Interactive comment on “Simultaneous measurement of NO and NO\textsubscript{2} by dual-channel cavity ring down spectroscopy technique” by Renzhi Hu et al.

Renzhi Hu et al.

rzhu@aiofm.ac.cn

Received and published: 26 March 2019

Thanks for the reviewer’s questions. The manuscript will be revised following the reviewer’s suggestions.

1. Could authors provide more test data on-road measurements of vehicle NO\textsubscript{2}/NO\textsubscript{x} emissions? And if possible, the on-road intercomparsions will be meaningful for the validation of the method and instrument.

Reply: The intercomparision between the CRDS instrument with NO analyzer for NO measurements and the intercomparision between the CRDS instrument with CEAS instrument for NO\textsubscript{2} measurements have been done to valid the accuracy of the instrument in the paper, so we don’t provide other data on road measurements of vehicle NO\textsubscript{2}/NO\textsubscript{x} emissions. Based on the reviewer’s suggestions, we performed another measurement of vehicle emissions on road. NO analyzer (42i), O3 analyzer (49i) and the CRDS instruments were placed in a car and were powered by three batteries. Ambient air was pumped through an inlet fixed on the roof of the car and then was divided into three lines to the instruments, respectively. Fig. 1 illustrates the 4-hour drive around Hefei, the drive track involve highway, urban and suburban area and is colored with respect to the measured NO and NO\textsubscript{2}. Vehicle speeds varied greatly on the three different road types and vehicle speed is around 100km/h on highway. Influenced by the vehicle emissions, the NO\textsubscript{x} plumes on urban roads are higher than those on suburban roads and highway. Fig.2 shows the time series of NO\textsubscript{2},NO and O3. O3 and NO showed a significant negative correlation and O3 can be titrated by NO quickly. Fig.3 shows the NO data measured by CRDS and CL analyzer (42i), (a) is the raw data for the CRDS instrument and (b) is the data with time resolution of is 1 min for the CRDS instrument. The good agreement between the two instruments proves that the CRDS instrument can be applied for fast vehicle NO\textsubscript{x} emissions.

It will be helpful if someone can review and make some corrections the English writing.

page 1, line 23: ”Too much NO\textsubscript{x} are ......” too much is how much? “are” to “is” page 2,line 55 “too much high”

Reply: Since the questions above are about the English expression and grammar mistakes, the revisions will be done in the final version.

page 15, table 1: it will be better to convert the detection limits of all different measurements to an unified unit such as “ppt/1s(1sigma)”

Reply: The suggestion will be followed in the revised manuscript.
Fig. 1. The 4-h drive around Hefei, China, colored by the measured NO (a) and NO$_2$ (b) concentrations, respectively.

Fig. 2. Results of the NO$_2$, NO and O$_3$ concentrations around Hefei, China.
Fig. 3. Time series of NO by CRDS instrument and CL analyzer (42i). (a) is the raw data for the CRDS instrument; (b) is the data with time resolution of is 1 min for the CRDS instrument.