1. Second-order structure function from sonic anemometer measurements

Figure S1: Second-order structure function from sonic anemometer measurements at 100m AGL, for March 2015, 19:58 UTC. The dashed line represents the theoretical Kolmogorov’s inertial range slope $\tau^{2/3}$.
2. Variation of the sample size with height for the Halo Streamline lidar

Figure S2: variability of the appropriate sample size with height for the Halo Streamline lidar, during stable conditions. The best-fit is performed by using the orange dots only, as these correspond to heights with a match with the levels of the sonic anemometers on the BAO tower.
Figure S3: variability of the appropriate sample size with height for the Halo Streamline lidar, during unstable conditions. The best-fit is performed by using the orange dots only, as these correspond to heights with a match with the levels of the sonic anemometers on the BAO tower.

3. Climatology of turbulence dissipation rate from the WINDCUBE v1s

Figure S4: Daily climatology of turbulence dissipation rate derived from the WINDCUBE v1-61 lidar. Data at 120m and 140m AGL are not shown due to hard strikes with the guy wire of the BAO tower.
Figure S5: Daily climatology of turbulence dissipation rate derived from the WINDCUBE v1-68 lidar. Data at 40m, 60m and 80m AGL are not shown due to hard strikes with the guy wire of the BAO tower.
4. Turbulence dissipation rate as a function of the absolute value of the Obukhov Length from the WINDCUBE v1s

![Graph showing turbulence dissipation rate as a function of the absolute value of the Obukhov Length](image)

Figure S6: Turbulence dissipation rate (measurements at 100 m AGL) as a function of the absolute value of the Obukhov Length, for the WINDCUBE v1s. The continuous lines in the plot represent the median value for the different instruments, while the shaded area creates a band corresponding to the 1st and 3rd quartiles of the distributions.
5. Turbulence dissipation rate as a function of wind speed from the WINDCUBE v1s

![Graph showing turbulence dissipation rate as a function of wind speed.]

Figure S7: Turbulence dissipation rate as a function of the 2-min average wind speed, as measured at 100 m AGL, for the WINDCUBE v1s. The continuous lines in the plot represent the median value for the different instruments, while the shaded area creates a band corresponding to the 1st and 3rd quartiles of the distributions.