The use of GNSS zenith total delays in operational AROME/Hungary 3D-Var over a Central European domain

Máté Mile¹, Patrik Benáček², and Szabolcs Rózsa³

¹Hungarian Meteorological Service, Unit of Methodology Development, Budapest, Hungary
²Norwegian Meteorological Institute, Development Centre for Weather Forecasting, Oslo, Norway
³Czech Hydrometeorological Institute, Numerical Weather Prediction Department, Prague, the Czech Republic

Correspondence: Máté Mile (mile.m@met.hu)

Abstract. The delay of satellite signals broadcasted by Global Navigation Satellite System (GNSS) provides unique atmospheric observation which endorses numerical weather prediction from global to limited-area models. Due to the possibility of its frequent and near real-time estimation, the zenith total delays (ZTD) are valuable information for any state-of-the-art data assimilation systems. This article introduces the data assimilation of ZTDs in a Hungarian numerical weather prediction system which was carried out taking into account observations from Central-European GNSS analysis and processing centres. The importance of ZTD observations is described and showed by a diagnostic tool in the three hourly updated 3D-Var variational assimilation scheme. Furthermore, observing system experiments are done to evaluate the impact of GNSS ZTDs on mesoscale limited-area forecasts. The results of the use of GNSS ZTDs showed a clear added value to improve screen-level temperature and humidity forecasts when bias is accurately estimated and corrected in the data assimilation scheme. The importance of variational i.e. adaptive bias correction is highlighted by verification scores compared to static bias correction. Moreover, this paper reviews the quality control of GNSS ground-based stations inside the Central-European domain, the calculation of optimal thinning distance and the preparation of two above mentioned bias correction methods. At the end of this article, the conclusion is drawn about different settings of the forecast and analysis experiments with a brief future outlook.

Copyright statement. TEXT

1 Introduction

The interaction of satellite signals from Global Navigation Satellite System (GNSS) with atmospheric constituents has been recognised as valuable information for meteorological applications and numerical weather prediction (NWP). The GNSS signals delay along the emitted satellite ray’s path which can be formulated as an excess length and most generally determined in zenithal path above the ground-based receiver station providing the zenith total delay (ZTD) (Bevis et al., 1992). The total delay includes a wet delay component which is a function of the water vapour distribution of the troposphere bringing key humidity related observations for meteorological users. The high-resolution NWP and data assimilation are demanding more
frequent and denser observations (Benjamin et al., 2004, 2010) in particular by employing non-conventional data sources to a larger extent. Consequently, state-of-the-art data assimilation systems rely more on the remote sensing measurements like RADAR, satellite products including data from navigation satellites as well. Therefore, the use of GNSS measurements has been widely taken up in experimental and also operational data assimilation systems since the second half of the 2000s. In a global 4D-Var system, Poli et al. (2007) demonstrated positive forecast impact of the ZTD observations by correcting synoptic scales up to 4 days. Macpherson et al. (2008) and De Pondeca and Zou (2001) published data assimilation impact and case study respectively showing that the use of zenith tropospheric delay observations over North America led to forecast improvements and error reductions. At that time the added value of ZTDs in European limited-area DA systems has been also justified by a number of authors such as Cucurull et al. (2004); Faccani et al. (2005); Yan et al. (2009b) and Boniface et al. (2009) focusing on local area and dataset. After various inter European studies and projects e.g. MAGIC (Meteorological Applications of Global Positioning System Integrated Column Water Vapour Measurements in the Western Mediterranean) and COST Action 716, the European Meteorological Services Network (EUMETNET) organized the GNSS Water Vapour programme (E-GVAP). This EUMETNET observation programme shares ZTD estimates in near real-time (NRT) primarily for use in operational meteorology, aims to expand the existing network with inclusion of new regions and helps its members employing ground-based GNSS data in their operations. The programme was set up in April 2005 establishing timeliness and precision requirements of distributed ZTD data. Given the efforts of E-GVAP programme, and with a view of increasing such observation usage, new actions and explorations of meteorological applications were initiated during the last decade. Recently new European COST Action (ES1206) aiming advanced GNSS products for severe weather events and climate (Guerova et al., 2016) was also launched. In the meantime, more recent studies have been carried out by for instance, Bennitt and Jupp (2012); De Haan (2013); Mahfouf et al. (2015) pursuing the objective of improved GNSS ZTD assimilation and taking into account one or more E-GVAP networks. All of these studies agreed that more accurate description of humidity and precipitation forecast can be gained by the use of GNSS ZTD although its absolute contribution in terms of observation number is smaller compared to other observation types. However, GNSS ZTDs - like most of the observations - include systematic error which must be taken into account in the assimilation procedure. Better characterization and assay of ZTD bias were examined by e.g. Storto and Randriamampianina (2010)) and recently Sánchez-Arriola et al. (2016) and Lindskog et al. (2017) who demonstrated the variational bias correction approach is successful to eliminate GNSS ZTD bias and advantageous to control bias correction in an adaptive manner. Main objectives of this paper are to assess the added value of GNSS ZTD observations in a Central-European domain taking into account all available E-GVAP ZTD networks and to summarize the work that has been done in the frame of ES1206. In addition, the latest bias correction developments are studied and utilized in the data assimilation system of AROME/Hungary. The paper is constructed as follows. Section 2 introduces the operational AROME NWP model and data assimilation system used in the current study. Section 3 gives an overview of the applied data, the characteristics of E-GVAP networks and their ZTD observations. In Section 4 the passive assimilation experiment, the pre-processing of ZTD observations and the bias correction are described. In Section 5 the results of active assimilation runs are discussed and in the last Section the conclusion is drawn with a brief future outlook.
2 Applied operational model and observations

At the Hungarian Meteorological Service (OMSZ) limited-area (LAM) NWP activities were started in the 1990s by joining to the ALADIN (Aire Limitée Adaptation Dynamique Développement International) consortia which led to the implementation of the ALADIN model (Horányi et al., 1996) and later its data assimilation system (Bölöni, 2006). For the purpose of having a high (kilometric) spatial resolution of LAM, the non-hydrostatic dynamical core of ALADIN (Bubnová et al., 1995) and the physical parametrization package of the French research model called Meso-NH (?) have been merged setting up the AROME (Application of Research to Operations at Mesoscale) model. After the successful operation of AROME at Météo-France (Seity et al., 2011), OMSZ also began to implement an AROME system running over a Central-European domain. The first Hungarian AROME configuration (Arome/Hungary) has been performed with dynamical adaptation of ALADIN/Hungary forecasts as initial and boundary conditions. Later major upgrades consisting direct coupling to ECMWF (European Centre for Medium-Range Weather Forecasts) IFS (Integrated Forecasting System) global model together with local 3D-Var data assimilation system brought significant improvement on operational AROME/Hungary forecasts (Mile et al., 2015). The recent operational NWP model domain covers the entire Carpathian-basin (Figure 1) with a horizontal mesh size of 2.5 km and 60 vertical levels from surface up to 0.6 hPa. The surface characteristics of AROME model are described by the surface scheme of Meso-NH called Externalized Surface (SURFEX) and initialized by optimal interpolation method (Mahfouf, 1991) called OI_main before every model integration.

Figure 1. The computational domain of AROME/Hungary

For the time being, upper-air assimilation system of AROME/Hungary employs only conventional observations namely surface SYNOP, aircraft (AMDar, ACARS and Mode-S from Slovenia) and radiosonde reports. To use a larger number of conventional observations, the 3-hour assimilation cycle is set producing 8 analyses per a day which for example enables the utilization of aircraft data measured at asynoptic network times by the +/- 1.5 hour assimilation window in 3D-Var. The timeliness of conventional observations collected from GTS (Global Telecommunication System) plus local sources in a 3 hourly rapid update cycle (RUC) is still met with the time-critical applications of operational AROME/Hungary. For forecaster’s needs at OMSZ, the short cut-off AROME analysis and related forecast are scheduled to be performed not later than 2 hours after its actual time which production includes the long cut-off analyses and updated first guesses for the more accurate
Regarding future perspectives of AROME/Hungary’s upper-air DA, the applied RUC approach favors those observations which have large temporal frequency and small latency. For diagnostic purposes the AROME 3D-Var was experimentally run with all available non-conventional observations i.e. satellite radiances from Meteosat-10 SEVIRI (Spinning Enhanced Visible and Infrared Imager), NOAA-19 and Metop AMSU-A (Advanced Microwave Sounding Unit-A), MHS (Microwave Humidity Sounder) and IASI (Infrared Atmospheric Sounding Interferometer) sensors, RADAR reflectivity and radial winds from Hungarian RADAR sites, AMV (Atmospheric Motion Vectors) satellite wind retrievals and most importantly with GNSS ZTD observations. This experimental DA system performed 3D-Var analyses with perturbed and unperturbed observation sets on a 10-day period (between 5th and 15th of June, 2017) in order to compute Degree of Freedom for Signal (DFS) diagnostic as the following (Girard, 1987):

\[
DFS \approx Tr(HK) \approx (y' - y)^T R^{-1} (H(x'_a) - H(x_a))
\]

where HK is the linearized observation operator and the Kalman gain respectively, and the DFS score can be approximated by their trace as (1). The y and y’ are the unperturbed and perturbed observation arrays, \(R\) is the observation-error covariance matrix, \(H(x_a)\) and \(H(x'_a)\) are the unperturbed and perturbed analyses states at the observation space respectively. DFS provides information on the observation’s influence on analyses with respect to the different observation types. Figure 2 shows absolute and relative DFS scores computed on the 10-day period in the AROME/Hungary system. The GNSS ZTD has a limited absolute DFS due to the small number of ZTD observations compared to other observation types. However, it has a considerably high relative contribution which can significantly affect the AROME/Hungary’s analysis.

3 GNSS ZTD observations

The first tests of ZTD retrievals using permanent GNSS stations in Hungary dates back to 2009 (Rózsa et al., 2009). Due to the positive experiences of this study, a near-real time GNSS processing facility was set up by the collaboration of the Satellite Geodetic Observatory Penc and the Budapest University of Technology and Economics (BME). The applied computational strategy can be found in Rózsa et al. (2014). The processing center (SGOB later renamed to SGO1) joined to the EUMETNET’s E-GVAP programme in 2013. Since then, the ZTD estimates at the stations of the Hungarian GNSS Network are available for meteorological applications. Hungary, with its representing institutions BME, OMSZ and SGO, participated in the COST Action ES-1206. The network processed by the SGO1 processing center involves more than 80 ground-based stations and provides accurate ZTD estimates using the Bernese Software v5.2 (Dach et al., 2015). The estimates are computed from the network solution with +90 minutes latency. Due to its coverage, the SGO1 network provides the most of the ZTD estimated in the AROME/Hungary’s NWP domain. To extend the coverage of GNSS ZTDs, other Central-European E-GVAP networks were included in this study. The Geodetic Observatory Pecny (GOP) in the Czech Republic has been long time preparing GNSS based measurements for various users and also contributing to E-GVAP with a large network (estimation for more than 120 stations) called GOP1. Moreover, the GNSS network developed by Wroclaw University of Environmental and Life Science
Figure 2. The absolute (top) and relative (bottom) DFS scores computed in AROME/Hungary 3D-Var experimental analyses for the period 5-15th of June, 2017.

(WUELS) serves additional ZTD estimates inside our area of interest. The WUEL analysis center provides ZTD estimates for a network of 130 stations. Both of the latter centres use a network solution provided by the Bernese Software.

4 Evaluation of the quality and use of GNSS ZTDs on a training period

4.1 Passive assimilation and pre-selection procedure setup

The assimilation of ZTDs with increased observation error has been conducted in an experimental AROME/Hungary system for a training period. This passive assimilation allows monitoring of ZTD observations inside the variational assimilation scheme without its influence on analysis. Although quality control procedure of the variational scheme contains the so called background check (which is dedicated to reject observations far from model background state), beyond that, one needs to be ensured a priori only observations with Gaussian, zero mean and uncorrelated errors that are employed in the assimilation from reliable GNSS stations. To that a special pre-selection procedure has to be executed checking passive observation minus first-guess (OMF) departures on a training period, since GNSS ZTDs by default are blacklisted in the system. Due to the increased analysis cycle frequency i.e. 8 AROME/Hungary analyses per a day, the training period of 15th and 31st of May, 2017 is chosen assuming sufficient sample for every examined GNSS station. The pre-selection of GNSS ZTDs means consecutive tests of time availability, normality, maximum standard deviation and bias, metadata consistency check together with domain
and altitude difference examination of GNSS stations. The presence of station multiplication has to be prevented by selecting the station with the smallest standard deviation of OMF. Furthermore the station thinning is also a part of the procedure to avoid observation error correlations. More details about the pre-selection design are written in Yan et al. (2009b) and Poli et al. (2007).

4.2 Results of the pre-selection procedure

The actual training period consists 197 GNSS stations situated inside the NWP domain from the three GNSS networks and pre-selection filtered more than 30 percent of them resulting 122 trusted GNSS stations for active experiments. Due to time coverage issues (e.g. data gaps or outages) and gaussianity issues, 10 percent of the data were rejected. Further 2-3 percent of the stations were denied since the detected bias and standard deviation of OMF were higher than the pre-defined limits. The thresholds of bias, standard deviation and altitude difference limits were set according to Yan et al. (2009b). Due to station multiplication, 12 percent of the stations are excluded from one or two networks during the pre-selection. In order to determine the optimal thinning distance which is employed for pre-selection, observation error correlations as a function of various separation distances have been computed. The computation of error correlations are based on the method proposed by Desroziers et al. (2005):

\[
E \left[d_b^o (d_a^o)^T \right] = R
\]

where observation error covariances are estimated based on the expected value of background \(d_b^o\) and analysis \(d_a^o\) departures having various departure pairs for horizontal distances. The Desroziers method has the advantage to provide error correlation structures in observation space i.e. at observation locations from the collected pairs of background and analysis departures in a computationally cheap approach. For this diagnostic purpose, another whitelist is originally generated with zero thinning in order to execute very first active assimilation and to collect its OMF departures. Liu and Rabier (2003) showed that horizontal thinning distance is optimal, where the observation error correlations are less than 0.2 - 0.3. By the visualization of these error correlations which can be seen on Figure 3 20km thinning distance is chosen for the final GNSS pre-selection procedure.

4.3 Detected bias and static bias correction

During the pre-selection procedure, OMF departures are used to evaluate the quality of ZTDs and also to identify systematic errors in measurements. The bias might originate from the mapping function of ZTD processing, the conversion of time-delay to excess length, the contribution of the atmosphere above the model top or for instance the altitude differences between the...
model orography and the GNSS station elevation. The observation bias is detected as a space/time-average of observation \((o_i)\) minus model-background \((b_i)\) differences (3).

\[
BIAS = \frac{1}{n} \sum_{i=1}^{n} o_i - b_i
\]

(3)

Although, it presumes the first-guess is an unbiased reference which is not necessarily true, Poli et al. (2007) showed this approach can be efficiently applied for the initial bias estimation of GNSS ZTDs. The distribution of OMF values taking into account all GNSS stations are plotted on Figure 4. Concerning the detected bias of each GNSS station separately, one can see on Figure 5 and 6 that observed bias is strongly varying station by station in SGO1, WUEL and GOP1 networks respectively. Therefore bias correction should be done individually for different GNSS stations.

After the pre-selection procedure, the bias and the standard deviation of background departures are added into the whitelist for each station independently. The standard deviation of OMF is assigned as the observation error of trusted GNSS stations ranging between 6 and 14 mm. The static bias information of the whitelist can be applied before active assimilation by removing the bias during the observation pre-processing. The impact of GNSS ZTDs with the use of static bias correction (called ESGPS2 hereafter) is investigated in observing system experiments in the Section 5.

4.4 Variational bias correction

Beside the choice of static bias correction, the AROME’s variational assimilation system offers the possibility of variational bias correction (VARBC) as well. In this scheme, the bias parameters are parts of the minimization via the extension of control vectors and the cost function (Sánchez-Arriola et al., 2016). The GNSS ZTD is considered as a type of surface observation in the data assimilation, therefore, VARBC similarly to static correction controls the bias separately for each station using a bias offset predictor. This predictor in the current implementation of the linear regression scheme is assumed to remove the major
Figure 4. Distribution of OMF values for all GNSS stations

Figure 5. The BIAS in mm for SGO1 (light blue) and WUEL (light orange) networks calculated for the period of 15-31st of May, 2017

part of the bias. Moreover, the introduction of additional predictors showed by Lindskog et al. (2017) has limited impact on the forecasting system. The simplified background bias parameter error covariance matrix contains only diagonal elements which are characterized by the proportion of observation error variance (σ_o^2) and the so called stiffness parameter (N_{bg}) (4).

$$\sigma_{\beta_b}^2 = \frac{\sigma_o^2}{N_{bg}}$$

(4)

In contrast to the static scheme, the VARBC adjusts bias information in every new analysis making bias correction updates in an adaptive manner. The magnitude of the adaptivity is decided by the stiffness parameter which is by default set to 60 and taking into consideration that AROME/Hungary has 8 analyses in a day, the total bias is eliminated in about 15 days period. For the active assimilation trial, instead of coldstart initialization of the bias, VARBC coefficients were spinned up on the
pre-selection training period and stored to prepare warmstart initialization. As the observation bias is not significantly varying during a day (not shown), the 3 hourly cycled VARBC strategy was chosen which supports faster adaptivity compared to a daily cycled bias correction. During the impact study, the use of GNSS ZTDs and variational bias correction are called EVGPS2 hereafter.

5 Active assimilation and observing system experiments

Two observing system experiments (OSE) have been carried out for a summer and a winter period estimating the impact of GNSS ZTDs and the performance of static and variational bias corrections. The first AROME/Hungary configuration using the operational setup is considered as reference (EEGPS2 in verification). The one (ESGPS2) with ZTD observations on the top of operational observation set and static bias correction is compared with the reference. Furthermore, the second experiment is similar to ESGPS2 but employs variational bias correction (EVGPS2) which is analyzed together with ESGPS2. These experiments and the basic setup are summarized in Table 1.

5.1 Verification of summer forecasts

The examined summer period is basically the continuation of the training period excluding 5 days from the verification and covering 25 days till the end of June, 2017. This means that statistical verification was computed for 00 and 12UTC AROME +24 hours forecasts between 5th and 30th of June, 2017. The verification was performed against quality controlled conventional observations for the measure of all scores. For the reason that GNSS ZTDs are used as surface observations in the variational assimilation method, the added value of ZTD observations is expected to see in near-surface verification scores. More importantly, temperature and humidity parameters are the most influenced because the model equivalent of wet delay is closely related to model’s temperature and humidity fields via the observation operator. Figure 7 shows RMSE and BIAS scores
for screen-level temperature and relative humidity forecasts, while on Figure 8, the related normalized RMSE differences of EEGPS2 and EVGPS2 can be seen. For these surface parameters the error reduction during the first 6 hours in AROME forecast is apparent by the use of ZTD observations with both static and variational bias correction. With variational bias correction, the error reduction is statistically significant for most of the short-, very short-ranges (see Figure 8). Furthermore, it gives similar results with static bias correction, though this is not statistically significant (not shown).

The AROME’s precipitation forecasts are verified on Figure 9, where the Equitable Threat Score (ETS) and the Symmetric External Dependency Index (SEDI) for +12 hours precipitation forecasts can be seen. Overall, for the small precipitation thresholds both ESGPS2 and EVGPS2 can improve the precipitation forecasts, but for higher thresholds only the experiment EVGPS2 with ZTDs and VARBC has clear added value. These results suggest that the update of bias information during the (active) assimilation cycles is important for better precipitation forecasts. Other surface variables and also upper-air scores show mostly neutral impact i.e. slightly better or worse scores at various levels without statistically significant differences (not shown). It is also important to note that significant differences can only be seen in surface verification scores against 30 Hungarian SYNOP stations (see the header of verification Figures). This is due to taking into account all available SYNOP stations inside the NWP domain would indicate smaller impact of the relatively small amount of employed ZTD observations. Furthermore the cause might be that AROME/Hungary’s background errors are derived from an AROME EDA (Ensemble Data Assimilation) which results sharp mesoscale variance and increments effecting local impact especially in the vertical.

5.2 Verification of winter forecasts

In order to analyze the impact on another season’s forecasts, 25 days of December, 2017 have been chosen to run the second OSE with the same configurations as the summer trial (see Table 1). The pre-selection procedure has not been recalculated, therefore, the same whitelist and bias initialization were applied for the winter period as well. This limits the capabilities of GNSS ZTD assimilation, but has the possibility to simulate a quasi-operational usage when the bias information might not be up
to date. In this case, VARBC coefficients due to the adaptive scheme have still the opportunity to adjust the bias during the active assimilation study compared to static bias correction. Examining the same screen-level parameters, it can be seen on Figure 10 that for winter forecasts the impact is more or less neutral, however, the positive signal obtained in summer period is slightly remained for short-ranges. Furthermore, Figure 11 shows that the slightly positive impact for normalized RMSE differences is even statistically significant for one or two forecast ranges. Although, it is apparent that for +5 or +6 forecast hours the differences turned to be slightly negative which might be caused by overfitting issues and by the fact that applied observation errors of winter OSE were estimated on the training period of spring 2017. The impact of other forecast parameters was similar to summer period i.e. mostly neutral (not shown). Regarding precipitation forecasts of AROME/Hungary, verification scores for the winter OSE include less differences. This is positive for small precipitation thresholds considering the use of VARBC, but it is slightly worse for one threshold (3mm) in ETS and SEDI scores. Similarly to the summer OSE, the importance of accurate bias correction can be concluded from the results of winter trial as well. Finally, it is important to mention again that demonstrated forecast scores were verified against Hungarian SYNOP stations, therefore, overall results show neutral picture of the use of GNSS ZTDs.
6 Conclusions

The use of GNSS ZTDs from three Central-European E-GVAP networks in AROME/Hungary was presented and discussed in detail. This observation type showed the potential and the importance concerning DFS diagnostics, especially in a system that uses an increased analysis cycle frequency. It was also discussed that GNSS products including ZTD can bring extra humidity related observations for the initial conditions of NWP models and having potential to improve precipitation forecasts. As ZTD observations are by default blacklisted, the pre-selection procedure of the trusted GNSS ground based stations has to be done carefully, this was described in Section 4. The studied E-GVAP networks sufficiently cover the wider area of Hungary, although there is still room for further extension and the system is still lacking such observations from the south and eastern part of the NWP domain. Furthermore, the optimal thinning distance was determined to maximize the number of ZTDs from neighbouring networks without risking observation error correlations. It was also shown that the detected bias is varying station by station, therefore, separate correction makes sense during the assimilation of GNSS ZTDs. In addition, using only the bias-offset predictor in VARBC scheme satisfies its functionality for debiasing GNSS ZTD observations in the variational analysis. During the active assimilation experiments it was demonstrated that the GNSS data has positive impact on short-range screen-level temperature and humidity forecasts if bias information is also up-to-date. The observation impact in the verification of summer period was held for 6 hours which is considerable using only small number of GNSS observations. However, the
precipitation forecasts became clearly better in summer forecasts when variational bias correction was employed, but with static bias correction the impact of ZTDs was rather mixed. Besides the summer OSE, a winter trial was demonstrated as well, where pre-selection and bias correction results obtained for the summer period were utilized again. It showed the weight of bias correction with a greater emphasis and the effect of reduced impact of GNSS ZTDs. Despite that the slightly positive impact was still visible on the results of normalized RMSE differences for screen-level parameters, it can be concluded that overall impact is generally neutral with this configuration. In this paper the use of Central-European E-GVAP networks and their ZTD estimations were highlighted in an operational AROME mesoscale data assimilation system. It became evident that a smaller amount of GNSS ZTD observations can still provide valuable atmospheric information for a well characterized and parameterized NWP system and its data assimilation. For future perspectives and knowing the importance of bias correction, a more flexible stiffness parameter might be investigated in order to perform more appropriate adaptivity in the system. Moreover, better description and use of observation errors should be studied as well.

Author contributions. Szabolcs Rózsa prepared the GNSS data in appropriate format and helped to establish data dissemination between SGO and OMSZ. Patrik Benáček provided the diagnostic tool to determine optimal thinning distance and contributed to the evaluation
Figure 10. The RMSE and BIAS of screen-level temperature (K) and relative humidity (%) as a function of forecast range. Scores are plotted for EEGPS2 (red), ESGPS2 (green) and EVGPS2 (blue). Verification period between 5th and 30th of December 2017, Data selection: Hungary

of bias correction for GNSS ZTDs. Máté Mile carried out the observation pre-processing, the passive assimilation and observing system experiments. Máté Mile prepared the manuscript with contributions from all co-authors.

Competing interests. The authors declare that they have no conflict of interest.

Disclaimer. TEXT

5 **Acknowledgements.** The authors kindly acknowledge the support of the Satellite Geodetic Observatory, Penc for providing the ZTD estimates for this study. Support of grant BME FIKP-VÍZ by EMMI is kindly acknowledged.
Figure 11. The Normalized RMSE difference of screen-level temperature (K) and relative humidity (%) as a function of forecast range. Scores are comparing EEGPS2 and EVGPS2 experiment. Verification period between 5th and 30th of December 2017, Data selection: Hungary

References

Figure 12. The ETS and SEDI scores of +12 hours precipitation (12-hour cummulation) as a function of precipitation thresholds. Scores are visualized for experiments EEGPS2 (red), ESGPS2 (green) and EVGPS2 (blue). Verification period between 5th and 30th of December 2017, Data selection: Hungary

