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Abstract. Visible/Shortwave InfraRed imaging spectroscopy provides valuable remote measurements of Earth’s surface and

atmospheric properties. These measurements generally rely on inversions of computationally-intensive Radiative Transfer

Models (RTMs). RTMs’ computational expense makes them difficult to use with high volume imaging spectrometers, and

forces approximations such as lookup table interpolation and surface/atmosphere decoupling. These compromises limit the

accuracy and flexibility of the remote retrieval; dramatic speed improvements in radiative transfer models could significantly5

improve the utility and interpretability of remote spectroscopy for Earth science. This study demonstrates that nonparametric

function approximation with neural networks can replicate radiative transfer calculations and generate accurate radiance spectra

at multiple wavelengths over a diverse range of surface/atmosphere state parameters. We also demonstrate such models can

act as surrogate forward models for atmospheric correction procedures. Incorporating physical knowledge into the network

structure provides improved interpretability and model efficiency. We evaluate the approach in atmospheric correction of data10

from the PRISM airborne imaging spectrometer, and demonstrate accurate emulation of radiative transfer calculations which

run several orders of magnitude faster than first-principles models. These results are particularly amenable to iterative spectrum

fitting approaches, providing analytical benefits including statistically rigorous treatment of uncertainty and the potential to

recover information on spectrally-broad signals.

Copyright statement. The author’s copyright for this publication is transferred to the Jet Propulsion Laboratory, California Institute of Tech-15

nology.

1 Introduction

Remote Visible / ShortWave InfraRed (VSWIR) imaging spectroscopy, also known as hyperspectral imaging, is a powerful

approach to map the composition, health, and biodiversity of Earth’s ecosystems (ESAS, 2018). Remote sensing of the solar-

reflected spectrum from 380-2500nm reveals physics and chemistry of many processes in Earth’s surface/atmosphere system20

(Schaepman et al., 2009), including: terrestrial plant health and traits (Asner et al., 2017; Ustin et al., 2004); biodiversity (Jetz

et al., 2016); the condition and composition of aquatic, benthic, and near-shore ecosystems (Fichot et al., 2015; Hochberg,

1



2011); geology (Swayze et al., 2014); and trace greenhouse gases (Frankenberg et al., 2016). While Earth scientists aim to

measure these geophysical variables, remote sensors can only measure the incident light at the sensor. Inferring geophysical

properties requires inverting the measurement with a physical model — typically one that accounts for both absorption and

scattering by the atmosphere, and the fraction of light reflected from the surface at each wavelength (Schaepman-Strub et al.,

2006).5

Radiative Transfer Models (RTMs) such as DISORT (Stamnes et al., 1988) are a critical component of such models, and

form the core of common spectroscopy analysis codes including ACORN (Kruse, 2004), ATCOR (Richter and Schlapfer,

2002), FLAASH (Perkins et al., 2012), ATREM (Gao et al., 1993), and others (Gao et al., 2000, 2007; Thompson et al., 2015).

The RTM posits a stratified atmosphere populated by atmospheric gases at appropriate concentrations and temperatures, and

solves the general equations of radiative transport based on a known solar input and presumed surface. This is an intensive10

computation, requiring special care for modern high volume imaging spectrometers that acquire thousands or millions of

spectra per second.

Because imaging spectrometers produce too much data to analyze each measurement with an independent RTM, investiga-

tors use RTMs to pre-calculate lookup tables of atmospheric optical properties such as scattered path radiance or transmission

for atmospheric states appropriate to the conditions observed at image acquisition. At runtime, the model inversion estimates15

the actual state from the radiance spectrum and interpolates within the lookup table to find the associated optical properties.

This informs parametric approximations of atmospheric transport, such as the formulation by Vermote (Vermote et al., 1997),

permitting algebraic solutions for the remaining unknowns like surface reflectance. The sequential retrieval of atmospheric and

surface properties, a process known as atmospheric correction, obtains a self-consistent but approximate explanation for the

surface and atmosphere system.20

The lookup table solution is adequate for many needs, but imposes several limitations. First, lookup tables can only model

a few degrees of freedom in atmospheric state due to the “curse of dimensionality;” the number of samples necessary to ad-

equately represent the state space increases exponentially with the number of input variables. To increase the fidelity of grid

samples in high dimensions, designers can leverage representative sampling or hyperparameter search strategies such as Snoek

et al. (2012) within the state space, or space-filling sampling methods like Latin Hypercube Sampling (Stein, 1987) or lattice25

regression methods (Gupta et al., 2015). However, such techniques are restricted by prohibitive computation and storage re-

quirements for high-dimensional state spaces, and incur increased risks of interpolation inaccuracy. Also, because the contents

of precalculated lookup tables capture atmospheric optical properties independently from the surface, lookup table-based ap-

proaches preclude strong coupling between the two. Speeding RTMs to the point at which they could run many times faster

for each spectrum would obviate the lookup table compromise and enable more flexible, accurate, and statistically rigorous30

inversion algorithms such as the optimal estimation approach used in many atmospheric sounding missions (Thompson et al.,

2018c; Rodgers, 2000).

Recent work suggested the use of nonparametric function approximators such as neural networks (Verrelst et al., 2016,

2017; Thompson et al., 2018a) or Gaussian Processes (Martino et al., 2017) for this purpose. Investigators can train such

models using prior runs of radiative transfer models over relevant ranges of surface and atmospheric conditions. After learning35
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the underlying function with sufficient accuracy, the trained model could act as an instrument-specific RTM that would not

have to solve the underlying differential equations. Alternative formulations such as Jamet et al. (2005); Brajard et al. (2006)

provide empirical validation of RTM assumptions by evaluating atmospheric, transmittance, and surface interactions captured

in separate models, while other methods (e.g., Jamet et al. (2012); Kox et al. (2014); Loyola et al. (2018)) permit retrieval of

atmospheric or radiometric parameters based on models constructed using outputs generated by first-principles RTMs that span5

multiple wavelengths. However, to date, techniques designed to retrieve surface reflectance using learned RTM emulators have

only been demonstrated on a small number of cases with limited surfaces and atmospheres (Verrelst et al., 2017; Martino et al.,

2017; Brajard et al., 2006), and not across the VSWIR range with state vector flexibilities that would permit a functionally-

useful alternative for existing atmospheric correction routines (e.g., as a surrogate forward model). To our knowledge, this work

represents the first demonstration on actual imaging spectroscopy data using nonparametric function approximation to emulate10

the RTM function F (x)→ y such that the RTM emulator is capable of acting as a forward model in an atmospheric correction

procedure, thereby allowing us to retrieve surface reflectance over the entire VSWIR range for variable imaging conditions.

This study demonstrates an accurate neural network model deployed as part of an iterative model inversion, showing that

emulation is a practical solution for operational atmospheric correction of imaging spectroscopy data. This opens new possible

avenues of research, both for the inversion algorithm itself (to explore further expansions of the state vector beyond the tra-15

ditional retrieved variables) and for downstream analyses (to exploit the benefits of new retrieval methods that do not require

lookup tables). We begin by describing the neural network architecture and RTM emulation methodology, including several

novel advances: an analytical decomposition of the radiative transfer function F (x) into quantities that are individually easier

to model, channelwise, monochromatic subnetworks to simplify training and prediction, and weight propagation to account for

correlation between adjacent channels and to reduce training time. We also describe an approach to partition the state space20

in a manner that guides each subnetwork to generate accurate predictions for states within the bounds of the state space. We

evaluate our approach in a case study focusing on atmospheric correction for the PRISM imaging spectrometer, and demon-

strate high quality surface reflectance retrievals using the optimal estimation approach of Thompson et al. (2018c) equipped

with our neural RTM as the forward model. The retrievals capture subtle atmospheric variability such as view-dependence of

Rayleigh scattering not typically handled in conventional atmospheric correction codes. Finally, we describe paths for future25

development of neural network RTM emulation technology.

2 Neural Networks for Radiative Transfer Modeling

Our goal is to construct a model that emulates a first-principles RTM using precalculated outputs generated by that RTM for a

representative set of atmospheric, geometric, and surface states. More formally, we aim to model the RTM function F (x)→ y

that maps a set of m distict state parameters {pj}mj=1 with values captured in a state vector x ∈ Rm to a vector y ∈ Rn of30

observed at-sensor radiances for k channels centered at wavelengths {λ1, . . . ,λk}. We use boldface notation to signify vectors

and matrices, with all matrices in capital letters.
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We exploit two features of the problem to simplify F (x). First, we leverage the fact that the observed radiance at any

given channel is fully specified by the observation geometry, atmospheric state, and the surface reflectance in that channel.

In statistical terms, absent any prior distribution that couples neighboring wavelengths, the channelwise radiances become

conditionally independent of each other given the atmosphere and observation geometry. This permits an exact decomposition

of F (x) into monochromatic functions F (x) = fi(x)
k
i=1, where each fi(x)→ yi represents the RTM function for the channel5

centered at wavelength λi. Given this decomposition, we construct a neural RTM emulator using a set of k channelwise

subnetworks, where each subnetwork is trained to model a single fi. Figure 1 shows the topology of one of the channelwise

subnetworks in the neural RTM. A side benefit of this approach is that the partial derivatives of radiance channels with respect

to their surface reflectances are independent of each other, which simplifies calculations of analytical Jacobians during iterative

gradient descent inversions (Thompson et al., 2018c).10

Second, we reduce the radiance spectrum analytically to the top of atmosphere reflectance, written ρobs, and solar illumina-

tion components. The top of atmosphere reflectance is defined as ρobs = yπ/φoeo where φo is the cosine of the solar zenith

angle and eo the extra-terrestrial solar irradiance. ρobs is normalized for solar illumination and, absent extreme glint, resides

conveniently in the [0,1] interval, making it an easier target for function approximation. For any given observing geometry, the

known values of φo and eo can be used to infer the corresponding radiances.15
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Figure 1. Illustration of a single subnetwork in the neural RTM emulator. Each subnetwork predicts the top of atmosphere reflectance

ρobs(λi) for a single channel centered at wavelength λi provided state parameters x and surface reflectance ρs(λi). Collecting the predictions

generated by k subnetworks each modeling distinct channels and converting those predictions from ρobs to radiance emulates the RTM

function F (x)→ y for the selected channels.

Constructing a robust neural RTM emulator from precomputed RTM outputs faces two fundamental modeling challenges.

First, the precomputed RTM outputs must provide sufficient coverage of the state space to represent the distribution of spectral

responses in each channel. Second, the subnetworks must accurately predict RTM outputs for intermediate state parameter

values within the bounds of the precomputed state space for all channels. Intuitively, modeling channels whose RTM outputs

are stable in state is easier than modeling channels whose spectral responses vary substantially with respect to small changes20

in state. For instance, varying concentrations of atmospheric water vapor produce complex, nonlinear behavior for water ab-

sorption bands, while other wavelengths are largely unaffected. Accurately modeling unstable channels may require generating
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additional RTM outputs at increased sampling density to highlight distinct responses that are poorly represented in the existing

precomputed outputs, and additional computational resources to fine-tune the subnetwork to capture those distinctions may

also be in order.

To ensure each subnetwork reliably models its corresponding channel, we measure prediction accuracy on a test set of

precalculated RTM outputs excluded from the training process. In our initial experiments, we performed both k-fold cross-5

validation and k-fold bootstrap sampling, but after we observed that the main sources of variability in the state space emerged

from interactions among a small number of state parameter values, we concluded that randomized sampling of the state space

without an informed sample stratification yields optimistic or inconsistent estimates of test accuracy and/or convergence time

in cross-validation. Ultimately, we concluded that validation using a fixed and bounded subset of the state parameter values

would provide a more informative assessment of model performance. Using a bounded subset also permitted direct comparison10

to lookup table-based approaches, as they require upper and lower bounds on each variable to generate intermediate values via

interpolation. We describe this approach in more detail later in this work.

We can also improve model accuracy and reduce computational demands by exploiting characteristics of the state space in

tandem with RTM modeling assumptions. One means we use to achieve this is through a process of weight propagation. Rather

than initializing the weights for each subnetwork from scratch, we use the converged weights of the subnetwork modeling the15

previous channel to initialize the weights for the subnetwork modeling the current channel, which are then fine-tuned to estimate

the spectral responses for the current channel to sufficiently low test error, as before. In comparison to training each subnetwork

from scratch, using weight propagation often yields a substantial reduction in training time, along with improved accuracy for

channels whose RTM outputs are relatively stable with respect to the state space. An additional side benefit is that weight

propagation provides an approximate means to account for channelwise coupling for instruments whose spectral response20

functions for neighboring channels partially overlap. In practice, requiring the first subnetwork to converge to a lower test error

than the subsequent networks can help ensure that the propagated weights will be informative for subsequent channels. We can

similarly apply different stopping criteria for subnetworks initialized with weight propagation representing poorly correlated

neighboring channels to increase the likelihood that training converges to the appropriate channelwise responses.

Algorithm 1 describes the procedure to train the neural RTM emulator provided n samples from the m-dimensional state25

space and their corresponding ρobs outputs each spanning k channels. The output of the algorithm is a trained neural RTM that

takes a state vector x of m parameters as input and outputs a k-dimensional prediction vector. The output radiance vector y is

the concatenated output produced by the trained subnetworks {fi}ki=1 and converted to radiance with respect to φo and eo for

each of the k channels.

Our goal is to train each subnetwork fi to generate accurate predictions for states explicitly included in X and also (more30

importantly) for intermediate states not explicitly included in X but within the bounds of the state space. To achieve this, we

use a sampling strategy that partitions the state space into training and test sets in a manner that helps optimize each subnetwork

to accurately predict intermediate states. We first partition X and Y into disjoint training (X,Y)tr and test (X,Y)te sets such

that Xtr contains all state vectors containing the boundary values {min(pj),max(pj)} of all state parameters. This partitioning

ensures the training set contains the convex hull of the Euclidean subspace of Rm defined by the state parameters, and also35
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Algorithm 1 Neural RTM Training

Input: n×m matrix X of n state vectors, each representing m parameters; n× k matrix Y of k-dimensional ρobs spectra associated with
each state vector at wavelengths λ= {λi}ki=1; binary mask of training indices v = {vi}ni , vi ∈ {0,1}; number of neural network layers
`; number of hidden neurons in each layer {hl}`l=1; convergence tolerence ε; maximum number of training epochs nepoch

Output: Neural RTM model F (x)→ y consisting of k trained neural network regressors fi each mapping m dimensional state vector x to
corresponding ρobs response yi at wavelength λi
for i= 1 to k do

Let yi =Y·,i be the ρobs responses at wavelength λi associated with the n state vectors.
Partition (X,yi) into {(X,yi)tr,(X,yi)te} using training indices v.
Let fi be an L-layer neural network model with set of weight matrices Wi = {Wl}Ll=1 and corresponding bias vectors bi = {bl}Ll=1.
if i= 1 then

Initialize new model r1 for first channel by populating W1, b1 with random values (via (Glorot and Bengio, 2010)).
else

Propagate weight matrices and bias vectors from previous model ri−1 to current model fi via Wi =Wi−1, bi = bi−1.
end if
for e= 1 to nepoch do

Train fi to minimize ρobs prediction error for channel centered at wavelength λi based on training set (X,yi)tr .
Compute average error etest applying fi to test set (X,yi)te.

end for
if etest has converged or e= nepoch then

return Trained model fi
end if

end for
return Trained neural RTM F (x)→ y = {fi(x)→ yi}ki=1

that all test states in Xte represent intermediate states within the hull. To capture the internal structure of the state space within

the hull, the training set should also contain one or more intermediate state vectors for each pj satisfying min(pj)< xtr
j <

max(pj). Given the training and test partitions, we train each subnetwork to model fi by minimizing the L2-regularized mean

squared error (MSE) between the predicted and the observed values of the ntr training samples (X,yi)
tr representing the ρobs

responses for the ith channel.5

We use a feed-forward architecture with two hidden layers, rectifying linear activation functions in the hidden layers, which

have been shown to be more robust than the conventional sigmoid / tanh activations used in traditional neural networks(Nair

and Hinton, 2010), and a linear activation in the output layer for each subnetwork. We use the method proposed by Glorot et al.

(Glorot and Bengio, 2010) to initialize subnetwork weights when necessary, and use the widely-used error back propagation

algorithm (Werbos, 1982) with adaptive moment estimation (Kingma and Ba, 2014) to optimize the weights via gradient10

descent. We train each subnetwork until the error converges to within 0.1% mean absolute error (MAE), or we reach the

maximum number of epochs nepoch. This level of accuracy is sufficient to make the approximation error a smaller contributor

to total uncertainty than other unknowns in the measurement system. For example, it is generally a similar magnitude to relative
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calibration error of different focal plane array elements, which can vary slightly due to drift between calibrations (Thompson

et al., 2018a).

3 Neural RTM Emulation for PRISM

We define a case study demonstrating the capabilities of our RTM emulator for atmospheric correction on data aquired by the

PRISM imaging spectrometer (Mouroulis et al., 2008, 2014). PRISM is a pushbroom design and observes a cross-track angular5

field of view spanning approximately 30 degrees, and is designed to observe coastal ocean environments in the 350-1050nm

spectral range at approximately 3nm spectral sampling. The instrument was mounted onboard a high altitude ER-2 aircraft

which overflew Santa Monica, USA in October 2015 at 20 km above sea level (Thompson et al., 2018b; Trinh et al., 2017). At

this altitude, the instrument measured the scene through nearly all of Earth’s atmospheric scattering and absorption, providing

a challenging test case with relevance to future orbital instruments.10

State Parameter State Values

Solar azimuth (φr) 0, π
8

, . . . , π
2

, . . . 7π
8

, π

Observer zenith angle (cos(θv)) 0.94, 0.95, 0.96, 0.97, 0.98, 0.99, 1.0

Aerosol optical depth (τ ) 0.05, 0.1, 0.2, 0.3

Water vapor (H2O) 0, 0.5, 1.0, 1.5, 2.0, 2.5

Surface reflectance (ρs) 0.05, 0.1, 0.25, 0.5, 1.0

Table 1. State parameters values used in LibRadTran model runs to generate ρobs spectra to train and validate the neural RTM. State vectors

containing the median value of each auxiliary parameter (indicated by red text) are held out for testing, while the remaining state vectors are

used for training the channelwise subnetworks.

Our state space consists of the surface reflectance ρs, represented by a single free parameter per instrument channel; along

with m= 4 state parameters captured in state vector x represing a consise but representative suite of parameters used oper-

ational settings. These include: the atmospheric aerosol optical depth at the surface, τ ; the atmospheric water vapor content

of the column in g cm−2, H2O; the cosine of the observer zenith angle cos(θv); and the relative azimuth angle between the

observer and the sun, written φr. Each of these free parameters vary independently for every spectrum in a given flightline.15

Naturally, alternative parameterizations are possible, including mixture models, continuum-absorption models, and others.

However, these could be mapped to our representation without loss of generality.

We identified a set of values for each state parameter that covered the anticipated range of conditions that could oc-

cur during the flight campaign, and provided those values in Table 1. We generated RTM outputs using the LibRadTran

radiative transfer code (Emde et al., 2016; Mayer and Kylling, 2005) with mid latitude summer atmosphere appropriate20

for the PRISM flightline we considered in this study. We provide the template LibRadTran config file in supplemental file

(prm20151026t173148_libradtran_config) (Kurucz, 1994; Buehler et al., 2009; Bodhaine et al., 1999). Generating ρobs spec-

tra for every combination of state parameter values yielded a total of n= 9,072 k = 7101 dimensional ρobs output spectra
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Figure 2. ρobs spectra for ρs = 0.25 spanning the range of the φr (top left), cos(θv) (top right), τ (bottom left) and H2O (bottom right)

parameters with respect to the validation grid values.

spanning the range of the PRISM instrument wavelengths with 0.1nm spacing. Our test data consists of the set of all state

vectors containing the median value of each state parameter (shown in red text in Table 1) and the ρobs spectra associated with

those states. The remaining states and their corresponding ρobs spectra form our training set.

Figure 2 depicts the changes in the ρobs spectra with respect to parameters φr (top left), cos(θv) (top right), τ (bottom

left) and H2O (bottom right), while holding the other parameters fixed at their median values. Unsurprisingly, the most visibly5

dramatic changes occur as absorption features appear with increasedH2O vapor concentrations. Of the remaining auxiliary pa-
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rameters, only aerosol optical depth has an observable effect on spectral shape across the visible and near-infrared wavelengths.

Changes for varying φr and θv are comparatively small, and predominantly observable in the visible range.

For this case study, we focused on modeling F (x) based on LibRadTran outputs resampled to the PRISM instrument

channels. This dramatically reduces the computation required to construct the neural RTM, as we only needed to train a total

of 245 subnetworks representing each of the PRISM channels with 2.83nm spacing, rather than the 7101 channels at 0.1nm5

spacing generated by LibRadTran. As a consequence of convolving the LibRadTran spectra to the lower resolution PRISM

Spectral Response Function (SRF) at each wavelength, the ρobs are no longer strictly monochromatic, but the instrument

channels are well-separated so that channelwise coupling should not a significant issue. We plan to construct a more general

neural RTM that generates ρobs predictions at 0.1nm spacing, which are then convolved to the spectral response function

associated with a particular sensor.10

We observed experimentally that subnetworks consisting of at two hidden layers with 50 units each and a training cycle

of at most 500 epochs (where one epoch consists of a full pass of gradient updates over the training set) with batch sizes

ranging from 100 to 200 training samples was sufficient for each subnetwork to converge to our error requirements for the

state space parametrized by values in Table 1. Notably, single layer networks were often insufficient to fit difficult to model

channels (such as the water absorption bands) whose ρobs responses were unstable or highly nonlinear with respect to changes15

in the state parmeters. We set the initial learning rate to 0.001 with the following adaptive moment estimation parameters

{β1 = 0.9,β2 = 0.999, ε= 10−10} and set the L2 regularization penalty term α to 10−4 for each subnetwork. A longer training

cycle or additional hidden units can be used to match the RTM output more precisely, and would likely be necessary to model

more complex state parameter spaces.
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Figure 3. Top: ρobs test prediction error per channel using channelwise linear regressors (black line). Bottom: neural network test prediction

error per channel using subnetworks trained from scratch (NN , red line) versus subnetworks trained weight propagation (NNWP , blue line).
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As a baseline comparison, we used the channelwise training samples ((X,yi)
tr in Algorithm 1) to train a least squares

linear regressor on the ρobs responses for each channel, and applied each regressor to generate predictions on the associated

test samples (((X,yi)
te in Algorithm 1)). The channelwise test errors using the linear regressors provide an approximate

upper bound of the error that would be incurred using piecewise / locally linear interpolation to infer ρobs responses for

intermediate states based on lookup tables. Figure 3 compares the ρobs test prediction error using the channelwise linear5

regressors (top figure, black line) to the error produced by the channelwise subnetworks trained from scratch (NN , blue line)

versus channelwise subnetworks initialized with weight propagation (NNWP , red line). The channelwise subnetworks yield

an order of magnitude reduction in prediction error on all channels in comparison to the linear regressors, and demonstrates

potentially signficant issues with lookup table-based approaches. Weight propagation provides an average reduction of 64% in

channelwise error, but also yields systematically higher errors in the H2O absorption range between 890-1000nm where the10

ρobs responses vary rapidly for adjacent channels.

While it is unsurprising that theH2O absorption wavelengths are challenging to model, the fact that the two weight initializa-

tion schemes yield distinct error distributions for those wavelengths suggests model convergence issues. Figure 4 compares the

number of epochs – where one epoch consists of a single pass of weight updates over all samples in the training set – required

to converge for channelwise subnetworks trained from scratch versus subnetworks initialized with weight propagation. Over15

the set of all PRISM instrument channels, weight propagation permits convergence in ≈70% fewer epochs over subnetworks

not leveraging weight propagation. In terms of raw compute time, our scikit-learn (Pedregosa et al., 2011) implementation

requires 2-3 minutes to train a single monochromatic subnetwork from scratch on a single commercial processor core, while

subnetworks initialized with weight propagation typically require less than 30 seconds to converge. However, we note that the

channelwise subnetworks trained with weight propagation converge as quickly in the 925-975nm range – where their most20

significant prediction errors occur – as on the remaining channels.

Figure 4. Difference in training epochs to converge to 0.1% validation error. Negative values (blue bars) show channelwise subnetworks that

converged faster using weight propagation, while positive values (red bars) indicate channels whose subnetworks converged more quickly

when trained from scratch.

Investigating further, we measured the average root mean square error (RMSE) on the test set with respect to the pairwise

interactions between ρs and the four state parameters, and show the resulting error surfaces in Figure 5. Relatively small errors
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for the majority of the parameter space indicate that the ρobs spectra vary smoothly with respect to most state parameter values,

with the most significant variability emerging from a small range of values in the ρs ∈ [0.4,0.8] and H2O ∈ [1.0,2.0] regions

of the state space. The relatively high error in this regime is consistent with our earlier observation that small changes in the

atmospheric water vapor parameter yield considerably different ρobs spectra, as shown in Figure 2, and the comparatively high

prediction errors for the H2O absorption bands shown in Figure 3.5

4 Atmospheric Correction with the Neural RTM Emulator

We now evaluate the neural RTM emulator in the context of a surface/atmosphere retrieval problem, retrieving surface re-

flectance for comparison to known surface materials. To that end, we fused the Optimal Estimation (OE) formalism of Rodgers

(2000), following the specific approach of Thompson et al. (2018c) for application to imaging spectroscopy. The OE method

estimates the atmosphere and surface state vector by an iterative least-squares optimization of the forward model’s match to10

the measured radiances. Cost terms related to observation error and prior probabilities of state vector elements ensure rigorous

propagation of uncertainties in the retrieval.

Continuing our case study, we begin by computing radiometric calibration factors for the PRISM flightline via vicarious cal-

ibration. This procedure, similar to standard practice calibration for imaging spectrometers (Thompson et al., 2018a), projects

the residual error in retrieved surface reflectance back into radiance space where it becomes a multiplicative correction factor15

applied independently to each channel. We generate a “standardized” surface reflectance target by performing a first-principles

retrieval for a beach sand radiance spectrum manually selected from the target PRISM image. We smooth the resulting sur-

face reflectance spectrum to suppress significant atmospheric features, and use the smoothed spectrum to generate radiometric

correction factors appropriate to our flightline. Applying the resulting factors fine tunes the calibration for optimal results,

and suppresses residual errors caused by uncertainty in spectral response or RTM inaccuracy. For reference, the beach sand20

radiance spectrum and the resulting smoothed surface reflectance spectrum are shown in Figure 6.

We applied the atmospheric correction procedure to a set of radiance spectra from the PRISM flightline representing a

diverse range of surface materials including grass, rooftop materials, soil, and sea foam. Figure 7 shows a successful retrieval

result for a radiance spectrum representing grass on a golf course fairway. The inversion (orange line) perfectly matches the

measured radiance (black dashed line) in the left panel. In the right panel, the estimated surface reflectance (blue line) is an25

extremely smooth and faithful estimate of a dark vegetation spectrum. Figure 8 shows additional radiance spectra (top), and

their corresponding surface reflectance retrievals (bottom). The high quality surface reflectance estimates — evidenced by the

lack of residual bumps caused by atmospheric absorption and the flat, low surface reflectance profiles in the aerosol-dominated

interval from 400-450nm provide additional confidence in the network’s value for atmospheric correction. Our neural RTM

emulator runs in less than 5 milliseconds per PRISM spectrum (about 0.02 milliseconds per channel). This represents a several30

orders of magnitude reduction in runtime in comparison to analogous first-principles RTMs (i.e., monochromatic RTMs that

solve the coupled scattering-absorption problem in a computationally exact manner, such as DISORT), which typically required

over 10 minutes to generate a spectrum at 0.1nm spacing (about 0.15 seconds per channel).
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5 Conclusions

Neural network RTM emulation offers a path to reduce both interpolation inaccuracy while simultaneously reducing runtime by

several orders of magnitude. A well-parametrized neural RTM is capable of modeling state parameter spaces with significantly

higher accuracy than conventional lookup table-based approaches. Such high capacity statistical models have potential for

modeling state parameter spaces with much higher dimensionality than current methods.5

The computational and theoretical advantages provided by fast and accurate RTM emulators are particularly useful for iter-

ative approaches that must recalculate the entire forward model many times for each spectrum. Equipping iterative formalisms

such as optimal estimation with the neural RTM forward model also enables new retrieval approaches that jointly estimate

surface and atmospheric parameters. Joint retrieval of surface and atmospheric parameters carries several advantages. It be-

comes possible to estimate arbitrary parameters of the atmospheric state simply by adjusting the RTM dynamically during the10

fitting process. A joint retrieval can represent strong coupling between surface and atmosphere, including Bidirectional Re-

flectance Distribution Function (BRDF) effects, and obviates parametric approximations. The ability to model strong coupling

is particularly important for conditions with off-nadir views or haze. Finally, a combined model enables a rigorous, unified

and quantitative treatment of uncertainty, respecting uncertainties in all measurement processes and modeled variables, and

propagating posterior uncertainties for downstream analysis.15

Our results also demonstrate the advantages of informed sampling of the state space. Finer grid sampling in rapidly varying

regions of the state space is advantageous to capture complex and often nonlinear interactions among state parameters, while

coarse sampling is beneficial in regions of the state space that vary smoothly to reduce redundancy and computational over-

head. Uninformed sampling of the state space may not only lead to inaccurate models, but can also yield overly optimistic or

inconsistent results when measuring test accuracy or convergence time during cross-validation. For example, as Figures 2 and20

5 indicate, much of the state space is relatively smooth. Traditional cross-validation strategies that randomly partition the state

space into training and test sets will indicate the subnetworks generalize well due to sampling bias in regions of the state space

that are easy to model. Sample stratification approaches during cross-validation can help to ensure each subnetwork accurately

captures the parameters that are more difficult to model. However, an informed sampling of the state space would not only

eliminate the need for sample stratification during cross-validation, but would also ultimately yield more accurate models with25

reduced computational overhead.

Future work will train a more “universal” neural RTM designed to generate ρobs predictions at much spectral resolution

for a comprehensive set of states, and are also investigating Bayesian optimization or smart sampling approaches (e.g., Loy-

ola R et al. (2016)) that may provide an informed sampling the state parameter space. We also aim to reduce approximation

error still further, in order to keep the fractional contribution small for very dark and/or noisy targets, and are considering30

reparameterizing the model to retrieve additional aerosol optical properties.
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Figure 5. Pairwise contour plots showing the ρobs test prediction error (RMSE) surfaces with respect to the state parameter values specified

in Table 1. Contour labels on the off-diagonal subplots give the error levels associated with each contour. Diagonal subplots show the average

RMSE in ten uniformly spaced bins spanning the (x-axis) range of each parameter. Vertical labels on the diagonal subplots indicate the

minimum and maximum error values for each parameter and their corresponding bins.
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Figure 6. PRISM radiance spectrum (top) and the resulting smoothed reflectance (bottom) spectrum for the beach sand target used in the

vicarious calibration procedure.
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Figure 7. Example surface reflectance retrieval for a PRISM vegetation spectrum. The left subplot shows the measured (red) versus predicted

(black) radiance spectra. The right subplot shows the retrieved surface reflectance spectrum (black).
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Figure 8. Selected radiance spectra (top) and corresponding surface reflectance retrievals (bottom) using the ATREM-based atmospheric

correction approach of Thompson et al. (2015) (ATR15, green spectra) versus Optimal Estimation equipped with our neural network RTM

emulator as the forward model (OENN, blue spectra).
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