections 3.3-3.5 look like an overview of “the established theory” of machine learning. If so, the author could shorten these sections (or moved to the supplementary information).

Thank you for this comment. I have chosen to move the discussion about decision tree classifiers to an Appendix for the interested reader, but have retained the details about training and optimizing the random forest in the main text for readers who may be coming from an interdisciplinary background.

p.2, line 8. nitrogen -> nitrate?

Thank for pointing out this typo; this line has been updated.

p.8, line 24. real part -> imaginary part?

Thank you for pointing this out. I have updated the text.
p.18, line 9-10. "retaining the 11 most important features for the 6-class case and the 9 most important for the 3-class case" Please refer Table 3 in this sentence. Otherwise, readers could not follow which features are used here.

Thanks for pointing this out. I have updated these lines to include the reference to Table 3. I have also added additional clarification to Section 4.1 on the ranking of feature importance.

p. 18. L. 9-10. We remove the least important features (retaining the 11 most important features for the 6-class case and the 9 most important for the 3-class case; see Table 3, columns 3 and 5 for the subset of features for each case)

p. 18, L. 2-3. The relative importance of different features (given in Table 3) is estimated from the fraction of samples in the data set for which the decision pathway is impacted by that feature (Pedregosa et al. 2011).

p.24, line 6-7. “This method improves upon the performance of previous classification methods using only 3 or 4 features derived from the single particle signals” Please clarify which features the author mention here.

These lines have been updated to clarify the features I was referring to were the incandescent peak height, the color ratio, the core scattering, and the post-incandescent scattering amplitudes.

p.25. line 4-5. “we recommend acquiring samples for training data sets with the same instrument, optical configuration, and operating conditions as the data sets to be processed.” To my opinion, it is better to mention this point as “important requirement” rather than “recommendation”.

Thanks for pointing this out. I’ve adjusted the language of this paragraph to clarify that using an instrument with the same configuration is absolutely necessary to apply the supervised learning algorithm with confidence. I’ve also added additional details to the supplemental information demonstrating the dependence of the color temperature ratio on the alignment of the detectors in the instrument (Figure S3).

p.25 L.4-5 In order to use supervised learning algorithms to classify aerosols with an SP2 during aircraft and field observations, it is very important to acquire the samples for training data sets with the same instrument, optical configuration, and operating conditions as the data sets to be processed. Several of the features (in particular the color ratio) demonstrated strong dependence on detector alignment or may be affected by the specific laser power settings (See Supplementary Materials Figure S3 for additional details).
Figure S3. Influence of detector alignment on the incandescent blue amplitude (mass) to color temperature ratio relationship for fullerene soot samples (a) Mass vs. color ratio for fullerene soot sampled by the NOAA SP2 on three different occasions, with three independent alignments for the blue and red PMT’s. The color ratio in each case was normalized to 1.0 for fullerene soot with a mass of 10 fg. Greater variability in color ratio was observed when the detectors are not well-aligned (as in case 2) (b) Normalized histograms of the color ratios for fullerene soot for particles with masses between 2 and 70 fg for the three different optical alignments demonstrate differences in the width of the distributions.
Response to Reviewers

Manuscript: amt-2019-106
Manuscript title: Classification of iron oxide aerosols with a single particle soot photometer using supervised machine learning

The discussion below includes the comments from the reviewer (bold) and my responses to the specific comments (red). Modifications to the manuscript text are given in italics, and line numbers refer to the original document.

Response to Reviewer #2:

The manuscript amt-2019-106 by K. Lamb describes the application of a machine-learning algorithm known as random forests to the data set produced by the NOAA SP2. The work is thorough and the writing is of an excellent calibre. The contribution to the field is significant as this work may significantly influence future SP2 data analyses (hopefully without making them more opaque, which is the inevitable shortcoming of machine learning). I am happy to say that I have only minor requests for information/modified graphs. The manuscript should be published in AMT after the following minor corrections, most of which request language clarification or additional details.

I would like to thank the reviewer for their insightful comments and their careful reading of the paper, which has helped to improve the clarity of discussion and added to several key points in the manuscript. I have addressed their specific comments in detail below.

Comments on the abstract:

The abstract specifies that conditional probabilities of each class are provided but then later refers to 'correct identification'. This change of language from probabilistic to absolute identification confused this reviewer on the first read, and the text could be slightly changed to be consistent with a probabilistic perspective (including a definition of what "correct" means in terms of probability... is it a probability of 90%? is it when one class was more than twice as likely as the next? this discussion could also be mentioned in the main text).

In the sci-kit learn implementation, the predicted class is the one with the highest mean probability (from the ensemble vote of the random forest in this case). I have updated the abstract to better link the predictions for particles of each type (based on the ensemble vote of the random forest for the features associated with each single particle) to the classification/generalization accuracy over the entire class, based on applying the trained algorithm to the test data sets.

p1., L.12: Predictions of the most likely particle class (the one with the highest mean probability) based on applying the trained random forest algorithm to the single-particle features for test data sets comprising examples of each class are compared with the true class for those particles to estimate generalization performance.

Similarly, please explicitly define the "broader class" approach in the abstract. For such technical work, many readers will only read the abstract.
I have specified the three broader classes to clarify what I mean here.

p1., L.12: ...and one with three broader classes ("rBC", "anthropogenic FeO\textsubscript{x}", and "dust-like") for particles with similar SP2-responses.

Finally, it should be made clear in the abstract that you are not using an "SP2" but a "modified SP2". This work is not extensible to the standard SP2. Conversely, this work should motivate other SP2 users to modify their SP2s, therefore the modifications must be highlighted.

Thank you for pointing this out. I’ve updated the abstract to emphasize that a modified SP2 was used in this study (and in previous studies using an SP2 to identify light-absorbing metallic aerosols).

p1., L.2: SP2s that have been modified to provide greater spectral contrast between their narrow and broad-band incandescent detectors have previously been used to characterize both refractory black carbon (rBC) and light absorbing metallic aerosols, including iron oxides (FeO\textsubscript{x}).

Minor comments / Requests for information:

I found that the author’s decision to include a large amount of detail on the basics of machine learning helpful, and since this is an interdisciplinary journal it is appropriately detailed. However, the author may also consider moving sections of that text to an Appendix to allow the main text of the paper to focus on the essentials.

Thank you for this comment. I have moved some of the details (on how decision trees classifiers work) to an Appendix to streamline the discussion in the main text.

Page 8, line 16. Why should only the red PMT alignment be sensitive? Is it due to a unique physical configuration of the filter/PMT? Can the author please either speculate or state that this is as surprising to her as it is to the reader?

I’ve updated this section to emphasize that, while the relative alignment of the two PMT’s appears to be important, the addition of the aperture in front of the red PMT makes the color ratio particularly sensitive to the alignment of the red PMT in the NOAA SP2 optical head.

p.8 L. 16. We also found that the width of the distribution of color ratios for rBC and FeO\textsubscript{x} as a function of incandescent peak height strongly depended on the relative alignments of the PMT detectors (See Supplementary Figure S3). Because of the additional aperture in front of the red PMT in the NOAA SP2 optical head, the color ratio was particularly sensitive to the alignment of the red PMT.

On page 11 the author mentions that various other machine-learning algorithms were tested with negative results. I think many readers would appreciate more information on these negative results (too often we only report successes). I suggest including a brief appendix (a few paragraphs or table) describing what was done. Surely the author compiled metrics on
The different algorithms before deciding to focus on random forests; this information would be of value to readers who need to know whether their data sets might be significantly different to this one. This would also provide objective support for the manuscript's focus on random forests.

The reviewer rightly points out that exploring other algorithms and approaches for applying machine learning to the SP2 signals would be very useful. As the focus of this work was on demonstrating the potential utility of supervised machine learning for analyzing SP2 signals, I have chosen to de-emphasize the discussion of other algorithms that were initially tested and move this information to the supplementary information. Using different features or implementations of these algorithms may lead to different outcomes, and I do not want to give the impression that this current research has exhausted the possible approaches. As discussed in Section 3.3, I chose to focus on the random forest because it was straight-forward to implement, it can directly handle multi-class classification problems, and it performed well using the specific features outlined in this work.

P. 11 L. 14. - Here we focus on the application of a random forest algorithm to the SP2 observations (We initially considered other machine learning algorithms, and some additional details are provided in the Supplementary).

Page 12, it is unclear to me what happened to particles with no valid position-sensitive detector information. Were they rejected?

Particles were rejected only in the cases when they did not have valid information for either the incandescent blue peak amplitude or the color ratio. For all the other features, the feature vector for particles with incomplete information were imputed with values during the preprocessing steps, as described in Section 3.2. In particular for the position sensitive detector, the values were chosen to be outside the typical range of values for that feature. I’ve added additional clarification to the discussion on data preprocessing and also added a reference to Section 3.2 in Section 3.1 to make this clearer to the reader. I’ve also added Table S1 to the Appendix to show how each feature was preprocessed/imputed in this scheme.

P. 12, L. 23. Since the application of a machine learning algorithm requires a value for every element in the feature vector, single particle signals that do not have valid values for each of the features given in Table 2 are imputed with dummy values; we discuss the details of this imputation in the next section.

P. 12, L. 31. We perform several preprocessing steps to prepare the data for use in the algorithm. (These steps are summarized in Supplementary Information Table S1.)
Table S1. Summary of preprocessing steps for each of the features considered in this study

<table>
<thead>
<tr>
<th>Symbol</th>
<th>Feature</th>
<th>Pre-processing</th>
<th>Imputation for particles without valid values</th>
</tr>
</thead>
<tbody>
<tr>
<td>x₀</td>
<td>Blue peak amplitude</td>
<td>Natural Log.</td>
<td>Particles without valid values were rejected</td>
</tr>
<tr>
<td>x₁</td>
<td>Color ratio</td>
<td></td>
<td>Particles without valid values were rejected</td>
</tr>
<tr>
<td>x₂</td>
<td>Core scattering</td>
<td>Natural Log.</td>
<td>110% of maximum possible value</td>
</tr>
<tr>
<td>x₃</td>
<td>Total scattering max.</td>
<td>Natural Log.</td>
<td>110% of maximum possible value</td>
</tr>
<tr>
<td>x₄</td>
<td>Post incandescent scattering</td>
<td></td>
<td>Dummy value - low negative value</td>
</tr>
<tr>
<td>x₅</td>
<td>Evaporation scattering size</td>
<td>Natural Log.</td>
<td>110% of maximum possible value</td>
</tr>
<tr>
<td>x₆</td>
<td>Position sensitive wideness</td>
<td></td>
<td>Dummy value - low negative value</td>
</tr>
<tr>
<td>x₇</td>
<td>Min. scattering before incandescence</td>
<td></td>
<td>Dummy value - low negative value</td>
</tr>
<tr>
<td>x₈</td>
<td>Position sensitive trigger position</td>
<td></td>
<td>Dummy value - low negative value</td>
</tr>
<tr>
<td>x₉</td>
<td>Scatter peak location</td>
<td></td>
<td>Dummy value - low negative value</td>
</tr>
<tr>
<td>x₁₀</td>
<td>Saturation width</td>
<td></td>
<td>Dummy value - zero</td>
</tr>
<tr>
<td>x₁₁</td>
<td>Incandescent start position</td>
<td></td>
<td>Dummy value - low negative value</td>
</tr>
<tr>
<td>x₁₂</td>
<td>Evaporation point</td>
<td></td>
<td>Dummy value - low negative value</td>
</tr>
<tr>
<td>x₁₃</td>
<td>Incandescent total length</td>
<td></td>
<td>Dummy value - zero</td>
</tr>
<tr>
<td>x₁₄</td>
<td>Incandescent used length</td>
<td></td>
<td>Dummy value - low negative value</td>
</tr>
<tr>
<td>x₁₅</td>
<td>Light on laser intensity</td>
<td>Natural Log.</td>
<td>110% of maximum possible value</td>
</tr>
<tr>
<td>x₁₆</td>
<td>Width fraction from center</td>
<td></td>
<td>Dummy value - low negative value</td>
</tr>
</tbody>
</table>

Please refer to Figure 4 in the legend of Table 2, for the benefit of the non-linear reader. Please also define x₄ (post incandescent scattering) more precisely; that is, specify what time interval after scattering was used. Is it defined when incandescence returns to zero? Is it defined for a fixed distance from x₈, the position in the laser? Is it possible that this definition influenced the results?

I have added a reference to Figure 4 in the legend of Table 2, and I have also included additional information in Section 3.1 on how x₄ is defined, and cross-referenced this discussion to Section 2 where this feature was discussed in the context of the different incandescent particle types. The post incandescent scattering is defined as the maximum scattering after the incandescence has effectively returned to zero (i.e. is less than some threshold value above the base line for incandescent), and is not referenced to a specific point in the laser. This feature could be impacted by where in the laser beam a particle incandesces, although the value for this feature for particles of the same material should remain consistent.

P.12 L. 10. Post-incandescent scattering (x₄) is defined as the maximum value of the scattering signal after the blue incandescent signal has reached a peak and has returned to the baseline.

In Section 4.1, several statements such as "most important feature" and "significantly worse classification" were used. It would be helpful if these were quantified numerically, as the reader does not know how to interpret them otherwise. Also please clarify "reduced by approximately 1/3rd", does this mean "reduced by a factor of 0.33" or "...0.7"?
I have added additional references to the relative importance of different features as given in Table 3 to make it clear what I am referring to by most important feature. Additionally, I have added Table S2 and Table S3 to the Appendix providing additional information about the precision and recall for the 3 class and 6 classes cases using the different subsets of the features to train the algorithm. I updated Section 4.1 to reference these tables.

Table S2. Summary of classification accuracy for the 3-class case, using different subsets of feature space. We provide classification accuracy for the optimized algorithm when using only the \(n \) most important features for the 3 class case.

<table>
<thead>
<tr>
<th>Class</th>
<th>17 features</th>
<th>9 features</th>
<th>5 features</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Precision</td>
<td>Recall</td>
<td>Precision</td>
</tr>
<tr>
<td>(rBC)</td>
<td>0.94</td>
<td>1.00</td>
<td>0.93</td>
</tr>
<tr>
<td>dust-like</td>
<td>0.97</td>
<td>0.76</td>
<td>0.96</td>
</tr>
<tr>
<td>(FeO_x)</td>
<td>0.99</td>
<td>0.99</td>
<td>0.99</td>
</tr>
</tbody>
</table>

Table S3. Summary of classification accuracy for the 6-class case, using different subsets of feature space. We provide classification accuracy for the optimized algorithm when using only the \(n \) most important features for the 6 class case.

<table>
<thead>
<tr>
<th>Class</th>
<th>17 features</th>
<th>11 features</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Precision</td>
<td>Recall</td>
</tr>
<tr>
<td>(rBC)</td>
<td>0.94</td>
<td>1.00</td>
</tr>
<tr>
<td>ATD</td>
<td>0.80</td>
<td>0.64</td>
</tr>
<tr>
<td>VA</td>
<td>0.81</td>
<td>0.66</td>
</tr>
<tr>
<td>FA</td>
<td>0.75</td>
<td>0.58</td>
</tr>
<tr>
<td>(Fe_3O_4)</td>
<td>0.92</td>
<td>0.99</td>
</tr>
<tr>
<td>(Fe_2O_3)</td>
<td>0.87</td>
<td>0.50</td>
</tr>
</tbody>
</table>

I have clarified p.18 L.17 to read:

...in the case of the 6 class case, the training time was reduced from 92 to 52 seconds when using 11 rather than 17 features for each sample.

In Section 4.1, a reduced set of training features was justified because "there was a clear break in the relative importance of different features". Presumably the author compiled statistics on prediction accuracy when sequentially removing features, otherwise this statement could not be made. This would be very informative to include as a table or figure.

The importance of different features was based on the ranking of features given by the random forest in the sci-kit learn implementation (as discussed in the first paragraph of Section 4.1), and this ranking motivated which features were retained when training and optimizing the algorithm with a reduced set of features. I have clarified this reference in Section 4.1. As discussed above, I also added additional discussion and Tables S2 and S3 to the Supplementary Materials to demonstrate how the precision and recall is impacted for the 3 class and 6 class cases when running the algorithm with all or a reduced set of features.
The relative importance of different features (given in Table 3) is estimated from the fraction of samples in the data set for which the decision pathway is impacted by that feature (Pedregosa et al. 2011).

Page 18 line 29. The private communication with S. Kaspari must definitely be expanded on as it is a very important part of the data interpretation. How did Kaspari prove that the particles were rBC and not dust? Microscopy? Can a quantitative analysis be made?

The SP2 color ratio for these rBC measured in ATD samples were consistent with rBC. After the ATD samples were heat-treated, significantly fewer refractory aerosols were detected. I have added these details to the discussion in Section 4.2 and also added a reference to the color ratio histograms for the laboratory samples in Supplementary Figure S1. The histograms of the color ratios for the laboratory samples indicates that the fly ash sample in particular demonstrates clear evidence of two different color ratio modes, with the mode at higher color temperature ratios consistent with the rBC and fullerene soot samples.

Previous work has noted that there is a small fraction of rBC present in laboratory samples of ATD (S. Kaspari, private communication), which likely contributes to the high rate of errors between ATD and rBC. (Color ratios of particles detected by the SP2 in these ATD samples were consistent with rBC, and were subsequently removed after heat treating the samples - S. Kaspari, private communication). A significant fraction of the color ratios for the incandescent aerosols detected in the FA laboratory samples also demonstrated a color ratio distribution more consistent with rBC, suggesting a fraction of the incandescent aerosols detected in fly ash may also be rBC (See Supplementary Figure S1).
Section 4.3, the author comments on the low number of dust particles impacting accuracy at small sizes, can this fact be placed in the context of expected FeOx size distributions? I initially thought it would be insignificant but then a paper on penetration into the brain is cited later.

I would like to thank the reviewer for this useful comment; the reviewer rightly points out that ambient FeOx size distributions may differ from the laboratory samples, which could impact the accuracy of the algorithm in identifying ambient particles at the smaller sizes. Several recent papers have provided FeOx size distributions (as observed with a modified SP2 in East Asia) [Yoshida et al. 2016; Moteki et al. 2017; Yoshida et al. 2018]. I have added Figure S2 to the appendix, demonstrating how the laboratory sample size distributions compare with previous ambient observations. I have also chosen to expand the discussion in Section 5 to include a reference to the expected size distributions for FeOx in ambient samples. Based on the size distributions of the laboratory samples, I have also updated the discussion related to the smallest FeOx aerosols (that may be relevant for health/air quality) to suggest caution must be used to choose an appropriate training data set to acquire observations of particles with smaller volume equivalent diameters.
Several recent observations of the size distributions of ambient FeO$_x$ in East Asia have indicated a significant number fraction of FeO$_x$ at smaller sizes (<300 nm) (Moteki et al. 2017, Yoshida et al. 2018); however, the nebulized samples of Fe$_2$O$_3$ and Fe$_3$O$_4$ in the laboratory data sets were predominantly between 350-1200 nm volume equivalent diameter (See Supplementary Figure S2). These results indicate that particular care needs to be taken when acquiring a training data set appropriate for classifying smaller iron oxide aerosols.

Page 23 line 26, "misidentifying" based on what? How do you know the true class? It seems like you are somehow convinced that these particles are truly rBC which the algorithm cannot identify – if so, can you please explain why?

I am basing this on the color ratio modes, and the abrupt transition from identifying mainly rBC aerosols to mainly dust-like aerosols for larger particles (>5 fg rBC equiv. mass.) with color ratios less than 0.8 that are on the shoulder of the rBC mode. To better emphasize the transition that I’m referring to, I have added histograms of the color ratios for the more massive particles to Figure 9. I have also added a comparison of the histograms of the color ratios for the laboratory samples to ambient aerosols in Supplementary Figure S1, which demonstrate that there is a greater prevalence of slightly lower color ratios for the ambient rBC when compared with the fullerene soot samples. I have updated the discussion in Section 4.4 to address this point.

The algorithm also identifies a significant fraction of dust-like aerosols, both at cooler color temperature ratios, and mixed into the population of aerosols in the rBC mode. At the larger masses for the rBC color ratio mode, the algorithm does appear to be misidentifying a fraction of the rBC with cooler color temperature ratios as dust-like aerosols (as all particles below ~0.8 and with incandescent blue amplitudes > 5 fg rBC equivalent incandescence on the shoulder of the rBC mode are identified as dust-like in Figure 9). This mis-identification is likely due to the differences between the SP2 response to ambient rBC vs. fullerene soot, as ambient rBC has a greater prevalence of particles with a lower color temperature ratio than fullerene soot (See Supplementary Figure S1).
Figure 9 legend. Coatings do not allow particles with a smaller rBC mass to be detected (in the incandescence channel). Perhaps the real reason for more smaller particles being detected here is simply more were available (nebulizing fullerene soot produces larger particles than combustion engines). A limit of quantification for the color ratio (eg 0.8 fg) should be defined and discussed.

Thank you for pointing this out. I’ve updated the discussion in the caption of Figure 9 to discuss the difference in size between the nebulized fullerene soot aerosols and the greater prevalence of small rBC seen in an urban environment.

Figure 9 caption. The larger variety of color ratios at the smaller incandescent peak heights (<0.5 fg rBC equivalent mass) than observed in laboratory data is due to the greater prevalence of small rBC aerosols in the urban environment than in the nebulized fullerene soot samples.

Figure 9. In my own experience with extremely dense "point plots", I have found that it is impossible to visualize the histogram (or pdf) once the overlap becomes as severe as in this figure. The same problem will occur in Figure 2, but is not misleading (or easy to improve) there. For Figure 9, please add a panel showing the histogram of color ratios for each class, in the region of constant color ratio (>2 fg), or please change to 3 panels of joint PDFs (cumulative count instead of overlapping points), or 3 panels of transparent points.

For Figure 9, I have added a histogram showing the color ratios for the three different classes, both for all the particles identified with each class, and for only larger particles.
Page 25 line 5, presumably the author has data to prove this strong dependency? Please show it.

I have added some additional details in the Supplementary (Figure S3) demonstrating the color ratio dependence on detector alignment for fullerene soot samples for three different optical alignments of the red and blue detectors in the NOAA SP2.
Figure S3. Influence of detector alignment on the incandescent blue amplitude (mass) to color temperature ratio relationship for fullerene soot samples (a) Mass vs. color ratio for fullerene soot sampled by the NOAA SP2 on three different occasions, with three independent alignments for the blue and red PMT’s. The color ratio in each case was normalized to 1.0 for fullerene soot with a mass of 10 fg. Greater variability in color ratio was observed when the detectors are not well-aligned (as in case 2) (b) Normalized histograms of the color ratios for fullerene soot for particles with masses between 2 and 70 fg for the three different optical alignments demonstrate differences in the width of the distributions.

Very minor comments:
Please add abbreviations to Table 1. (Rather than in the legend of Figure 2.)

Done.

Contractions such as "it’s" are normally discouraged; I leave the details of this to the AMT editing staff.

I have removed contractions.

Page 8, line 12-14. This sentence is grammatically flawed and I can’t see what it should be corrected to; please revise.

I have updated these lines to improve the clarity of discussion.

Figure 3 legend, expand "PS" to position sensitive like in Figure 4.

I have updated the legends in both subfigures.

I would suggest changing "L-II" to "LII" because the latter is an established acronym, and because hyphenated words typically do not retain their hyphens when abbreviated.

Thanks for pointing this out; I have updated the acronyms to be more consistent with previous literature.
Page 11 line 6, change eg to ie.

I have updated this line.

Page 15 line 8, after "subset" state "discussed below in section ..." for the reader's benefit.

I have added this reference.

Page 22 line 15, here and later the word "aerosols" starts to creep in to the lexicon, which I find confusing (the author seems to be using "aerosols" as "collection of particles" rather than "suspension of particles in a gas", perhaps "particle ensemble" or "sample set" would be clearer).

Thanks for this clarification. I have updated the language here and also throughout the rest of this section to improve the clarity of discussion.
Classification of iron oxide aerosols by a single particle soot photometer using supervised machine learning

Kara D. Lamb

1Cooperative Institute for Research in Environmental Sciences, University of Colorado Boulder, Boulder, CO, USA
2NOAA Earth System Research Laboratory Chemical Sciences Division, Boulder, CO, USA

Correspondence: Kara Lamb (kara.lamb@noaa.gov)

Abstract. Single particle soot photometers (SP2) use laser-induced incandescence to detect aerosols on a single particle basis. Both SP2s that have been modified to provide greater spectral contrast between their narrow and broad-band incandescent detectors have previously been used to characterize both refractory black carbon (rBC) and other light absorbing metallic aerosols, including iron oxides (FeO\(_x\)), have been characterized by the SP2, but. However, single particles cannot be unambiguously identified from their incandescent peak height (a function of particle mass) and color ratio (a measure of blackbody temperature) alone. Machine learning offers a promising approach for improving the classification of these aerosols. Here we explore the advantages and limitations of classifying single particle signals obtained with a modified SP2 using a supervised machine learning algorithm. Laboratory samples of different aerosols that incandesce in the SP2 (fullerene soot, mineral dust, volcanic ash, coal fly ash, Fe\(_2\)O\(_3\), and Fe\(_3\)O\(_4\)) were used to train a random forest algorithm. The trained algorithm was then applied to test data sets of laboratory samples and atmospheric aerosols. This method provides a systematic approach for classifying incandescent aerosols by providing a score, or conditional probability, that a particle is likely to belong to a particular aerosol class (rBC, FeO\(_x\), etc.) given its observed single-particle features. We consider two alternative approaches for identifying aerosols in mixed populations based on their single-particle SP2 response: one with specific class labels for each species sampled, and one with three broader classes for aerosols with similar properties ("rBC", "anthropogenic FeO\(_x\)", and "dust-like") for particles with similar SP2-responses. Predictions of the most likely particle class (the one with the highest mean probability) based on applying the trained random forest algorithm to the single-particle features for test data sets comprising examples of each class are compared with the true class for those particles to estimate generalization performance. While the specific class approach performed well for rBC and Fe\(_3\)O\(_4\) (\(\geq\)99% of these aerosols are correctly identified), its classification of other aerosol types is significantly worse (only 47-66% of other particles are correctly identified). Using the broader class approach, we find a classification accuracy of 99% for FeO\(_x\) samples measured in the laboratory. The method allows for classification of FeO\(_x\) as anthropogenic or dust-like for aerosols with effective spherical diameters from 170 to >1200 nm. The misidentification of both dust-like aerosols and rBC as anthropogenic FeO\(_x\) is small, with < 3% of the dust-like aerosols and < 0.1% of rBC misidentified as FeO\(_x\) for the broader class case. When applying this method to atmospheric observations taken in Boulder, CO, a clear mode consistent with FeO\(_x\) was observed, distinct from dust-like aerosols.
1 Introduction

The single particle soot photometer (SP2) has been used over the past decade to quantify refractory black carbon (rBC) mass and internal mixing on a single particle basis (Stephens et al., 2003; Schwarz et al., 2006). Recently, the SP2 has been increasingly used to quantify other light absorbing refractory aerosols (e.g. Moteki et al. (2017); Liu et al. (2018)). In particular, observations in source regions have shown that iron oxide containing aerosols from anthropogenic origins are present in the atmosphere (Liati et al., 2015; Dall’Osto et al., 2016; Adachi et al., 2016; Li et al., 2017), and these aerosols can be detected via laser-induced incandescence with an SP2 (Yoshida et al., 2016; Moteki et al., 2017). These aerosols have been found to be mostly pure iron oxides that are fractal aggregates of \(\sim 100 \) nm spheroids, internally mixed (heterogeneously) with nitrate or sulfate (Dall’Osto et al., 2016; Adachi et al., 2016; Li et al., 2017). They have been linked to transportation sources (engine exhaust, traffic brake wear) and industrial sources such as steel processing (Ohata et al., 2018). Iron oxide aerosols quantified by the SP2 were referred to as FeO\(_x\) in past literature (e.g. Moteki et al. (2017)), and we continue this convention here. In general, FeO\(_x\) as quantified by the SP2 in atmospheric observations in past studies potentially included aerosols from both anthropogenic and non-anthropogenic sources. The mass mixing ratio and size distribution of FeO\(_x\) has been quantified in East Asia, where observations suggested these aerosols were mainly from anthropogenic sources, and were also observed to be significantly more prevalent than previously believed (Yoshida et al., 2016; Moteki et al., 2017; Ohata et al., 2018; Yoshida et al., 2018). These measurements have important implications for the climatic effects associated with these aerosols: the direct radiative climate effects of anthropogenic FeO\(_x\) may be as important as brown carbon in some regions (Moteki et al., 2017; Matsui et al., 2018), and modeling studies based on these measurements indicate these aerosols could also be an important source of particulate iron for the oceanic biogeochemical cycle (Matsui et al., 2018; Ito et al., 2018).

Improving the detection of iron oxide aerosols linked to anthropogenic sources is key to understanding their potential impact on the climate. The SP2 offers a promising method for real-time quantification of these aerosols, as previous detection techniques are limited to off-line methods such as X-ray spectrometry (Adachi et al., 2016). However, while laser-induced incandescence can be used to quantify the mass of pure magnetite (Fe\(_3\)O\(_4\)) and to a lesser extent, hematite (Fe\(_2\)O\(_3\)) and wüstite (FeO) (Yoshida et al., 2016), the interpretation of ambient SP2 observations has been limited by the misclassification of other aerosols as FeO\(_x\), including both rBC and aerosols containing metallic components from non-anthropogenic sources.

To first order, FeO\(_x\) can be differentiated from refractory black carbon (rBC) because of differences between the blackbody temperature and peak incandescent signal (relative to the particle mass) associated with single particles incandescing in the laser of the SP2. However, the temperature and incandescent peak height alone are not sufficient to unambiguously identify FeO\(_x\). Because FeO\(_x\) has a higher mass to incandescent signal relationship than rBC (Yoshida et al., 2016), and is generally significantly rarer than rBC in the atmosphere in a source region by a factor of \(\sim 250 \times \) (Moteki et al., 2017), the misclassification of even a small fraction of rBC as FeO\(_x\) can bias the retrieved mass mixing ratio.
In addition, other types of metallic aerosols (e.g. tungsten, silicon, chromium, niobium, gold, and aluminum) can be detected via laser-induced incandescence (Stephens et al., 2003; Schwarz et al., 2006). Although these aerosols are unlikely to be significantly present in the atmosphere, more common aerosol classes, such as coal fly ash, mineral dust, and volcanic ash also can contain metallic inclusions that are detected with low efficiency by the SP2, and in some cases have similar blackbody temperatures/incandescent peak heights as FeO$_x$. Laboratory tests performed for this study on different samples of fly ash (Miami F, Welsh C, and Clifty-F), a coal combustion product that is a significant source of metallic particles to the atmosphere, indicated these aerosols incandesce with low efficiency (i.e. only a small fraction of the particles have a non-zero incandescent signal in the SP2). This low detection efficiency likely indicates that only a small fraction of these aerosols contain sufficient quantities of materials that can be heated to detectable incandescence in the SP2 laser. Approximately 5-10% of volcanic ash particles from the Eyjafjallajökull volcano incandesced in the SP2 during the SOOT 11 campaign, with greater incidence of incandescence for larger particles (Heimerl et al., 2012). Incandescent particles in Icelandic mineral dust and Taklamakan Desert dust also have been detected with low efficiency using the SP2 (Yoshida et al., 2016). An SP2 was used in one study to estimate the hematite content in Saharan dust measured off the West coast of Africa, and demonstrated good closure between the hematite concentration associated with single dust particles and the optical properties observed in the dust plume (Liu et al., 2018). While previous work focusing on anthropogenic FeO$_x$ has relied on using the optical size of these aerosols after any volatile coatings have evaporated as an additional criteria to differentiate anthropogenic and non-anthropogenic aerosols with metallic components (Yoshida et al., 2016; Moteki et al., 2017; Ohata et al., 2018; Yoshida et al., 2018), this method is limited to the range over which the SP2 optically sizes these aerosols (generally limited to ~170-350 nm volume equivalent diameter for FeO$_x$). Previous studies using the SP2 to quantify FeO$_x$ associated with anthropogenic sources have also not provided quantitative measures of classification performance for these aerosols.

Here we demonstrate that supervised machine learning can be used to differentiate laboratory samples of pure FeO$_x$ from other types of incandescent aerosols expected in the ambient. Machine learning refers to a number of related algorithms using optimization techniques based in probability theory to directly extract information from observations, without relying on \textit{a priori} knowledge of underlying physical models. Supervised machine learning methods, which use labeled data sets to initially train algorithms, are particularly suited to classification problems. These methods are used e.g. to classify images, for text-to-speech applications, and for identifying handwritten digits, and are also increasingly being applied to scientific applications, including atmospheric aerosol measurements. While machine learning approaches have been used to classify single particle aerosol mass spectra (Zawadowicz et al., 2017; Christopoulos et al., 2018) and biological aerosols detected via ultraviolet light-induced fluorescence (Robinson et al., 2013; Ruske et al., 2017, 2018; Savage and Huffman, 2018), they have not yet been applied to the problem of classifying aerosols detected via laser-induced incandescence. We review detection of incandescing aerosols with the SP2 and describe measurements on laboratory samples in Section 2. We discuss how features derived from single particle signals can be used as input to a supervised learning algorithm and describe a method for training and optimizing this algorithm in Section 3. In Section 4, we discuss the performance of the trained random forest algorithm on laboratory samples and atmospheric observations. This method extends the classification of FeO$_x$ associated with anthropogenic sources
beyond the range over which the SP2 can optically size these aerosols and also reduces the misclassification of other aerosols as anthropogenic FeO_x.

2 SP2 detection of incandescing aerosols

To optimize classification of aerosols measured by the SP2, we first describe the detector configuration, calibrations, and laboratory measurements used in this study and discuss how different aerosols are detected by the SP2. SP2s operate by using laser-induced incandescence (L-II) to detect sub-micron incandescing aerosols on a single-particle basis (Stephens et al., 2003). Their operation has been discussed in detail elsewhere (Schwarz et al., 2006, 2010; Moteki and Kondo, 2010). The SP2 determines the mass of the incandescent portion of single aerosol particles by using an ND:YAG laser (1064 nm) to heat refractory particles with a sufficient absorption cross-section to vaporization. Aerosol particles are observed by four detectors as they traverse the laser beam, with two detectors measuring the incandescent signal in the visible, and two measuring scattered light at 1064 nm. For the study, we define "incandescent" aerosols as those that have a non-zero signal in the two incandescent channels.

2.1 NOAA SP2 detector configuration

The two incandescent detectors measure light emitted from the particles in distinct wavelength bands, providing a measure of the spectral dependence of incandescence, which can be converted to a temperature (Moteki and Kondo, 2010). For this study we use a customized SP2 (the NOAA SP2) whose detector configuration differs slightly from the commercial versions (Droplet Measurement Technology, Longmont, CO), and which was previously described in Schwarz et al. (2006, 2010). This SP2 is operated with 4 detector channels and a 5 MHz acquisition rate. In the typical configuration of the NOAA SP2, a "red" incandescent detector is a photomultiplier tube (PMT) with a peak sensitivity at 630 nm (450-650 nm, Hamamatsu H6779-20) and a "blue" detector is a PMT with peak sensitivity at 420 nm (350-450 nm, Hamamatsu H6779). (Alternatively a PMT (Hamamatsu H6779-02) with a peak sensitivity of 500 nm and a smaller range (450-630 nm, "orange" detector) is sometimes used in place of the red detector in the NOAA SP2.) An additional Schott glass band-pass filter (KG5, 330-665 nm) in front of the red (orange) detector removes light at wavelengths longer than 750 nm to avoid detection of scattered pump laser light (at 807 nm, see Figure 1 for detector sensitivity ranges). The NOAA SP2 also uses a 2x1 mm aperture and a short-wave pass filter (SWP-730, Spectrogon) in front of the red detector to further reduce sensitivity to scattered light from the pump laser. Color temperature ratio is calculated from the ratio (blue:red or blue:orange) of the measured signals at the peak of incandescence (in practice, an average over a small range around each peak is used to reduce sensitivity to high frequency noise). In this work, the gains on the SP2 blue and red channels were chosen so that the distribution of the color ratios for ambient black carbon is centered near 1. Due to a shift towards the red of blackbody radiation for cooler objects (See Fig. 1, left panel), the characteristic boiling temperature for iron oxide aerosols (~3300 K, vs. ~4320 K for rBC) corresponds to a color temperature ratio of ~0.7, relative to rBC at 1.0 (Fig. 1, right panel).
Figure 1. Determination of single particle blackbody temperature from SP2 incandescent detectors. Left: Normalized blackbody curves for T=4320 K (typical of rBC) and T=3300 K (typical of FeO\textsubscript{x}) are shown as solid blue and green curves, along with the cathode radiant sensitivity of the PMT’s typically used in the SP2, as blue, orange, and red lines and markers. The dashed black line gives the transmissivity of the glass filter used with the red and orange detectors. The yellow dashed line is the wavelength of the pump light, and the maroon dashed line is the wavelength of the ND:YAG laser. Right: The color ratio as a function of the particle’s characteristic blackbody temperature derived for two different detector configurations (blue:red, blue:orange) is shown, assuming the color ratio is scaled to 1 at 4320 K.

The mass of the portion of the particle that incandesces can be determined from the peak height of either incandescent signal, which in the case of rBC is linearly proportional to its mass over most of the accumulation mode (Schwarz et al., 2006; Moteki and Kondo, 2010; Gysel et al., 2012). In this work, we use the blue incandescent peak amplitude to derive single particle incandescent mass, and show incandescent peak height (linearly) scaled based on the rBC mass calibration (as this provides a physical metric that is not dependent on the detector gain settings). The detection efficiency of FeO\textsubscript{x} is dependent on the SP2’s laser power. Although magnetite can be detected with nearly 100% efficiency under typical conditions (Yoshida et al., 2016), the detection efficiency of hematite is lower and dependent on the particle’s total hematite mass. Up to a point, higher laser power increases the efficiency with which the smaller FeO\textsubscript{x} aerosols can be detected, as the higher laser power compensates for their smaller absorption cross-sections. The SP2 is insensitive to goethite and ferrihydrite, as their absorption cross-sections at the wavelength of the ND:YAG laser are not sufficient for these aerosols to be heated to incandescence (Yoshida et al., 2016).

Incandescent aerosols can be simultaneously optically sized using the scattering channels in the SP2. The optical size is determined by an avalanche photodiode (APD) with sensitivity at 1064 nm (model C30916E, Perkin-Elmer Optoelectronics, Quebec, Canada). The SP2 additionally uses a position sensitive detector (a four quadrant silicon APD, Perkin-Ellmer C30927E-01) to determine the position of the particles in the beam with respect to the center of the laser as has been described in detail in Gao et al. (2007). The SP2 used in this study can be run with either a high gain scattering channel setting or a low gain scattering channel setting. The high gain setting (5x higher than the low gain setting) is optimized for detection of rBC in the accumulation mode (typically ~90-550 nm). The low gain setting allows the SP2 to optically size larger aerosols, although
Table 1. Laboratory aerosol samples used in analysis. We test different aerosols with known incandescent components, given in the table below. The abbreviations used to refer to these materials throughout this work are given in the second column. The sample size refers to the total number of incandescent aerosols in the sample.

<table>
<thead>
<tr>
<th>Material</th>
<th>Abbreviations</th>
<th>Sampling Method</th>
<th>Sample size</th>
</tr>
</thead>
<tbody>
<tr>
<td>Fullerene Soot</td>
<td>FS</td>
<td>Nebulizer</td>
<td>231,101</td>
</tr>
<tr>
<td>Fullerene Soot + Glycerol</td>
<td>coated FS</td>
<td>Nebulizer</td>
<td>162,959</td>
</tr>
<tr>
<td>Fe₃O₄ powder (<5µm)</td>
<td>Fe₃O₄</td>
<td>Nebulizer</td>
<td>258,624</td>
</tr>
<tr>
<td>Fe₂O₃ powder (<5µm)</td>
<td>Fe₂O₃</td>
<td>Nebulizer</td>
<td>45,609</td>
</tr>
<tr>
<td>Clifty-F Fly Ash</td>
<td>FA</td>
<td>Nebulizer</td>
<td>18,677</td>
</tr>
<tr>
<td>Arizona Test Dust</td>
<td>ATD</td>
<td>Nebulizer</td>
<td>67,102</td>
</tr>
<tr>
<td>Volcanic Ash</td>
<td>VA</td>
<td>Nebulizer</td>
<td>33,970</td>
</tr>
</tbody>
</table>

A significant fraction of the non-rBC materials cannot be optically sized even with this lower gain setting. The measurements used in this study use the high gain setting as these are the typical settings used during past aircraft campaigns.

2.2 Calibrations

The laser power of the SP2 used in the analysis was calibrated with 220 nm polystyrene latex spheres before and after each data set was taken (Schwarz et al., 2010). The incandescent signal to mass relationship for rBC was calibrated by using fullerene soot (Lot #F12SO11) size selected at different mobility diameters (between 150-350 nm) through a differential mobility analyzer (DMA), along with the mass to mobility diameter relationship for rBC from Moteki and Kondo (2010). The incandescent to mass relationships for laboratory samples of both magnetite and hematite have previously been characterized (Yoshida et al., 2016), and we determine the FeOₓ mass relative to the rBC mass calibration using those relationships (See Figure 2b).

2.3 Preparation of laboratory data sets

A data set was compiled from laboratory samples to simulate aerosols expected to be found in the atmosphere. Data from laboratory samples of fullerene soot (Lot #F12SO11), magnetite (Fe₃O₄, <5 microns, Sigma Aldrich 310050), hematite (Fe₂O₃, <5 microns, Sigma Aldrich 310069), Arizona Test Dust (PTI ISO 12103-1), volcanic ash (VA) from the Eyjafjallajökull volcano (collected on the ground in Iceland), and coal fly ash (Clifty-F, referred to as FA) were measured in the laboratory. Fullerene soot is a calibration material that behaves in the SP2 similarly to ambient rBC (Kondo et al., 2011; Baumgardner et al., 2012). Arizona Test Dust (ATD) is a commonly used reference material for mineral dust and includes some metallic components, including 2-5% by weight of hematite. Thickly coated rBC particles were simulated by mixing glycerol (99.5%) with fullerene soot. Each of these samples include some fraction of particles that incandesce in the SP2 laser, although ATD, VA, and FA only have a small fraction of incandescent particles relative to the particles that do not incandesce. Samples were measured with a flow rate of 4 cc/s and at low enough concentrations to avoid cases of two incandescent particles crossing the laser at the same
Figure 2. (a) Incandescent peak height to color ratio relationship for different incandescent aerosol types. Laboratory samples of different test materials show significant overlap between incandescent peak height and color ratio. Each point represents a single particle, and the abbreviations are defined as follows: FA — coal fly ash; VA — volcanic ash; ATD — Arizona test dust; FS — fullerene soot; given in Table 1, with Amb. indicating ambient particles. (b) Comparison of FeO\textsubscript{x} and rBC detection in the SP2. Relative mass and volume equivalent diameter (VED) for rBC and FeO\textsubscript{x} observed by the SP2. Because of the power law relationship for the mass to incandescent signals of FeO\textsubscript{x}, the largest particles detected by the SP2 are approximately 60x more massive than rBC with the same incandescent signal. FeO\textsubscript{x} is significantly denser than rBC, however; the volume equivalent diameter ratio is less than a factor of 3 for particles within the SP2 detection range.

Because machine learning algorithms perform best with a large number of examples (to provide sufficient variance), we focused on acquiring a large number of measurements for each aerosol type. The total number of laboratory samples, which are subdivided between the training and test sets (discussed in the next section) are given in Table 1. The incandescent peak height to color ratio relationship for all of the laboratory samples is shown in Figure 2a, along with ambient rBC particles measured in the laboratory. **Histograms of the color ratio for the laboratory samples are provided in Figure S1 in the Supplementary.**

2.4 Ambient measurements

We performed ambient sampling in Boulder, CO from the rooftop inlet of the David Skaggs Research Center to provide samples of typical atmospheric aerosols in an urban environment and natural dust aerosols. The sampling line from the rooftop was an approximately 6 m long, 2.5 cm diameter vertical tube with a small pick-off sampling line of 0.2 cm diameter, which provides a transmission efficiency of ~100% below 1 micron, and slightly enhances sampling for aerosols >1 micron (super-isokinetic). Observations of ambient aerosols were measured over a period of two days (Oct. 31-Nov. 1, 2018). The sample flow rate of the SP2 during ambient sampling was chosen to be 4 cc/s to match the laboratory data set.
2.5 Differentiation of different aerosol types

Classification of aerosols measured by the SP2 rely on differences in both the optical sizes of these aerosols and the aerosols’ incandescence and evaporation in the laser beam. Previous work has noted that to first order, FeO$_x$ can be differentiated from rBC in the SP2 because these aerosols have lower color ratios (Schwarz et al., 2006; Yoshida et al., 2016). Other properties of these aerosols impact their detection in the SP2, including a higher mass to incandescent relationship (Yoshida et al., 2016) and a higher void-free density for FeO$_x$ relative to rBC (5.17 g/cm3 vs. 1.8 g/cm3). This significantly higher mass to incandescent relationship for FeO$_x$ (Yoshida et al., 2016) means that much more massive particles are detected than in the case of rBC with the same incandescent peak amplitude (varying from ~10x to >60x more massive for the largest particles in the SP2 detection range, see Figure 2b). Because the density of FeO$_x$ is nearly 3x higher however, the volume equivalent diameter is only 1.5-3x higher. Literature values for the index of refraction of FeO$_x$ (n=2.30+0.46i, at 1000 nm) also differ significantly from rBC (n=2.49+1.49i, at 1064 nm) (Huffman and Stapp, 1973; Moteki et al., 2010, 2017). Yoshida et al. (2016) noted that the incandescence of hematite occurs deeper in the SP2 laser than magnetite, rBC, Taklamakan Desert dust, and Icelandic dust, likely due to a smaller imaginary part of the index of refraction for hematite than for magnetite.

As has been previously noted, color ratio alone is not sufficient to differentiate rBC and FeO$_x$. In practice, aerosols particles of the same type show significant statistical variability about their characteristic blackbody temperatures (see Figure 2a). **The color ratio measured for single particles is dependent on the particle’s mass: color ratios for FeO$_x$ with variability in color ratio generally inversely proportional to refractory aerosol mass. The population of ambient rBC and fullerene soot particles at the smallest detectable masses have demonstrated significantly greater variability in color ratio (when compared with the population of larger particles), due to the lower signal to noise on the red and blue channels.** We also found that the width of the distribution of color ratios for rBC and FeO$_x$ as a function of incandescent peak height strongly depended on the relative alignments of the PMT detectors (See Supplementary Figure S3). Because of the additional aperture in front of the red PMT in the NOAA SP2 optical head, the color ratio was particularly sensitive to the alignment of the red PMT detector. The incandescent peak height (mass) and a low color ratio together provide sufficient contrast to differentiate iron oxide containing aerosols from rBC for larger incandescent peak heights (equivalent to ~2 fg rBC) (Yoshida et al., 2016; Liu et al., 2018; Moteki et al., 2017). When detecting mixed populations of FeO$_x$ and rBC, the incomplete contrast between rBC and FeO$_x$ in terms of their incandescent peak heights and color ratio limits detection at smaller sizes. The upper limit of detection for both rBC and FeO$_x$ in the SP2 is due to the gain setting on the detectors; when the incandescent channel becomes saturated, refractory aerosol mass can no longer be quantified.

To improve contrast between rBC and FeO$_x$ at smaller sizes (160-230 nm effective void free diameter for FeO$_x$), core scattering (amount of scattered light measured after volatile coatings have evaporated but before the refractory core has significantly evaporated) can be used as an additional parameter to differentiate rBC and FeO$_x$. Although the real-imaginary part of the index of refraction for rBC is greater than for FeO$_x$ particles, the incandescent peak height to mass relationship for rBC is also significantly higher (Yoshida et al., 2016). Therefore, FeO$_x$ particles with similar incandescent peak signals compared to
rBC are significantly larger particles, and have greater than 4x as much core scattering. However, this additional criteria also
does not provide complete contrast between the two aerosol particle classes at these sizes.

As can be seen in Figure 2, an additional complication arises in differentiating FeO_x from mixed populations of particles
including other aerosols with metallic components that incandesce in the SP2, such as natural mineral dust, as the color ratio
of ATD, VA, and FA overlap with FeO_x at similar incandescent peak heights. The larger variability in color ratio for ATD,
volcanic ash, and coal fly ash in the laboratory samples that were tested is likely due to presence of multiple types of metallic
oxides with a greater variety of characteristic blackbody temperatures than Fe_3O_4 or Fe_2O_3. TEM images have shown that
natural mineral dust is composed of numerous grains of different materials, of which iron oxides or other metallic oxides can
be one component, typically embedded in quartz or feldspar (e.g. Jeong and Nousiainen (2014)). Yoshida et al. (2016) observed
a greater variability in the color ratio for Icelandic dust (similar to the observed color ratios in VA sampled in this study) and
speculated that these higher color ratios are due to the presence of strongly light absorbing minerals such as titano-magnetite
from volcanic origins. Eyjafjallajökull ash samples were previously found to contain several metallic elements, including sim-
ilar mass fractions of Fe and Al (Rocha-Lima et al., 2014). SEM-EDS characterization of fly ash demonstrated that typical
samples were mainly composed of amorphous alumino-silicate spheres, with a smaller contribution of iron-rich spheres, com-
pared of iron oxides mixed with alumino-silicate (Kutchko and Kim, 2006). On the other hand, anthropogenic iron oxide
particles that have been observed in the atmosphere may be coated with organic materials and inorganic materials, but have
been found to be predominately metallic (Adachi et al., 2016; Li et al., 2017). (Although coal fly ash is also of anthropogenic
origin, we treat these aerosols independently from anthropogenic FeO_x, as they have significantly different signals in the SP2,
and generally are more similar to ATD.) Core scattering has been shown to be a useful criteria for differentiating anthropogenic
iron oxide aerosols from dust-like aerosols (Yoshida et al., 2016; Moteki et al., 2017). However this criteria can only be used
on the subset of aerosols that can be optically sized in the typical configuration of the SP2. (Typically FeO_x with effective
void-free diameters < 350 nm, or < 230 nm for the high gain setting used here).

To determine which incandescent signals were likely associated with mineral dust or anthropogenic FeO_x, we investigated
whether optical scattering in the SP2 can be used to indicate non-evaporative portions of the aerosol (See Figure 3). Given
that natural dust grains typically consist of metallic inclusions surrounded by other materials, even if these portions of the
aerosol incandesce in the SP2, the entire particle may not be completely vaporized. Recent measurements using the SP2 to
characterize hematite content in dust particles estimated that mineral dust particles detected by the SP2 were generally >500
nm in size (Liu et al., 2018). Post-incandescent scattering, defined as the scattering amplitude of the particle measured after the
incandescent signal has returned to the baseline, indicates portions of the aerosol still remain after the refractory portion of the
particle has evaporated (Sedlacek III et al., 2012). Post-incandescent scattering was generally non-zero for both FeO_x and the
other aerosols containing metallic components (ATD, VA, FA); in the case of FeO_x, the signal was proportional to observed
iron oxide mass, which may be related to previous observations that these particles appeared to be melting in the laser beam
(Yoshida et al., 2018). Choosing a single threshold value for post-incandescent scattering only differentiated FeO_x from other
aerosols containing metallic components for ~80% of the particles, however.
Figure 3. Comparison of SP2 signals SP2 traces for two different aerosols with metallic components with similar incandescent peak heights and color ratios. The left signal is from laboratory samples of Fe$_3$O$_4$ and the right signal is from a mineral dust particle. Black indicates the scattering signal, green is the position-sensitive detector, red is the red PMT signal and blue is the blue PMT signal. For the aerosol particle on the left, the scattering signal disappears as the particle incandescences (around the 200th digitizer measurement point), indicating complete evaporation of the particle. For the particle on the right, scattering is still present after the incandescent signal has returned to the baseline, indicating that non-evaporative portions of the particle still remain after passing through the SP2 laser.

3 Supervised learning methods applied to aerosol classification with the single particle soot photometer

The inability to unambiguously classify FeO$_x$ from anthropogenic sources from either natural mineral dust or rBC using a small number of features (the incandescent peak height, the color ratio, core scattering, and post-incandescent scattering) derived from the single particle signals suggests that new analysis approaches should be explored to fully exploit this additional aspect of the SP2. The SP2’s limitations in classifying different aerosols could be overcome in some cases by changes to the detection scheme, e.g. detectors with greater dynamic range for optical sizing; however, other limitations are fundamentally linked to the LII-LII method, as there is an overlap between the features associated with different particle types when only those 4 features are considered. Previous data sets (e.g. aircraft data sets) are also limited to the detection scheme described in Section 2, so it would be beneficial to formulate a method to use this data.

From a mathematical perspective, the problem of classifying aerosols can be described as the search for a mapping function f that maps a feature vector x_i associated with each aerosol to its correct class label y_i. Here we define a feature as an attribute (for example, the incandescent peak height) associated with a single particle i, which can be expressed as an n-dimensional feature vector $x_i \in \mathbb{R}^n$. We would like to find a separable subspace within the n-dimensional feature space that can be used to differentiate aerosols by class. In other words, decision boundaries can be found that allow us to separate the different aerosols
with minimal misclassifications. Decision boundaries are hyperplanes of dimension \(n - 1 \) that subdivide this feature space such that the different classes (rBC, FeO\(_x\), etc.) reside in distinct subspaces.

Supervised learning algorithms are a class of machine learning algorithms that map input variables \((X)\) to a predicted output variable \((\hat{Y})\), after first training the algorithm using a set of input variables \((X')\) with known output \((Y')\). (Here we adopt notation to use \(\hat{y}_i\) to differentiate the predicted label from the actual label \(y_i\). For \(n\) training examples and \(m\) features, the input vectors generalize to matrices.) Following the notation in Mohri et al. (2012), the problem that the learning algorithm attempts to solve is finding a hypothesis \(h\), where \(h \in H\) (a subset of functions explored by the learning algorithm), to map \(x_i\) to a predicted class label \(\hat{y}_i\), such that the loss function \(L(\hat{y}_i, y_i)\) is small. This loss function \(L(\hat{y}_i, y_i)\) gives the cost of predicting \(\hat{y}_i\) rather than \(y_i\). We would like to avoid hypotheses that either "underfit" or "overfit" the data. Underfitting refers to a hypothesis that does not perform well even on the initial training data set, as it does not capture the trend of the data. Overfitting occurs when a hypothesis fits the training data well, but cannot generalize to new cases, because it has too closely constrained the model to the specific data set. Over-fitting can be addressed by increasing the number of training examples (to provide greater instances of within class variance), while underfitting generally implies that the chosen features do not allow for enough degrees of freedom, and a more complex model is required. Since the small set of features described in Section 2 do not provide enough information (e.g., i.e., they "underfit" the data), we would like to expand the number of features that provide some information about what type of aerosol was observed. However, adding additional features creates a much larger space over which to determine appropriate decision boundaries to differentiate aerosols. Moreover, the large variation within classes (between aerosols, particles of the same type with different masses or internal mixing states) makes this problem even more challenging. This kind of problem is tractable using supervised machine learning, however; and these algorithms can be readily applied using existing software libraries (e.g., Python’s scikit-learn and TensorFlow libraries).

There are a variety of machine learning algorithms that can be used for classification; the choice of an algorithm depends on consideration of both the particular data set and the intended application, as there’s no clear cut superiority of performance between different algorithms. Here we focus on the application of a random forest algorithm to the SP2 observations, as its performance on classifying aerosols measured with the SP2 was found to be superior to other methods (e.g., neural networks, dimensionality reduction, etc.) that were tested using the approach outlined in this study (We initially considered other machine learning algorithms, and some additional details are provided in the Supplementary). A random forest consists of an ensemble of decision trees, and is described in greater detail in Section 3.3. This approach allows us to extend the number of features considered for an individual particle to improve classification performance. We compare two different approaches for applying this random forest algorithm to the laboratory data. In one case, we use 6 distinct classes (rBC, ATD, FA, VA, Fe\(_2\)O\(_3\), and Fe\(_3\)O\(_4\)) where rBC includes both bare and coated fullerene soot in the training data set. In the second case, we use only 3 distinct classes: rBC (again, including coated and uncoated fullerene soot as training data), dust-like aerosols (ATD, VA, and FA), and FeO\(_x\) (Fe\(_2\)O\(_3\), and Fe\(_3\)O\(_4\)).

The application of (any) supervised machine learning algorithm requires the implementation of several steps: first, data is collected, and in the case of supervised learning algorithms, labeled and randomly separated into independent training, cross-validation, and test sets. The randomly selected training data set is needed to train the model, the cross-validation set is used
to determine the optimal set of hyperparameters for the algorithm, and an independent test set provides information about how
the trained algorithm generalizes to new cases. Before the application of the algorithm to the data set, however, the data needs
to be preprocessed, which entails repairing or removing missing values and transforming variables by normalizing and scaling
them. In the case of "classic" machine learning, features are extracted from the data set (more advanced techniques such as
representation learning/deep learning operate directly on raw data to extract features, but for computational simplicity we do
not explore this approach here (Goodfellow et al., 2016)). The third step is training the algorithm on the training data set and
optimizing its performance using the cross-validation set. The fourth step is evaluating the performance of the algorithm on the
test set. Finally, the trained algorithm can be applied to new data sets. The computation steps required to train and optimize the
algorithm and then apply it to new data is referred to as a machine learning pipeline. We describe the first three steps in this
section, and discuss its performance on the test data set and on atmospheric measurements in Section 4.

3.1 Feature engineering from single particle signals

The typical analysis method for the NOAA SP2 reduces 80 μs time series signals to a vector of features that can be used to
determine the mass, optical size, coating state, and coating thickness of rBC given appropriate calibrations for the detectors as
was described in Section 2. An algorithm is applied to filter out signals that may be contaminated, e.g. by multiple particles
measured during the same acquisition window or other non-ideal sampling conditions.

To leverage existing SP2 feature engineering and data analysis, we consider a number of features derived from the single
particle signals, including features previously demonstrated to provide useful information about the particle’s physio-chemical
properties. The features explored in this analysis are shown in Table 2 and for an example rBC particle in Figure 4 and can
be roughly divided into three categories: those associated with the incandescent channels (x0-x4), those associated with the
scattering channels (x5-x7), and those derived from the timing of different signals in the beam (x8-x10). Those associated with
the scattering channel are related to the optical size of the aerosol as it traverses the laser (core scattering, total maximum
scattering, position sensitive wideness, post-incandescent scattering, and the optical size at a fixed point along the evaporating
edge). As discussed in Section 2.5, post-incandescent scattering (x4) is defined as the maximum value of the scattering signal
after the blue incandescent signal has reached a peak and has returned to the baseline. Those associated with the incandescent
channel relate to the mass and thermal properties of the aerosol (the blue peak amplitude and the color ratio). Those associated
with timing in the beam (e.g. min. scattering before incandescence, incandescent start position, evaporation point, incandescent
used length, and incandescent total length) are related to both the size and physio-chemical properties of the particle (e.g.
whether it is initially coated with any volatile materials, how strongly absorbing the aerosol is, or how long it takes to evaporate
in the laser); several of these features also depend on the specific laser settings. It is necessary to point out that the features
derived from the single particle signals in some cases will not provide values directly interpretable as a measure of the physical
properties of the particles as given in Table 2 (i.e. for larger particles, the detectors may be saturated). If the systematic bias
with the feature or measurement artifacts are repeatable however, they still provide useful information to the algorithm, as these
methods rely on statistical relationships between the data sets rather than an underlying physical model. To quantify detector
saturation for larger particles, we have included features that indicate whether the scattering signal is high before the start of
Figure 4. SP2 signal for a single particle showing all features used in the algorithm SP2 traces for a coated rBC particle (4 fg, 20 nm thick coating assuming $n_{core}=2.26+i*1.26$ and $n_{coat}=1.45$) showing the features used in the machine learning algorithm. The left figure shows the scattering and position sensitive detectors and the right figure shows the blue and red incandescent channels for the same particle. Physical interpretation and descriptions of these features are further detailed in Table 2. Since the scattering signal is not saturated at any point for this particular particle, $x_{10} = 0$. x_3 is proportional to the maximum value of the scattering signal derived from the leading-edge only (LEO) fit (Gao et al., 2007).

incandesce (x_7) and how long the signal is saturated (x_{10}). **Since the application of a machine learning algorithm requires a value for every element in the feature vector, single particle signals that do not have valid values for each of the features given in Table 2 are imputed with dummy values; we discuss the details of this imputation in the next section.**

These features were chosen because they generally showed some separability for different aerosol types for the laboratory samples, although no single feature or pair of features was sufficient to entirely separate different aerosol classes. In applying the machine learning algorithm for the two different cases, we initially use all features, but also explore whether a reduced set of these features can provide similar classification performance.

5 3.2 Data preprocessing

Many machine learning algorithms work best if features are preprocessed so that they are normally distributed and have a mean of 0; however, one advantage of decision trees (and by extension, random forests) is that they are fairly robust to feature scaling and normalization. We perform several preprocessing steps to prepare the data for use in the algorithm; first. (These steps are summarized in Supplementary Table S1.) First, we remove data associated with particles that do not at minimum have values for both the incandescent peak height and color ratio. For features that are expected to be log-normally distributed (the blue signal amplitude, which is proportional to the particle mass, and the features associated with different optical sizes), we also take the natural logarithm in order to have normally distributed values.
Table 2. Description of features from processed SP2 single particle signals For features that correspond to times in the SP2 detection window, the time is referenced to the position-sensitive detector cross-over point, which is a fixed point in space (independent of particle size). See Figure 4 for an illustration of these features for an rBC particle measured by the SP2.

<table>
<thead>
<tr>
<th>Symbol</th>
<th>Feature</th>
<th>Description/Physical interpretation</th>
</tr>
</thead>
<tbody>
<tr>
<td>x₀</td>
<td>Blue peak amplitude</td>
<td>Function of aerosol incandescent mass</td>
</tr>
<tr>
<td>x₁</td>
<td>Color ratio</td>
<td>Function of aerosol blackbody temperature</td>
</tr>
<tr>
<td>x₂</td>
<td>Core scattering</td>
<td>Function of optical size of core after volatile coatings have evaporated</td>
</tr>
<tr>
<td>x₃</td>
<td>Total scattering max.</td>
<td>Function of optical size of the aerosol including coating (estimated from LEO fitting)</td>
</tr>
<tr>
<td>x₄</td>
<td>Post incandescent scattering</td>
<td>Function of optical size of aerosol after refractory portion has evaporated</td>
</tr>
<tr>
<td>x₅</td>
<td>Evaporation scattering size</td>
<td>Function of scattering ampl. along evaporating edge when inc. signal \sim 1 fg rBC</td>
</tr>
<tr>
<td>x₆</td>
<td>Position sensitive wideness</td>
<td>Time difference between max. and min. of PS signal amplitude</td>
</tr>
<tr>
<td>x₇</td>
<td>Min. scattering before incandescence</td>
<td>Minimum value of scattering signal before start of incandescence</td>
</tr>
<tr>
<td>x₈</td>
<td>Position sensitive trigger position</td>
<td>Time of PS detector cross-over point (change from positive to negative)</td>
</tr>
<tr>
<td>x₉</td>
<td>Scatter peak location</td>
<td>Time of maximum scatter signal</td>
</tr>
<tr>
<td>x₁₀</td>
<td>Saturation width</td>
<td>Total time scattering signal is saturated, relative to Gaussian laser width</td>
</tr>
<tr>
<td>x₁₁</td>
<td>Incandescent start position</td>
<td>Time inc. signal is first greater than min. threshold (relative to PS cross-over point)</td>
</tr>
<tr>
<td>x₁₂</td>
<td>Evaporation point</td>
<td>Time at which aerosol has completely evaporated (relative to PS cross-over point)</td>
</tr>
<tr>
<td>x₁₃</td>
<td>Incandescent total length</td>
<td>Time from incandescence peak location until signal has decayed to baseline</td>
</tr>
<tr>
<td>x₁₄</td>
<td>Incandescent used length</td>
<td>Full width half maximum of incandescent signal</td>
</tr>
<tr>
<td>x₁₅</td>
<td>Light on laser intensity</td>
<td>Laser intensity calculated at blue maximum peak location</td>
</tr>
<tr>
<td>x₁₆</td>
<td>Width fraction from center</td>
<td>Inc. peak location relative to center of laser, scaled by Gaussian laser width</td>
</tr>
</tbody>
</table>

The other important step in preparing data for supervised learning is figuring out what to do with particles associated with incomplete information. In certain cases (such as when the scattering detector is saturated for larger particles), the unknown number likely represents known information (e.g. that the particle is too large to optically size). For these four features (core scattering, scattering peak amplitude, evaporation scattering size, and the laser intensity at the peak of incandescence) we assume that missing values are larger than any of the values that were recorded; therefore these missing values were imputed with 110% of the highest expected value for each of those features. For the other 13 features, we used dummy values outside the typical detection range to effectively exclude these features for that particular sample (alternatively, we tested using typical mean values for these features, which led to similar classification performance). Preprocessing could potentially be improved by implementing a learning algorithm to optimize the imputation of missing values; however, because we did not observe a significant change in performance dependent on the particular method for preprocessing, we did not explore this option.
3.3 Random Forest

After feature selection and data preparation, we apply an algorithm that can construct a model from the data based on the samples in the training data set. In this case we use a random forest algorithm, which consists of an ensemble of decision trees.

Each decision tree is a classifier that works by sequentially subdividing the training data set based on learned threshold values of the features at each node (See (For a schematic of a decision tree, see Figure 5, top panel). At each node, the threshold values are determined by minimizing the impurity \(F \) over the classes associated with the subset of samples in the two resulting "children". Typical measurements of node impurity \(F \) are the information entropy or the Gini index (Mohri et al., 2012). Information entropy provides a metric for quantifying how much information is in an event; for example, decisions that split the training samples such that a single class is represented in each child have lower entropy than splits resulting in multiple classes, since there is greater information gain. The Gini index measures the likelihood that a randomly chosen sample would be mislabeled given the values of the labels in the subset associated with each child. After a sufficient purity, according to one of these metrics has been reached, the algorithm is stopped. The class associated with the majority of the training samples after the terminal split along any particular branch of the tree is associated with that "leaf", and new samples that satisfy the same criteria are predicted to have that class.

Decision trees are fairly robust even for cases of features that are not normally distributed. They have the advantage of having few tunable parameters, meaning that their out-of-the-box implementation is simpler than many other machine learning algorithms. They can also directly handle multi-class classification problems such as the one we consider here. They are non-parametric machine learning algorithms, i.e. no a priori assumptions are made about the function to be learned, and the complexity of the model is a function of the training data set size (Goodfellow et al., 2016). These types of algorithms do typically require more training data and longer training times than parametric models, but can generally result in more powerful models. However, a common problem for decision trees is overfitting, meaning that their generalization to new examples can be poor; even small changes in the training data set can lead to different outcomes.

Additional details about decision tree classifiers are provided in Appendix A). Random forests improve upon the performance of single decision trees by growing an ensemble of decision trees. This algorithm is more robust to overfitting than a single decision tree, as they rely on bagging ("bootstrap aggregating"): a random selection of the training samples are chosen to grow each decision tree, with replacement from the original training set. Each tree also uses a random selection of a subset of the features to define the split at each node (Breiman, 2001); we discuss additional details in Section 3.5. Because of this randomness, the generalization error converges for a large number of trees. The predictions of the random forest are based upon the ensemble vote from all the trees in the forest; that is for each sample, the trained algorithm outputs a conditional probability distribution \(f(y_i) = p(y_i|x_i, \theta) \) over the classes, with the highest probability corresponding to the most likely class of the particle \(\hat{y}_i \), given the values of the feature vector \(x_i \) and the optimized parameters of the algorithm \(\theta \). In the implementation of the algorithm used here, the conditional probability for a new sample to belong to any particular class is determined by averaging the probability predictions from all the trees in the forest (Pedregosa et al., 2011). This algorithm has previously
been used to classify single particle mass spectra (Christopoulos et al., 2018). A schematic for applying the random forest to a single particle signal from the SP2 is shown in the bottom panel of Figure 5.

3.4 Computational resources

For this analysis, we used Python 3.6.6 with the sci-kit learn package version 0.20.0. To train the algorithm and optimize its hyperparameters, we used a remote Linux server with 24 cores (2 Intel Xeon CPU E5-2695 v2 2.40 GHz processors with 12 cores each and two threads enabled per core), which provided \(\sim 125 \) GB of RAM memory.

The computation time for training a random forest is directly related to the number of trees in the forest and the amount of training data used. In general, a binary decision tree has a time complexity of \(\mathcal{O}(mn \log n) \) for \(n \) training samples and \(m \) features (Pedregosa et al., 2011). One disadvantage of this method is that each decision tree needs to use all of the training data (or rather, the subset of the training data used to train that tree) at once in order to grow the tree, requiring a significant amount of memory for large training data sets. Distributed or parallel methods can be used to improve computation efficiency for random forests, as the trees can be grown simultaneously on different processors. Depending on the complexity of the trained random forest, the decision path of the trained algorithm can also require significant memory to store. With the large training data set that we consider here, this method is computationally expensive, so although this approach serves as a proof of concept, it would be advantageous to explore other methods for improved computational efficiency.

3.5 Tuning hyper-parameters for improved performance

In order to optimize the performance of supervised machine learning algorithms, a cross-validation data set is typically used to find the optimal set of hyper-parameters for the algorithm. Hyper-parameters are separate from the parameters optimized by the learning algorithm, but affect its generalization performance. For a random forest, the hyper-parameters consist of e.g. the number of trees in the forest (number of estimators), the maximum depth of each branch, and the maximum number of features (the subset of features) randomly considered at each node. Several of these hyper-parameters affect the growth of individual trees, serving as alternative stopping criteria, by e.g. setting a lower limit on the number of training samples required for each split, or setting an upper limit on the depth of the tree.

Random forests can use out-of-the-bag (o.o.b.) error estimates for determining hyper-parameters (Breiman, 2001). Since each tree relies on only a sub-sample of the training data set, the performance of that tree on the subset of the training data not used in growing the tree can be used to optimize the hyper-parameters. We used o.o.b error estimates to initially tune over a number of different hyper-parameters to see which most impacted the classification performance. We found that the entropy criteria always performed better than using the Gini index as the metric for optimizing splitting at each node (See Appendix A for details). Increasing the number of estimators also always improved the classification accuracy, although the effect reached an asymptote after \(\sim 100-120 \) trees. The maximum depth of each tree showed decreasing o.o.b error for greater depths, up to \(\sim 40 \) splits in the 3 class case, and \(\sim 30 \) splits in the 6 class case, with very little change for greater depths. Having fewer samples required to allow for an internal split and fewer samples allowed per leaf also tended to decrease error. The maximum
Figure 5. Schematic of a decision tree (top), and a random forest as applied to the SP2 signals (bottom). (a) A simplified example of a decision tree for a case with only 2 features, demonstrating how choosing threshold values of the features at each node (left) subdivides the feature space into different regions (right). The true case corresponds to the left “child” in the tree. This figure has been adapted from Mohri et al. (2012). (b) The schematic for applying supervised learning to predict the aerosol class for a particle measured by the SP2 is shown. First, single particle signals are processed and reduced to a feature vector \(\mathbf{x}_i \), which is then given to the trained random forest. Each decision tree within the forest makes a series of decisions based on the values of the features (which have been learned from a random subset of the training data, by considering a random subsets of features at each split) to predict the most likely class of the particle based on the observed features. The aggregated prediction from the ensemble of \(M \) decision trees predicts a probability distribution \(f(y) = p(y|\mathbf{x}_i, \theta) \) over each class \(y \).
number of features randomly considered at each split had the strongest demonstrated the most significant difference between the 6 class and 3 class cases, with the 3 class case performing better with a smaller subset of features than the 6 class case.

Since each hyper-parameter does not independently impact the performance of the algorithm, we then used a grid-search with 3-fold cross validation over 54 different combinations of the hyper-parameters to find the best set for each case (Mohri et al., 2012). K-fold cross-validation uses a subset of the training data (after the data has been randomly shuffled, and with equal relative sub-selections of each aerosol class) as a cross-validation data set (typically $K \in [3, 10]$), while the algorithm is trained on the rest of the data. The procedure is repeated K times, using a different subset of the data each time as the cross-validation set in order to get K total values for the classification accuracy for each set of hyper-parameters. For the 6 class case, the optimal hyper-parameters were a max. depth of 50, 12 features considered at each split, a minimum of 1 sample per leaf, and a minimum of 2 samples per split, with 120 estimators, and using entropy as a criterion. For the 3 class case, the optimal hyper-parameters were a max. depth of 50, 10 features considered at each split, a minimum of 1 sample per leaf, and a minimum of 4 samples per split, with 120 estimators, and using entropy as a criterion.

4 Performance on laboratory samples and atmospheric observations

The performance of the trained and optimized random forest was tested on an independent test set of laboratory samples. Testing the trained algorithm on an independent set of labeled data allows us to determine its generalization performance (the skill of the learning algorithm to classify new particles) before applying it to the (unlabeled) atmospheric data set. We used stratified K-folding (which randomly divides data with equal sub-selections of each aerosol class) to divide the laboratory data set into 3rds, with 2/3rds used for the training/cross-validation steps, and with 1/3rd kept aside as a test data set.

4.1 Improving the pipeline

After optimizing the algorithm, we investigate whether the machine learning pipeline can be improved. The relative importance of different features (given in Table 3) is determined by removing any single feature and running the algorithm to see how the classification accuracy on the test set changes, estimated from the fraction of samples in the data set for which the decision pathway is impacted by that feature (Pedregosa et al., 2011). The importance of each feature determined using estimated with this method only gives information over the entire population of aerosols in each class in the test set, however. For both the 6 class and 3 class cases, the color ratio is the most important feature, with the post-incandescent scattering being the next most important feature. As both of these features were previously identified as physically meaningful for separating different aerosol types, this is not surprising.

To avoid overtraining our algorithm/model, we would ideally like to use the smallest set of features possible. We remove the least important features (retaining the 11 most important features for the 6-class case and the 9 most important for the 3-class case; see Table 3, columns 3 and 5 for the subset of features for each case), and retrain and optimize the algorithm in each case. We chose these reductions since there was a clear break in the relative importance of different features at these points for each case (see Table 3).
Table 3. Importance of different features. The relative importance of the different features for the optimal random forest for the 6-class and 3-class cases. All denotes that all 17 features were used in the algorithm, and reduced indicates that only a subset of features were included as input to the learning algorithm (11 features for the 6 class case and 9 features for the 3 class case). The top 5 most important features in each category are bolded.

<table>
<thead>
<tr>
<th>Feature</th>
<th>All (6 classes)</th>
<th>Reduced (6 classes)</th>
<th>All (3 classes)</th>
<th>Reduced (3 classes)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Blue peak amplitude</td>
<td>0.064</td>
<td>0.075</td>
<td>0.049</td>
<td>0.057</td>
</tr>
<tr>
<td>Color ratio</td>
<td>0.391</td>
<td>0.358</td>
<td>0.455</td>
<td>0.587</td>
</tr>
<tr>
<td>Core scattering</td>
<td>0.032</td>
<td>0.044</td>
<td>0.051</td>
<td>0.019</td>
</tr>
<tr>
<td>Total scattering max.</td>
<td>0.021</td>
<td>•</td>
<td>0.014</td>
<td>•</td>
</tr>
<tr>
<td>Post incandescent scattering</td>
<td>0.148</td>
<td>0.190</td>
<td>0.183</td>
<td>0.136</td>
</tr>
<tr>
<td>Evaporation scattering size</td>
<td>0.042</td>
<td>0.053</td>
<td>0.043</td>
<td>0.037</td>
</tr>
<tr>
<td>Position sensitive wideness</td>
<td>0.018</td>
<td>•</td>
<td>0.011</td>
<td>•</td>
</tr>
<tr>
<td>Min. scattering before incandescence</td>
<td>0.023</td>
<td>•</td>
<td>0.020</td>
<td>•</td>
</tr>
<tr>
<td>Position sensitive trigger position</td>
<td>0.024</td>
<td>•</td>
<td>0.017</td>
<td>•</td>
</tr>
<tr>
<td>Scatter peak location</td>
<td>0.026</td>
<td>0.045</td>
<td>0.019</td>
<td>•</td>
</tr>
<tr>
<td>Saturation width</td>
<td>0.028</td>
<td>0.046</td>
<td>0.015</td>
<td>•</td>
</tr>
<tr>
<td>Incandescent start position</td>
<td>0.039</td>
<td>0.054</td>
<td>0.029</td>
<td>0.057</td>
</tr>
<tr>
<td>Evaporation point</td>
<td>0.035</td>
<td>0.052</td>
<td>0.025</td>
<td>0.054</td>
</tr>
<tr>
<td>Incandescent total length</td>
<td>0.030</td>
<td>0.036</td>
<td>0.023</td>
<td>0.028</td>
</tr>
<tr>
<td>Incandescent used length</td>
<td>0.044</td>
<td>0.047</td>
<td>0.026</td>
<td>0.025</td>
</tr>
<tr>
<td>Light on laser intensity</td>
<td>0.018</td>
<td>•</td>
<td>0.011</td>
<td>•</td>
</tr>
<tr>
<td>Width fraction from center</td>
<td>0.016</td>
<td>•</td>
<td>0.011</td>
<td>•</td>
</tr>
</tbody>
</table>

Removing additional features (e.g. using only the top 5 most important features for the 3 class case) still performed well for FeO$_x$ and rBC, but led to significantly worse classification accuracy for the dust-like aerosols, suggesting the additional features provided enough information to reduce the misclassification of dust-like aerosols from rBC by a factor of 2. The classification accuracy for these feature reductions are quantified in Supplementary Information Tables S2 and S3. Another advantage of reducing features is that the algorithm can be trained faster (in the case of the 6 class case, the training time was reduced by approximately 1/3rd from 92 to 52 seconds when using 11 rather than 17 features for each sample).

4.2 Confusion matrices

To quantify the performance of the algorithm for each of the cases, we visualize the true positive and false positive rates for each class using a confusion matrix (Figure 6). Confusion matrices are useful ways to visualize how well a classifier performs. For each class, they give the number of particles of that class that are predicted to belong to that class (the true positives, along the diagonal) vs. all of the misidentifications of the particles as other classes (the false positives, the off-diagonal elements.
Figure 6. Confusion matrices for the 6-class and 3-class cases A visualization of the confusion matrices using all features (left matrices) and the reduced feature space (right matrices) is shown for the laboratory test data. The y-axis in each figure indicates the true particle type and the x-axis indicates the particle type predicted by the trained random forest on the test data set. The fraction of aerosols identified as a particular class relative to the total number of aerosols is given, with the actual number of particles shown in parentheses.

Since our test data set does not have the same number of particles for each class, we normalize along each horizontal row to give the fractional portion predicted for each of the class labels.

For both the 6 class and 3 class cases, we find the worst performance for the aerosol particles containing metallic inclusions (ATD, VA, FA - the "dust-like" aerosols). These aerosol particles are most likely to be misidentified as either rBC or as one another. One reason for this may be the imperfections of the laboratory data sets. Previous work has noted that there is a small fraction of rBC present in laboratory samples of ATD (S. Kaspari, private communication), which likely contributes to
the high rate of errors between ATD and rBC. (Color ratios of particles detected by the SP2 in ATD samples were consistent with rBC, and were subsequently removed after heat treating the samples - S. Kaspari, private communication). A significant fraction of the color ratios for the incandescent aerosols detected in the FA laboratory samples also demonstrated a color ratio distribution more consistent with rBC, suggesting a fraction of the incandescent aerosols detected in fly ash may also be rBC (See Supplementary Figure S1). Additionally, because of the low incandescent rate of these aerosols, we had acquired the fewest number of training examples for these data sets. In general, these aerosols are much less likely to be misidentified as FeO\(_x\) (1-3% false positives) by the trained algorithm than as rBC, however.

We also find that rBC is unlikely to be misidentified as any of the other aerosol types, including FeO\(_x\). For the 6 class case, Fe\(_3\)O\(_4\) was more likely to be correctly identified than Fe\(_2\)O\(_3\); this could be because some portion of the Fe\(_2\)O\(_3\) is more similar to Fe\(_3\)O\(_4\), or perhaps because of the imbalance of training examples for the two aerosols. The confusion matrices make it clear that Fe\(_3\)O\(_4\) and Fe\(_2\)O\(_3\) are more likely to be misclassified as one another than as any of the other aerosol particle types.

4.2.1 Base case

To provide a basis for the comparison of the different supervised learning algorithms, we also consider a classification scheme which uses only a few features and linear decision boundaries to classify incandescent aerosols. We designate this case the "base case", and use only the color ratio and incandescent peak height to differentiate rBC from FeO\(_x\), and the additional criteria of the core scattering to differentiate anthropogenic FeO\(_x\) from mineral dust with metallic inclusions. This is based on the method that has previously been used in e.g. Moteki et al. (2017); Ohata et al. (2018); Yoshida et al. (2018).

We visualize the simple pathway through feature space using this method in the top panel of Figure 7. The threshold values for the metallic mode (including both dust-like and FeO\(_x\) samples) for the incandescent peak height was chosen to be 2 fg rBC equivalent-mass and the color ratio margin was chosen to be 0.785 from inspection of the modes in the data. We designate the region used for rBC as Region 1 (regions are shown in the top right panel of Figure 7). As discussed in Section 2.5, we can only optically-size aerosols in the metallic mode for incandescent peak height between ~2-4 fg rBC equivalent mass; this portion of the metallic mode is designated as Region 2. Since we cannot optically size these aerosols outside of this range (Region 3), we need an additional assumption in order to estimate classification performance. Previous work has only designated FeO\(_x\) as anthropogenic or dust-like for aerosols in Region 2, and used this (and off-line techniques) to provide context for interpreting atmospheric observations of FeO\(_x\) in East Asia as dominated by anthropogenic emissions (Moteki et al., 2017; Ohata et al., 2018; Yoshida et al., 2018).

To demonstrate how well the base case provides information for the entire population of aerosols measured by the SP2, we consider two possible assumptions for Region 3 using the laboratory samples; we emphasize that these results are specific to the distributions and relative numbers of aerosols in the laboratory samples and should be taken as illustrative only. One reasonable assumption would be to assume that the entire population of aerosols in the metallic mode would have a similar ratio of anthropogenic to dust-like FeO\(_x\) as the aerosols in Region 2 (relative population assumption). However, this assumption clearly relies on the number distributions of dust-like and anthropogenic FeO\(_x\) aerosols being similar over the entire range that
Figure 7. Base case classification scheme and confusion matrices. Top: We visualize the scheme for classifying aerosols using a simplistic pathway through feature space. The features are the same as in Table 2, and $x_2 > \text{max}(x_2)$ indicates the detector is saturated for the core scattering measurement. The true case at each node corresponds to the left "child". We need to make an additional assumption for the particles in the metallic mode that cannot be optically sized (the right-most split, corresponding to Region 3). Saturated values for core scattering are indicated by black dots in the right figure, which shows the incandescent peak height vs color ratio for the laboratory samples. Bottom, left: Confusion matrix for the base case assuming the same ratio of anthropogenic FeO$_x$:dust-like in Region 3 as measured in Region 2. Since the particles in Region 3 are differentiated only on a population basis, to visualize this case as a confusion matrix, we have made the additional assumption that particles are correctly classified up to the total number of aerosols of that class (any additional aerosols identified as that class are assumed to be false positives). Bottom, right: Confusion matrix for the base case identifying all aerosols in Region 3 as anthropogenic FeO$_x$, to provide an upper limit on anthropogenic FeO$_x$.
the SP2 can measure (which would be unknown in ambient populations). Another assumption would be to take all the particles in Region 3 as an upper limit on anthropogenic FeO$_x$ (FeO$_x$ only assumption).

We visualize the classification performance for the base case under these two assumptions as confusion matrices, as shown in the bottom panel of Figure 7. Since it is not possible to identify the 6 individual aerosol particle types using this method, we show only the 3 class case for this scheme. The relative population assumption leads to a significant underestimation of anthropogenic FeO$_x$, as can be see in Figure 7b. (Since the relative population method does not classify individual aerosol particles, to visualize this scheme as a confusion matrix, we assume aerosol particles are true positives up to the number of total aerosol particles of that class in our data set, and otherwise are false positives.)

For the FeO$_x$ only method (Figure 7c), the true positive rate for rBC and FeO$_x$ is still quite good (98% and 97% respectively), but the false positives are significantly more problematic than for the supervised machine learning classification schemes. Nearly 2% of the rBC is misidentified as FeO$_x$, which could be problematic given that only a small fraction (~1/250) of ambient aerosols in urban areas that incandesce in the SP2 are expected to be FeO$_x$. The misclassification of the dust-like aerosol particles is even more problematic, as nearly 37% of these aerosol particles would be identified as FeO$_x$ for this particular data set. Given that in ambient populations we would expect to have no prior knowledge about the relative proportion of anthropogenic to dust-like aerosols, this large misclassification rate could significantly bias the interpretation of the FeO$_x$ mass mixing ratio in certain cases.

4.3 Precision and recall

The confusion matrices only provide information about how well the trained algorithm performs on each class in general. However, from a measurement perspective, we are interested in whether there might be significant bias for different classes in certain cases, such as aerosols with smaller or larger incandescent masses. To investigate how well the algorithm performs as a function of the incandescent peak height, we define two metrics, the precision and recall. The precision P_i for a particular class i is defined as

$$P_i = \frac{\# \text{ true positives}}{\# \text{ true positives} + \# \text{ false positives}}$$

and recall R_i for class i is defined as

$$R_i = \frac{\# \text{ true positives}}{\# \text{ of true positives} + \# \text{ false negatives}}.$$

True positives are defined as aerosol particles of class i that are predicted to belong to class i. False positives are aerosol particles of other classes ($j \neq i$) that are predicted to belong to class i. False negatives are aerosol particles of class i that are predicted to belong to a different class k ($k \neq i$). Precision provides information about how accurately the algorithm identifies aerosol particles of a particular class, whereas recall provides information about how many of the relevant particles are actually identified. For FeO$_x$, we are most interested in maximizing the precision (as opposed to the recall), i.e. we would like to avoid falsely identifying other types of particles as FeO$_x$. Lower recall would translate to an underestimation of the mass mixing ratio of FeO$_x$, whereas having lower precision could introduce a significant systematic bias due to other aerosols being misidentified as FeO$_x$.

23
Figure 8 shows a side-by-side comparison of the performance of the 6 class (reduced features) case and 3 class (reduced features) case on the laboratory test set. The true and predicted labels for the aerosol sample set, shown as a function of the incandescent peak height vs. color ratio, are shown. Comparing the true labeled data set with the predicted labels indicates that the portion of the dust-like aerosol particles that overlap with the rBC population is the one that is most likely to be misidentified. As stated previously, this may be due to a fraction of rBC present in the laboratory samples of ATD and FA. The precision and recall for each of the aerosol classes is also shown, binned as a function of the incandescent peak height. In general, the performance of the classifiers are better for FeO₅ at larger masses than at smaller masses; this is likely impacted by the size distribution of the aerosol particles in our training data set.

(See Supplementary Figure S2 for the size distributions of the iron oxide samples).

4.4 Performance on atmospheric observations

We finally apply the machine learning pipeline for the 3 class, reduced feature case to the atmospheric data sets acquired in Boulder, CO (Figure 9). Generally we observe the three modes that we expect for rBC, dust-like aerosols, and FeO₅ based upon the predictions of the random forest algorithm. These observations indicate that the laboratory samples in general have similar responses in the SP2 as the aerosols that we are observing in the urban environment. This suggests that the algorithm identifies iron oxides sourced from anthropogenic emissions with the laboratory samples of pure iron oxides. This application demonstrates that a significant feature of FeO₅ is present in the atmosphere in Boulder, as has previously been observed in urban areas in East Asia (Yoshida et al., 2016; Moteki et al., 2017; Ohata et al., 2018).

The algorithm also identifies a significant fraction of dust-like aerosols, both at cooler color temperature ratios, and mixed into the population of aerosol particles in the rBC mode. At the larger masses for the rBC color ratio mode, the algorithm does appear to be misidentifying a fraction of the rBC with cooler color temperature ratios as dust-like aerosols, perhaps due to the sensitivity of the specific values of the color ratio to the alignment of the PMT detectors or particles (as all particles below ~0.8 and with incandescent blue amplitudes > 5 fg rBC equivalent incandescence on the shoulder of the rBC mode are identified as dust-like in Figure 9). This mis-identification is likely due to the differences between the SP2 response to ambient rBC vs. fullerene soot, as ambient rBC has a greater prevalence of particles with a lower color temperature ratio than fullerene soot (See Supplementary Figure S1). This result suggests that the algorithm has been overtrained to the specific threshold values for the color ratio in this case.

Previous studies have indicated that a fraction of rBC present in the atmosphere may be attached to other aerosols such as natural dust ("attached-type rBC"), rather than present in a core-shell structure ("coated rBC") (Sedlacek III et al., 2012; Dahlkötter et al., 2014; Moteki et al., 2014). In the ambient measurements in Boulder, we found ~7% of the aerosols in the rBC mode were predicted to be dust-like (excluding color ratios below 0.85 to eliminate any effects of the overtraining due to the threshold color ratio value), similar to previous observations of <10% attached-type rBC in an urban area (Tokyo) (Moteki et al., 2014). This suggests that machine learning could also potentially be used to identify attached-type rBC aerosols over a greater rBC mass range than previously developed algorithms (Moteki et al., 2014).
Figure 8. True and predicted aerosol labels, precision, and recall by incandescent peak height for the 6 class (reduced features), 3 class (reduced features) cases. True and predicted labels, precision, and recall by incandescent peak height for the 6 class (reduced features), 3 class (reduced features) cases. The top row shows the performance of the 6 class classification scheme and the bottom row shows the performance of the 3 class classification scheme. The first figure to the left in each row shows the laboratory test data, color coded by its true class label (particles differ between the 6 class and 3 class cases because different subsets of the laboratory data were randomly chosen as test sets in each case). The 2nd figure to the left shows the predictions of the algorithms for the class labels. The 3rd figure shows the precision for each class, binned by incandescent peak height. The 4th figure shows the recall, binned by incandescent peak height for each class.

5 Conclusions and Recommendations

We explored the advantages and limitations of using supervised machine learning to classify absorbing aerosols detected via laser-induced incandescence. This paper serves as proof-of-concept that supervised machine learning is a useful technique for analyzing and classifying laser-induced incandescent signals acquired by the SP2. This method improves upon the performance of previous classification methods using only 3 or 4 features (the incandescent peak height, the color ratio, the core scattering, and the post-incandescent scattering amplitudes) derived from the single particle signals, and indicates that the SP2 does provide enough information via laser induced incandescence to identify FeO\textsubscript{x} with few misclassifications as other types of
Figure 9. Application of algorithm to observations in Boulder, CO (a) Ambient data acquired from a rooftop inlet demonstrates the performance of the 3 class, reduced feature implementation of the random forest algorithm after it has been trained on laboratory data. A clear feature of FeO\textsubscript{x} is observed in the ambient data. The larger variety of color ratios at the smaller incandescent peak heights (<0.5 fg rBC equivalent mass) than observed in laboratory data is due to the greater prevalence of coatings on the observed small rBC, which allows aerosols with a smaller rBC mass in the urban environment than in the nebulized fullerene soot samples. (b) Histograms for the color ratios of the particles identified to be detected belong to each of the 3 classes are shown, both for the entire population identified and also only for particles with larger incandescent blue amplitudes.

aerosols that the SP2 can detect. In past studies, decision boundaries had been based on inspection of the data rather than statistical considerations, and the method presented here provides a more statistically-consistent method.

In order to use supervised learning algorithms to classify aerosols with an SP2 during aircraft and field observations, we recommend acquiring it is very important to acquire the samples for training data sets with the same instrument, optical configuration, and operating conditions as the data sets to be processed. Several of the features (in particular the color ratio) demonstrated strong dependence on detector alignment or may be affected by the specific laser power settings (See Supplementary Materials Figure S3 for additional details). This configuration-dependence leads to a greater incidence of misclassified particles if algorithms trained with data taken with one instrument configuration are applied to data sets attained with another, as the algorithms can be overtrained. This makes the application of the algorithms to aircraft observations more challenging, as
changes in pressure and flow rates during sampling may also impact some of these features. One potential solution is to take a large training data set simulating a number of different alignment configurations, although for simplicity, we have not explored this approach here.

We recommend that the 3 broader class approach be used, as this method provided clear advantages over the 6 class approach. The incandescent onset position of ambient FeO$_x$ observed in East Asia was found to be between that characteristic of Fe$_2$O$_3$ and Fe$_3$O$_4$ in pure laboratory samples, suggesting that combustion iron oxide aerosols found in the atmosphere may be homogeneous internal mixtures of these two iron oxides (Yoshida et al., 2018). This provides additional motivation to use the 3 class classification scheme, as ambient FeO$_x$ may have characteristics on a continuum between pure laboratory samples of Fe$_2$O$_3$ and Fe$_3$O$_4$. When applying this method to atmospheric measurements in Boulder, CO, ~7% of aerosols in the rBC mode were quantified as dust-like. These aerosols were associated with a greater incidence of non-volatile particles (that did not evaporate completely in the SP2 laser) than the rBC not identified as dust-like, suggesting that this method may also be useful for identifying rBC attached to other types of aerosols, such as mineral dust. However, because the recall for dust-like aerosols in laboratory samples was only ~70%, there is still significant room for uncertainty in the interpretation of these aerosols.

Using a random forest ensured good performance and demonstrated that this method in principle works for classifying aerosols detected via laser-induced incandescence; however we have not specifically optimized this method for computational efficiency, and other supervised learning algorithms may offer advantages in this respect. The cross-validation step required the greatest amount of computation time (~1-2 hours for the 3-fold cross-validation grid search using 48 threads), as it required repeatedly training the model with different options for the hyperparameters. However this step only needs to be performed once; after the hyperparameters have been optimized, the computation time for training the 3 class, reduced features case with ~6x106 particles was approximately 45 seconds with the optimal set of hyperparameters, and for making predictions on the test set of ~3x106 particles was <5 seconds. Although we have used a Linux server with multiple processors for this study, we have also deployed this method on a laptop (Macbook Pro with 3 GHz Intel Core i7 processor with 4 cores and 16 GB 1600 MHz DDR3 memory); in this case training time was ~300 seconds and testing time was <5 seconds. Computation time could be reduced by using a smaller training data set, although with some trade-offs in classification accuracy.

Another approach would be to use an unsupervised learning algorithm to classify atmospheric observations, as supervised learning algorithms rely on ambient aerosols having a similar response in the SP2 as laboratory samples. Given the low relative incidence of FeO$_x$ vs. rBC, clustering algorithms that assume consistent cluster size would likely perform poorly, however. Some unsupervised approaches, such as Hierarchical Agglomerative Clustering analysis, which has previously been used to classify biological aerosols detected via UV light-induced fluorescence (Robinson et al., 2013; Ruske et al., 2017, 2018; Savage and Huffman, 2018), are more appropriate for data sets where cluster size is not expected to be consistent. However, these methods are significantly more computationally intensive than the approach we explored here (e.g. with a time complexity scaling as the square of the number of samples or worse (Müllner, 2011)).

Here we have taken the approach of leveraging previous feature engineering from SP2 incandescent and scattering signals. Since we are using features derived from processing the raw SP2 times series, some features, particularly those associated
with the aerosols that do not incandesce with high efficiency and are internally mixed with non-volatile materials (ATD, VA, and FA), may be biased due to detector saturation. One solution to this issue that may improve classification performance for these aerosols would be to use the raw time-resolved single particle signals from the 4 channels directly as features, although this would be computationally more expensive than the approach taken here. A further adaptation of this method would use representation learning/deep learning to learn features directly from the raw SP2 signals; however, these methods are generally computationally expensive (e.g., often requiring the use of GPU’s for parallel processing). These algorithms also have a large number of adjustable parameters that makes their "out-of-the box" application more challenging. We do not consider this approach here but suggest it may be a potentially useful direction for future research.

These results also suggest that machine learning is unlikely to significantly improve the detection of several recent observations of the size distributions of ambient FeO$_x$ in East Asia have indicated a significant number fraction of FeO$_x$ at smaller sizes (<300 nm) (Moteki et al., 2017; Yoshida et al., 2018); however, the nebulized samples of Fe$_2$O$_3$ and Fe$_3$O$_4$ in our laboratory data set were predominantly between 350-1200 nm volume equivalent diameter (See Supplementary Figure S2). These results indicate that particular care would need to be taken when acquiring a training data set appropriate for classifying smaller iron oxide aerosols using the SP2, indicating other online measurement techniques should be explored for these aerosols. These aerosols have been linked to neurodegenerative diseases such as Alzheimer’s, and have even been detected inside the human brain (Maher et al., 2016); improving their atmospheric detection is an important concern for air quality and human health. The worst classification performance was observed for smaller FeO$_x$ aerosols, although this could in part be due to the size distributions of particles, likely because there were fewer examples of these FeO$_x$ samples in the training data sets than larger FeO$_x$. Given that even in the best case scenarios, machine learning algorithms generally do not perform with >98-99% accuracy however, the significantly greater presence of rBC in the atmosphere would likely lead to significant misclassifications of rBC as FeO$_x$ at the smallest sizes even in the best scenarios, suggesting other online approaches should be explored.

Code and data availability. Supervised learning algorithms used in this work are available through the scikit-learn python package (http://scikit-learn.org/stable/) (Pedregosa et al., 2011). Code used in this study and laboratory data used for training/testing is available upon request from the author.

Appendix A: Decision Trees

Decision trees are classifiers that work by sequentially subdividing the training data set based on learned threshold values of the features at each node. At each node, the threshold values are determined by minimizing the impurity F over the classes associated with the subset of samples in the two resulting "children". Typical measurements of node impurity F are the information entropy or the Gini index (Mohri et al., 2012). Information entropy provides a metric for quantifying how much information is in an event; for example, decisions that split the training samples such that a single class is represented in each child have lower entropy than splits resulting in multiple classes, since there is greater information gain. The Gini
index measures the likelihood that a randomly chosen sample would be mislabeled given the values of the labels in the subset associated with each child. After a sufficient purity according to one of these metrics has been reached, the algorithm is stopped. The class associated with the majority of the training samples after the terminal split along any particular branch of the tree is associated with that "leaf", and new samples that satisfy the same criteria are predicted to have that class.

Decision trees are fairly robust even for cases of features that are not normally-distributed. They have the advantage of having few tunable parameters, meaning that their out-of-the-box implementation is simpler than many other machine learning algorithms. They can also directly handle multi-class classification problems such as the one we consider here. They are non-parametric machine learning algorithms, i.e. no a priori assumptions are made about the function to be learned, and the complexity of the model is a function of the training data set size (Goodfellow et al., 2016). These types of algorithms do typically require more training data and longer training times than parametric models, but can generally result in more powerful models. However, a common problem for decision trees is overfitting, meaning that their generalization to new examples can be poor; even small changes in the training data set can lead to different outcomes. Using an ensemble of decision trees (a random forest) typically provides better generalization performance than a single decision tree.

Competing interests. The author declares that she has no conflicts of interest.

Acknowledgements. The author would to thank Joshua Schwarz for useful discussion in preparing this paper and carrying out this study. Bernadett Weinzerl is acknowledged for providing the volcanic ash samples and Karl Froyd for providing the samples of coal fly ash. Douglas Ohlhorst and Richard Tisinai are also acknowledged for their help in accessing the computational resources used to carry out this study. Funding was provided through the NASA Tropospheric Composition Program, the NASA Radiation Sciences Program, and the NASA Upper Atmosphere Research Program.
References

Dall’Osto, M., Beddows, D., Harrison, R. M., and Onat, B.: Fine iron aerosols are internally mixed with nitrate in the urban European atmosphere, Environmental science & technology, 50, 4212–4220, 2016.

