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Abstract. Turbulent velocity spectra derived from vertical azimuth
:::::::::::::
velocity-azimuth

:
display (VAD) scanning wind lidars de-

viate from spectra derived from one point measurements due to averaging effects and cross-contamination among the velocity

components. This work presents two novel methods for minimizing these effects through advanced raw data processing. The

squeezing method is based on the assumption of frozen turbulence and introduces a time delay into the raw data processing in

order to reduce cross-contamination. The 2-beam method uses only certain laser beams in the reconstruction of wind vector5

components to overcome averaging along the measurement circle. Models are developed for conventional VAD scanning and

for both new data processing methods to predict the spectra and identify systematic differences between the methods. Numeri-

cal modeling and comparison with measurement data were both used to assess the performance of the methods. We found that

the squeezing method reduces cross-contamination by eliminating the resonance effect caused by the longitudinal separation

of measurement points, and also considerably reduces the averaging along the measurement circle. The 2-beam method elim-10

inates this averaging effect completely. The combined use of the squeezing and 2-beam methods substantially improves the

ability of VAD scanning wind lidars to measure in-wind (u) and vertical (w) fluctuations.

1 Introduction

Wind speed measurements are an integral element of wind site assessment. Traditionally such measurements have been based

on in situ sampling with anemometers attached to tall meteorological masts that reach up to hub height. Such masts are15

immobile and expensive to erect. It is therefore favorable to implement remote sensing devices, such as conically scanning

profiling lidars, that measure wind velocities at adjustable height levels above the ground remotely.

Pulsed and continuous-wave wind lidars are the two types of profiling lidars that are currently commercially available. The

Velocity azimuth
:::::::::::::
velocity-azimuth

:
display (VAD) scanning strategy was introduced by Browning and Wexler (1968)

:::::::::::::::::::::::
Browning and Wexler (1968) and

is usually applied for continuous-wave profiling lidars like the ZX 300 (previously ZephIR 300) .
:::::::
produced

:::
by

::::::
Zephir

::::
Ltd.

:
/20

:::
ZX

::::::
Lidars. Advanced processing of VAD acquired data is the object of investigation here.

Validation studies that compare measurements from meteorological masts and ground based profiling lidars (e.g., Kindler et al. (2007),

Smith et al. (2006), Medley et al. (2015) and Kim et al. (2016)) report good agreement for first order statistics, namely the 10-

minute mean wind velocities and directions . But the turbulence
:::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::
(Kindler et al., 2007; Smith et al., 2006; Medley et al., 2015; Kim et al., 2016).

:::
The

:::::::::
estimation

::
of

:::::::::::
second-order

:::::::
statistics

::
of

:::
the

:::::::::
turbulence

::
in

:::
the

::::
wind

::
by

::::::
means

::
of

:::::
VAD

:::::::
scanning

::::::
pulsed

:::::::
Doppler

::::
lidar

:::
was

::::
first25
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:::::::::::
demonstrated

::
by

:::::::::::::::::::
Eberhard et al. (1989).

:::
But

:::::
such

::::::::
turbulence

:
estimates from VAD scanning lidars deviate from classical mea-

surements with cup or sonic anemometers (Peña et al. (2009), Canadillas et al. (2010), see review by Sathe and Mann (2013)).

Sathe et al. (2011)
:::::::::::::::::::::::::::::::::::::::::::::::::::::
(Sathe and Mann, 2013; Peña et al., 2009; Canadillas et al., 2010).

::::::::::::::::
Sathe et al. (2011) model the second

order statistics of pulsed and continuous-wave profiling lidars. The resulting velocity variances are influenced by the effects that5

arise from sensing the 3-dimensional wind field by averaging over spatially distributed volumes. In order to better understand

the actual behavior of the lidar in comparison to reference measurements, turbulence spectra of the three wind components

u, v and w can provide much-needed insight. Sathe and Mann (2012)
:::::::::::::::::::
Sathe and Mann (2012) model and analyze turbulence

spectra, but only for pulsed lidars that use Doppler beam swing (DBS) scanning. A simplified model for turbulence spectra

from VAD scanning wind lidars is presented in Wagner et al. (2009)
:::::::::::::::::
Wagner et al. (2009). However, it does not include the10

effect of cross-contamination and cannot be used to predict the turbulence spectra of real lidars.

The six-beam method developed by Sathe et al. (2015)
:::::::::::::::
Sathe et al. (2015) is an alternative to VAD scanning that results in

more accurate second order statistics of turbulence. But its application requires a vertical laser beam and a half cone opening

angle of 45°, which makes it not usable with commercially available profiling wind lidars.

Newman et al. (2016)
::::::::::::::::::
Newman et al. (2016) propose another method to compensate for the contamination by means of au-15

tocorrelation functions derived from collocated mast measurements. This method ishowever ,
::::::::
however, only applicable when a

meteorological mast is available. In comparing and evaluating the ability of different lidar scanning strategies to measure tur-

bulence, Newman et al. (2016)
::::::::::::::::::
Newman et al. (2016) concludes that cross-contamination of the different velocity components

is one of the primary disadvantages of current profiling lidars.

The research presented here demonstrates two methods aimed at overcoming the effects of cross-contamination and averag-20

ing along the measurement circle that are inherent in the standard VAD scanning strategy. Both methods are based on modified

line-of-sight velocity data processing and can be applied to currently available lidars without changes in their hardware. The

line-of-sight averaging effect remains unresolved.

The first method incorporates Taylor’s frozen turbulence hypothesis and introduces a time lag into the wind vector re-

construction process. Bardal and Sætran (2016)
:::::::::::::::::::::
Bardal and Sætran (2016) measure two-point correlations

:
of

:::::::::
horizontal

:::::
wind25

:::::
speeds

:
from two meteorological masts that are separated by 79 m in line with the mean wind direction. They find the correlations

to be roughly twice as strong
:::
that

:::
the

::::::::::::::
cross-correlation

:::::::::
coefficient

::
is
:::::::

around
:::
0.8

:
when a temporal lag compensates for the

time required for the wind to cover the distance between the two measurement points. That
::::::
Without

::::::::
delaying

:::
the

::::::
signal,

:::
the

:::::::::::::
cross-correlation

:::::::::
coefficient

:::::::
reaches

::::
only

::::
half

::
of

:::
that

::::::
value.

:::::::
Applied

::
to

::::
VAD

::::::::
scanning

:::::
lidars,

::::
that justifies the assumption that

when
::
the

:::::::::
processing

::
of

:::::::::::
line-of-sight

:::::::::::
measurement data is delayed by the time needed to cross the measurement circle, the lidar30

measurements will be more realistic. This approach is hereafter called “squeezing” and reduces the cross-contamination effect

that currently distorts the shape of turbulence spectra acquired with VAD scanning lidars.

The second method is to use only the radial velocities from lines-of-sight that point into the mean wind direction (downwind)

and against it (upwind) to determine the components of the wind that are oriented in-line with the mean wind direction (u) and

vertical (w). This eliminates the averaging along the measurement circle.35
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The aim of the research presented here is to demonstrate whether
:::
one

::
of

:
the two modified data processing algorithms and/or

their combination lead
::::
leads

:
to improved turbulence measurements from standard VAD wind lidars. Both methods are modelled

and applied on the same measurements individually, and their effects are discussed separately.

::::
This

:::::::
research

:::
has

:::::::
several

:::::::
practical

:::::::::::
applications.

::::
The

::::::
reliable

::::::::::
elimination

:::
of

::::::::::::::::
cross-contamination

::::
and

::::::::
averaging

::::::
along

:::
the

:::::::::::
measurement

:::::
circle

:::::
would

::::
lead

:::
to

:
a
:::::::::
reduction

::
of

:::
the

:::::::::
systematic

:::::
error

::
of

:::::
wind

::::
lidar

::::::::::::
measurements

::::
that

::
is

:::::::::
dependent

:::
on

:::
the5

::::::::
prevailing

:::::
wind

:::::::::
conditions

:::
and

:::
the

::::::::::::
measurement

::::::
height.

::
In

:::::::::
particular,

::::::::::
estimations

::
of

::::
the

::::
time

:::::
scale

::
of

:::::::::
turbulence

:::::
could

:::
be

::::
done

::::
with

::::::
higher

:::::::
certainty,

::::::
which

:::::
would

:::::::
support

:::::
future

::::::::
boundary

::::
layer

::::::::
research

::
by

::::::
means

::
of

:::::::
profiling

:::::
wind

:::::
lidars.

::
In

::::::::
addition,

::::::::
estimating

:::
the

::::::
energy

:::::::
content

::
of

:::
the

::::
wind

::::::::::
components

::
at
:::::::
specific

::::
wave

::::::::
numbers

::::
with

::::::
higher

:::::::
certainty

:::::
could

::::
also

::::
help

::
to

:::::
better

::::::
predict

::
the

::::::::::
operational

::::
wind

:::::
loads

::
of

:::::
wind

:::::::
turbines

:::
and

:::::
other

:::::::::
structures.

Section 2 summarizes the VAD scanning process and describes in detail the averaging and cross-contamination effects it10

implies for the measurement of turbulence. In Sect. 3 the suggested modified data processing methods are described before

they are modelled alongside the conventional processing in Sect. 4. The measurements are described in Sect. 5 before the

results are compared with the model predictions in Sect. 6. The last Sect. 7 concludes with the most important findings.

2 Lidar theory

2.1 Coordinate system and preliminaries15

Figure 1 shows the measurement circle of diameter DC of a VAD scanning lidar and how it is created by the laser beams that

are deflected from the zenith by the half cone opening angle φ and rotate around the zenith with continuously changing azimuth

angle θ. The beams are focused at a point at distance df from the lidar which is located at the origin of a three-dimensional

left-handed coordinate system. Five of the laser beams are depicted, four in the cardinal directions and one with an arbitrary

azimuth angle. The mean wind direction Θ determined from 10-minute intervals is zero when the wind blows from north to20

south. The wind vector

u =


u

v

w

 (1)

is composed of the wind components u, v andw that are aligned with the axes of the coordinate system when Θ = 0°. Reynolds

decomposition is used for the description of the wind field so that

u = U +u′ (2)25

where u′ are the wind speed fluctuations in all three directions and U is the mean wind velocity vector.

2.2 Taylor’s frozen turbulence hypothesis

The frozen turbulence hypothesis published by Taylor (1938)
:::::::::::
Taylor (1938) assumes that turbulence is advected by the mean

wind velocity U into the mean wind direction Θ. During the transport process the turbulence remains unchanged, i.e., turbu-
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Figure 1. Lidar geometry definitions and coordinate system

lence measured at one point in space gives information about the turbulence found further downwind some time later. That

means for a velocity vector field u when U is aligned with the x-axis that

u(x,y,z, t) = u(x−Ut,y,z,0) (3)

The hypothesis is widely used and it is known from experiments that the assumption of frozen turbulence is valid to a high

degree for large eddies. For example, Schlipf et al. (2010)
:::::::::::::::::
Schlipf et al. (2010) measured the inflow velocities of an operating5

wind turbine at different distances from the rotor plane in order to test the hypothesis of frozen turbulence. They found it to be

valid for large scale wind fluctuations . Other experiments
:::
with

:::::
wave

:::::::
numbers

:::::::::::::::::::
k > 1.25× 10−1 m−1.

:::::::::::::::::::::::
Willis and Deardorff (1976) show

that the validity
:::::::::
hypothesis

::::
lacks

:::::::
validity

:::::
when

σu/U > 0.5.
::::::::::

(4)

::::
This

::::::
implies

::::
that

:::
the

:::::::
validity

:
of the hypothesis depends on the amount of turbulence and that a high degree of validity is10

expected when the velocity variance is low compared to the mean wind speed.

2.3 VAD measurement principle

Continuous-wave wind lidars continuously emit a focused infrared laser beam into the air and detect the small portion of the

radiation that is backscattered by particles along the beam path towards the beam’s origin. The velocity of the backscattering

4



particles relative to the beam direction is then determined by analyzing the Doppler shift between the frequencies of outgoing

and incoming radiation. It is assumed that the backscatterers are lightweight enough to move with the instantaneous wind

speed u. The measured radial line-of-sight velocities vr are hence equal to the wind velocity projected onto the beam direction.

In order to estimate the three-dimensional wind vector u, a minimum of three independent line-of-sight measurements from

different directions must be combined.5

When VAD scanning is used, the beam is deflected by a wedge prism by a constant half cone opening angle φ from the

zenith and rotated around the zenith with steadily changing azimuth angle θ. Many radial velocities vr are acquired during

one full rotation of the prism. For example in the case of the ZX 300 (previously ZephIR 300), N = 49 Doppler spectra are

calculated and used to determine the same number of radial velocities. All of them are used to reconstruct one wind vector by

applying a least squares fit to10

vr = |Acos(θ−B) +C| (5)

where the best fit parameters A, B and C represent the wind data according to

vhor =A/sin(φ)

Θ =B±180°

vver = C/cos(φ)

(6)

The sign of the radial velocity is usually unknown. We are thus faced with a directional ambiguity of ±180°, but this does not15

affect the turbulence analysis here. The wind data vhor, Θ and vver can be translated into wind vectors u easily.

The wind velocity estimations that result from this processing underlie several effects that distinguish them from one-point

measurements. These effects can be divided into:

– Averaging

along the lines-of-sight20

along the measurement circle and

– Cross-contamination

due to longitudinal separation

due to lateral separation

2.4 Averaging effects25

2.4.1 Line-of-sight averaging

In situ wind speed measurements taken with cup anemometers or ultrasonic anemometers have a small measurement volume

that can be considered a point. Lidar measurements, by
::
in

:
contrast, sense wind velocities along an extended stretch of the
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line-of-sight of the laser beam. In the case of continuous-wave lidars, the laser beam leaves the lidar optics with a diameter

that corresponds to its effective aperture size a0 and is focused onto a focus point. The distance between the lidar optics and

the focus point is the focal distance df . The signal of the backscattered radiation though originates from anywhere along

the illuminated beam, according to a distribution function that has its maximum at the focus point and is proportional to the

intensity of the laser light along the beam (Sonnenschein and Horrigan, 1971).5

A definite range gate, such as for pulsed lidars, is therefore not applicable to continuous-wave lidars. Instead, the Rayleigh

length lR is a measure of the distance between the focus point and the point at which the cross section of the beam has twice

the area of the cross section at the focus point. According to Harris et al. (2006)
:::::::::::::::
Harris et al. (2006), it is given by

lR =
λdf

2

πa0
2

(7)

where λ is the laser wavelength and a0 is the effective aperture diameter. The Rayleigh length is quadratically proportional to10

the focal distance df that increases linearly with the selected measurement height level. The degree of line-of-sight averaging

is thus strongly dependent on the measurement height level and is higher for larger heights.
:::
The

::::::
values

::
of

:::
lR,

::
a0:::

and
:::
df:::

for
:::
the

::::
lidar

::::
used

::
in

:::
our

::::::::::
experiments

:::
are

:::::
given

::
in

:::::
Table

::
1.

:

The intensity of backscattered radiation is a function of the distance s from the focus point along the beam. It is sufficiently

well approximated by a Lorentzian function,15

F (s) =
lR/π

s2 + lR
2 (8)

where s is the distance from the focus position (Mikkelsen, 2009).

All Doppler spectra that are retrieved during the radial velocity acquisition time are averaged, and the focus point sweeps

over a considerable arc of the measurement circle during this time. This arc length lA is

lA =
DCπ

N
(9)20

where N is the number of line-of-sight measurements vr taken during one rotation. In experimental data, the arc averaging

effect is contained in the radial velocities. In the models here, we account for this by averaging along the measurement circle.

The Doppler spectra of each line-of-sight measurement resemble the probability density function of the radial wind velocities

along the line-of-sight (Branlard et al., 2013). But by determining one single velocity value for each line-of-sight measurement,

the turbulence information they contain is filtered out.25

The additional temporal averaging along the lines-of-sight is very low, as one measurement takes only 1
N s. The effect of

line-of-sight averaging is very strong for high wave numbers but has some effect on long turbulent structures as well. The effect

of line-of-sight averaging is considered in this study, although we cannot distribute the lost small scale fluctuations on spectral

frequencies by any
::
the

:::::::::
numerical

::::::
models

:::
and

:::
the

:::::::::
discussion

::
in
::::
this

:::::
study.

::::
But

::::
none

:
of the presented data processing methods

:::
can

:::::
avoid

:::
the

::::::::::
line-of-sight

::::::::
averaging

:::::
effect.30
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2.4.2 Measurement circle averaging

As described in Sect. 2.3 lidars use all measurement data of at least one full rotation of the prism to reconstruct one wind

vector. The resulting system of equations is overdetermined, and in order to find a solution a quadratic best fit is applied. The

more lines-of-sight velocities that are used to reconstruct a wind vector, the stronger the averaging and thereby the larger the

loss of turbulent kinetic energy in the measurement data. The residual of the best fit is a measure of the degree of this form of5

averaging but is usually not used in the processing.

The diameter DC of the measurement circle is

DC = 2htanφ (10)

with h being the measurement height and φ the half cone opening angle. The spatial separation between the points that one

reconstructed wind vector is composed of,
:
thus linearly increases with measurement height. The larger the cone diameter, the10

stronger the circle averaging. Turbulence with length scales a
::::::
length

::::
scale

:
below the diameter of the averaging circle is affected

the most.

In addition to the spatial separation of the measurement points along the measurement circle, the acquisition time to sense

them must be considered. The mean wind motion carries the air while it is probed, which might further increase the separation

of measurement points in the mean wind direction. The ZephIR 300 measures one full rotation in one second, and the distance15

the air moves within this time is usually small compared to DC . The effect of temporal averaging is therefore often small

compared to the spatial averaging. One example for the path of measurements that is averaged over is given in Fig. 4a. The

circle diameter represents the spatial averaging and the shift along-wind with the speed U represents the temporal averaging.

2.5 Cross-contamination

2.5.1 Cross-contamination due to longitudinal separation20

Another cause for differences in the shape of turbulence spectra from one point measurements and their counterparts from

VAD scanning lidars is cross-contamination or cross talk of different velocity components. VAD scanning lidars combine

measurements from spatially separated locations where differing velocities may prevail as if they were collected at one point.

This leads to a redistribution of turbulent energy among the velocity components u, v and w. Lidar derived
:::::::::::
Lidar-derived

spectra of one of the components can at certain wave numbers show lower energy values than the original wind spectrum25

of that component but may also show too high values due to a contribution from a different velocity component. To better

understand cross-contamination we divide the effect into two different types of separations. First we look into longitudinal

separations, i.e., separation along the mean wind direction. Fluctuations at two points separated in line with the wind are

highly correlated. If the assumption of frozen turbulence is correct, the coherence would be 1 for all separation lengths and

all wave numbers. One example of cross-contamination of correlated fluctuations between two longitudinally separated points30

is visualized in Fig. 2. It demonstrates a case with isotropic turbulence i. e.
:::
The

::::::
chosen

::::::::::
wavelength

::
of

:::
the

:::::
wind

::::::::::
fluctuations

:::::
equals

:::::
twice

:::
the

:::::::::
separation

:::::::
distance.

:::::
This

:::
can

::
be

::::::
called

:::
the

:::
first

:::::::::
resonance

::::::::::
wavelength.

::::
The

::::::::
resonance

:::::::::::
wavelengths

:::
are

:::::
given

7



u-fluctuations

ulidar

vr2

vr1

w-fluctuations u&w-fluctuations

u'

w'

wlidar

nx2nx1

nz2nz1

nx2nx1

nz2nz1

nx2nx1

nz2nz1

u'⋅nx1
+

w'⋅nz1

vr1+vr2

nz1+nz2

vr1-vr2

nx1+nx2

u'⋅nx2
+

w'⋅nz2

Figure 2. Visualization of cross-contamination caused by longitudinal spacing of measurement points 1 and 2. The wavelength of u′ and

w′ equals twice the separation distance of the focus points
::
of

::
the

::::
lidar

::::::::
(indicated

::
by

:::
box

::::
with

::::::
yellow

::::::
symbol). The resulting measurement

values of the u-component are contaminated by fluctuations in w-direction and vice versa.

::
by

:

λres,n =
2DC

2n− 1
.

:::::::::::::

(11)

:::
The

::::::::::::
corresponding

:::::::::
resonance

::::
wave

::::::::
numbers

:::
are

kres,n =
(2n− 1)π

DC
::::::::::::::::

(12)

:::::
where

:::::
n=1,2,arbitrary but identical amplitudes for fluctuations in all orientations

::::::
3. . . The

::::::::
resulting

::::::
values

:::
for

:::
the

::::
first

::::
two5

::::::::
resonance

:::::
points

:::
are

:::::
given

::
in

:::::
Table

::
1.

The two beam directions in line with and against the mean wind direction can be used to determine ulidar and wlidar by

using the formulas on the right hand side of the figure. This example looks at these two lines-of-sight. The v-component can

be ignored because transverse fluctuations are not detected by the upstream and downstream beams. The wavelength of the
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wind fluctuations is chosen to equal twice the separation distance.This can be called the first resonance wave number.
:::::::
example

:::::::::::
demonstrates

:
a
::::
case

::::
with

::::::::
isotropic

:::::::::
turbulence,

::::
i.e.,

:::::::
arbitrary

:::
but

::::::::
identical

:::::::::
amplitudes

:::
for

::::::::::
fluctuations

::
in

::
all

:::::::::::
orientations. Aver-

aging along the lines-of-sight is ignored here for simplicity. The first column of graphs in the figure isolates the u-fluctuations

u′ and shows the resulting lidar measured signal for the two radial velocities in upwind and downwind direction, i.e., vr1 and

vr2. When these two signals are combined in the usual way, the reconstructed wind speed components u′lidar and w′lidar differ5

strongly from the real inflow conditions u′ and w′. The lidar is blind to wind speed fluctuations in u-direction and instead

attributes the fluctuations to some extent to the estimation of w′lidar. The same is done for w′ in the second column, and the

resulting effect is the reverse. The vertical fluctuations w′ are interpreted solely as amplified fluctuations of u′lidar.

The last column combines the two previous cases and shows the resulting distribution of amplitudes which depends on the

half cone opening angle φ. When φ < 45° the lidar is more sensitive to vertical variations than to horizontal ones, and the10

contamination of u′ caused by w′ is more severe than vice versa.

In a more realistic situation, turbulence is non-isotropic and the amplitude of w′ at this first resonance wave number is often

considerably lower than the amplitude of u′ which leads to a different distribution of contamination according to
:::::
which

:::
can

:::
be

::::::::
estimated

::
as

:::::::
follows.

:::
We

:::
use

::::::::
equations

:::
31

:::
and

:::
33

::
to

:::::
define

:::
the

:::::::::::
lidar-derived

:::::::
variance

::
in

:::::::::
u-direction

:

σ2
u,lidar = cot

〈 ∆v

−2sinφ
:::::::

2

φσ2
w.86σ2

w

〉
. (13)15

::
In

:::::::
general,

:::
the

::::::::::
differences

::
of

:::
the

:::::::::::
line-of-sight

::::::::
velocities

:::::::
aligned

::::
with

:::
the

:::::
mean

:::::
wind

:::
∆v

:::::::
contain

:::::::::::
contributions

:::::
from

:::::
wind

:::::::::
fluctuations

:::
in

:
u
::::

and
::::::::::
w-direction

::::
∆vu::::

and
::::
∆vw:::::::::::

respectively.
:::::
Here

:::
we

::::
look

::
at

:::
the

:::::::::
resonance

::::
case

:::::
where

::::::::
∆vu = 0

::::
and

::::
thus

::::::::::
∆v = ∆vw.

:::
We

:::
get

σ2
u,lidar,res =

〈(
∆vw
−2sinφ

)2
〉

=

〈(
2w′ cosφ

−2sinφ

)2
〉

= cot2φσ2
w,res ≈ 2.86σ2

w,res

::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::

(14)

when φ= 30.6° as for the lidar we used in this study.
:::
The

::::::::
subscript

:::
res

::::::::
indicates

::::
that

:::
the

:::::::
equation

::
is
::::
only

:::::
valid

:::
for

::::::
inflow20

:::::::::
fluctuations

::
at
:::::::::
resonance,

::
as

::
in
:::
the

::::::::
example

:::::
given

::::::
before.

In Sect. 4 we develop a model to predict lidar derived
::::::::::
lidar-derived

:
spectra. This model was used to create the plots shown

in Fig. 3a. They show the result of cross-contamination in the spectrum of the
:
.
:::
Fig.

:::
3a

::::::
shows

:::
the

::::::::
modelled

::::::
spectra

:::
of

:::
the

::::
wind

:::::::::::
components,

:::::
uwind::::

and
::::::
wwind,

::
as

:::::
solid

::::
black

::::
and

:::
red

:::::
lines.

::::
The

:::::::::
parameters

::
of

:::
the

:::::::::
underlying

:::::::
spectral

::::::
tensor

:::
are

:::::
given

::
in

:::::
Table

::
1.

:::::
They

::::
were

::::::
chosen

:::
to

::::
best

::::::::
represent

:::
the

::::
wind

:::::::::
conditions

::::::
found

::::::
during

:::
the

::::::::::
experiment

::::::::
presented

::
in

:::::
Sect.

::
6.

::::
The25

:::::
model

::::
was

::::
used

::
to

::::::::
estimate

:::
the

:
u-component when it is determined by

::
of

:::
the

:::::
wind

::::
from

:
two lidar beams that point in the

upwind and downwind directions. The same spectral tensor was used hereand in Sect. 6 (see table 1 for the parameters). Here

again
::::
Also

::::
here, we did not include line-of-sight averaging to isolate the effect of cross-contamination.

::::
The

:::::::
principle

:::
of

:::
the

::::
setup

::
is
:::
the

:::::
same

::
as

::::::::
explained

:::
for

::::
Fig.

::
2

:::
but

::::
now

:::
we

:::
see

::::::
results

:::
for

::
all

::::::
inflow

:::::
wave

:::::::
numbers

::::
and

:::
use

:::::::::
anisotropic

::::::::::
turbulence.

:::
The

::::::::
resulting

:::::::::::
lidar-derived

::::::::
spectrum

:::::::::
ulidar,sum::

of
:::

the
::::::::::::
u-component

::
of

:::
the

:::::
wind

::
is
:::

the
:::::

sum
::
of

:::
the

::::::
lidar’s

:::::::::::
interpretation

:::
of30

::
the

:::::
wind

::::::::::
components

:::::::
ulidar,u::::

and
:::::::
ulidar,w.

:
We see that the lidar estimated spectrum of ulidar,sum lies a bit below the target

9



Figure 3. Modelled cross-contamination effect inherent in (a) the u-spectrum from two longitudinally separated points with ∆x=DC and

(b) the v-spectrum from two laterally separated points with ∆y =DC . The solid lines are the spectra of the involved wind components.

The dotted lines show the contribution of these wind components to the lidar spectra (circle markers). Averaging along the lines-of-sight is

excluded.

spectrum of uwind for most wave numbers but not at the first and second resonance points that are marked with grey dashed

vertical lines. There it exceeds the target spectrum. The reason becomes apparent when we look at the components ulidar,u and

ulidar,w that ulidar,sum is composed of. We find that the lidar sees uwind nearly to its full extend for very low wave numbers

but when we come close to the resonance points ulidar,u drops to zero. The contribution of the vertical wind ulidar,w shows a

mirrored behavior and is amplified because
::::::::
according

::
to

:::
Eq.

:::
14

::::
since

:
φ < 45°.5

2.5.2 Cross-contamination due to lateral separation

When the lines-of-sight under consideration are not longitudinally but laterally separated, they do not face resonance but instead

a second form of cross-contamination. The strength of the contamination depends then on the coherence of the turbulence for

10



the given lateral separation. When the fluctuations at the two selected focus points are very coherent i.e., their correlation is

close to unity, we can expect that the lidar derived
::::::::::
lidar-derived

:
wind speed estimates are correct and no cross-contamination

occurs. This can be observed at very low wave numbers where a high degree of coherence is expected. The other extreme

is found at the other end of the spectrum where small fluctuations measured at both focus points are uncorrelated. The lidar

derived
:::::::::::
lidar-derived spectrum is there a linear combination of the variances of the involved components . For the lidar we use5

here
:
v
:::
and

::
w
:::::::::
according

::
to

σ2
v,lidar =

〈(
∆v

−2sinφ

)2
〉

=

〈(
∆vv
−2sinφ

)2
〉

+

〈(
∆vw
−2sinφ

)2
〉
.

::::::::::::::::::::::::::::::::::::::::::::::::::::::::

(15)

::
In

:::
the

::::
case

::
of

::::
fully

:::::::::::
uncorrelated

::::::::::
fluctuations

::
we

:::::
know

::::
that

::::::::::::::
∆vv =−v′ sinφ

:::
and

:::::::::::::
∆vw = w′ cosφ

::::
and

:::
the

:::::::
variance

::::::::::
σ2
v,lidar,unc

::
of

:::
the

::::::::::
lidar-derived

:::::::::
v-velocity

::
is

σ2
v,lidar,unc =

〈(
−v′ sinφ
−2sinφ

)2
〉

+

〈(
w′ cosφ

−2sinφ

)2
〉

=
1

2

(
σ2
v,unc +σ2

w,unc cot2φ
)
≈ 0.5σ2

v,unc + 1.43σ2
w,unc

::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::

(16)10

::
for

:::
the

::::
lidar

:
with a half cone opening angle of φ= 30.6°the variance σ2

v,lidar of the lidar derived v-velocity is then composed

of the variances σ2
v and σ2

w of the wind according to:

σ2
v,lidar =

1

2

(
σ2
v +σ2

w tan2φ
)
≈ 0.5σ2

v + 1.43σ2
w

:
. These two situations and all cases in between are shown in Fig. 3b. The difference to the plots in Fig. 3a is that the two beams

that point into and against the v-direction are used here to estimate the v-spectrum vlidar,sum. The target spectrum of the15

v-component of the wind vwind is given as well as the w-spectrum wwind that presumably contaminates the signal. From the

vlidar,v and vlidar,w curves it can be seen that at very low wave numbers hardly any contamination occurs but mainly because

the w-component wwind itself contains a low energy density at low wave numbers. As it increases for higher wave numbers,

the contamination also gets more severe. In this example wwind dominates the lidar spectrum vlidar,sum for all wave numbers

above approximately k1 = 1.4× 10−2 radm−1
:::::::::::::::::
k1 = 1.4× 10−2 m−1. The result is that the lidar overestimates the v-variances20

for all wave numbers. Such an effect is also reported by Wyngaard (1968)
::::::::::::::
Wyngaard (1968). Thus, it is essential for accurate

turbulence measurements to minimize spatial separation.

VAD scanning along the whole measurement circle is more complex than using only two beams. Examining the two beams

aligned with
::
or

::::::::::::
perpendicular

::
to the mean wind direction is not sufficient to fully understand the effect of cross-contamination.

For circle scans, all three wind speed components are involved in contaminating all the beams that do not point in the four25

cardinal directions. We refer to the model presented in Sect. 4.1 and especially Eqs. (24), (25) and (26) of the spectral weighting

functions therein to better understand which components influence another.

The lidar can also be configured to perform a so-called three-second scan, in which one measurement cycle is built from

data from three full rotations. This limits the cross-contamination but comes at the cost of much stronger averaging along the
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measurement circle, especially in strong wind cases, and three times slower sampling rate. The ability to measure turbulence

with this approach is so weak that it is not further investigated in this paper.

Instead, the next chapter suggests two methods that can be used to reduce both averaging and cross-contamination.

3 Modified data processing

3.1 Squeezed measurement circles5

In conventional VAD data processing, each measurement cycle consists of the radial velocities that are acquired during one full

rotation of the prism. The data used in the reconstruction of one wind vector originates thus from an air volume with the shape

of a cone with a diameter of DC at the height of focus. This results in the above mentioned cross-contamination effects.

One way to eliminate the cross-contamination due to longitudinal separation and mitigate the averaging along the measure-

ment circle lies in making use of Taylor’s frozen turbulence hypothesis. As mentioned in Sect. 2.2, the hypothesis assumes that10

turbulent structures are transported by the mean wind motion without changing. This implies that all turbulent structures that

enter the measurement cone at one time are identical after some time t when they leave the cone. The time it takes to cross the

measurement circle can be estimated for all azimuth directions θ by

t(θ) = cosθ
DC

U
(17)

where U is the mean wind velocity calculated from conventional VAD processing.15

The basic idea here is to introduce a time lag τ = t into the data processing so that each air package that is involved in

the reconstruction of one wind vector is scanned twice: once when it enters and again when it leaves the measurement cone.

The composition of the measurement circles is shown in Fig. 4 from a coordinate system that is moving with the mean wind

U . In this example DC = 92.3m and U = 19.5ms−1. With conventional VAD data processing, the measurement circle is

made up of all N consecutive measurements from one cycle
:::
(red

::::::::
segment). By contrast, the lower part of Fig. 4 illustrates the20

introduction of the time delay τ , in which line-of-sight measurements from a total of M = 6 different measurement cycles are

combined to estimate one wind vector
:::::
(green

:::::::::
segments). In other words, with conventional data processing, a measurement

cycle is composed of volumes which are widely spatially distributed. The proposed new method picks measurement data taken

from what we term a squeezed measurement circle (SMC).

A restriction that comes with the idea of squeezing is that the circle sample rate fS must be high enough to be able to25

select measurements that were acquired with a time difference reasonably close to τ . That drastically limits the amount of

measurement heights that should be selected, especially in strong wind cases. For the measurements analyzed in this paper, the

lidar scanned continuously at only one height level, which in general makes sense to measure turbulence effectively.

3.2 2-beam method

The conventional method of averaging data from all available lines-of-sight to reconstruct 3-dimensional wind vectors leads to30

strong averaging along the measurement circle. The method is known to deliver reliable values for the mean wind speed and

12
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Figure 4. Selection of line-of-sight measurements for the reconstruction of one wind vector for when (top
:
,
::
in

:::
red) conventional VAD

processing and (bottom,
::
in

:::::
green) the method of squeezed measurement circles is applied

:
.
:::::
Within

:::
the

:::
red

:::
and

::::
green

::::::::
segments,

::::
small

:::
red

:::
and

::::
green

::::
rings

::::::
indicate

:::
the

:::::::
particular

:::::
beams

::::::
selected

:::
for

::::::
2-beam

::::::::
processing.

::
In
:::
this

:::::::
example,

:::::::::::::
U = 19.5ms−1,

:::::::::::
DC = 92.3m

:::
and

::::::::
fS = 1Hz.

direction. The directional information allows it to determine the two beams that lie in the upstream and downstream directions.

:::::
Within

:::
the

::::
red

:::
and

:::::
green

::::::::
segments

::
of

::::
Fig.

::
4,

:::::
small

:::
red

:::
and

:::::
green

:::::
rings

:::::::
indicate

::::
these

:::::::::
particular

::::::
beams. These two beams can

in a second processing step be used to estimate the u- and w-components of the wind vectors for turbulence estimations. The

resulting values are then not averaged along the measurement circle. This is comparable to the DBS method in cases where

the mean wind blows in line with two of the lines-of-sight. But an advantage of the 2-beam method over the DBS strategy is5
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that the relative angle between the mean wind and the two beams is kept constant in any prevailing wind direction. This is an

advantage since beams pointing upwind and downwind are immune to contamination by the cross wind component v.

When the 2-beam method is combined with the idea of squeezing, then measurements of the u- and w-components are

taken at virtually one focus point following the flow. Only the line-of-sight averaging and some minor longitudinal separation

between the different locations along the two beams remain.5

That is unfortunately not true when estimating the v-component of turbulence. Instead, several problems occur. Intuitively,

one would choose a beam direction perpendicular to the mean wind direction in order to estimate the v-component of the wind.

But the radial velocities in this line-of-sight direction are often close to zero, and such estimates from continuous-wave lidars

are usually not reliable (Mann et al. (2010), Dellwik et al. (2010))
::::::::::::::::::::::::::::::::
(Mann et al., 2010; Dellwik et al., 2010). The transverse v-

component must therefore be estimated either by VAD/SMC processing or by selecting a different third beam direction. In the10

latter case the results would then be influenced by contamination not only from w but also from the u-component. This lies

outside the scope of this study. Therefore no v-data from measurements are processed with the 2-beam method.

Like conventional VAD processing, the SMC method and 2-beam method require a wind field that is statistically homoge-

neous in the horizontal directions to yield correct results.

4 Description of the model15

The mathematics of deducing the lidar-measured spectrum from the second-order statistics of turbulence is very convoluted.

Therefore, we make the assumption that the measurements are done much faster than it takes the air to move from one side of

the scanning circle to the other, i.e., we assume that 1
fS
� t

::::::

1
fS
� τ . Effectively, the scanning circle is measured continuously.

:
It
::
is

:::::::
difficult

::
to

:::::
assess

:::
the

:::::::::
magnitude

::
of

:::
the

:::::
error

:::::::::
committed

::
by

:::
the

::::::::::
assumption

::
of

:::::::::
continuous

:::::::::::::
measurements,

:::
but

:::
we

::::::
assume

::
it

:
is
:::::::::
negligible.

:
20

4.1 VAD and SMC

In order to model spectra obtained from conventionally VAD processed lidar data we closely follow Sathe et al. (2011)
:::::::::::::::
Sathe et al. (2011).

They use the geometry of the lidar scan and its along beam weighting function together with information on the spatial struc-

ture of surface-layer turbulence (Mann, 1994). The focus point of the lidar is at a distance df away in the direction given by

the unit vector25

n(θ) = (−cosθ sinφ,−sinθ sinφ,cosφ) (18)

where θ is the azimuth angle
:::
and

:
φ
::

is
::::

the
:::
half

:::::
cone

:::::::
opening

:::::
angle. The line-of-sight or radial wind speed that the lidar is

measuring is modelled as

vr(θ,x) =

∞∫
−∞

ϕ(s)n(θ) ·u((s+ df )n(θ) +xe1)ds . (19)
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where ϕ is the spatial weighing function of the continuous-wave lidar that we assume to be a Lorentzian function with the

Rayleigh length lR. u is the three-dimensional velocity field suppressing the time argument since we are assuming Taylor’s

hypothesis. The integration variable s is the distance along the beam from the focus point. The dot product assures that we get

the line-of-sight velocity. We use x, the coordinate aligned with the mean wind vector, instead of time.
::
e1::

is
:::
the

::::
unit

::::::
vector

::::::
aligned

::::
with

::
x.

:
5

The w-, u-, and v-components of the velocity are calculated by the first three Fourier coefficients of vr as a function of θ, i.e

w is calculated from

A(x) =
1

2π

2π∫
0

vr(θ,x)dθ (20)

In Sathe et al. (2011) variances are calculated for a conically scanning continuous-wave lidar and it is trivial to extend that

to spectra. Spectra were in fact calculated in Sathe and Mann (2012) but only for a pulsed system. In Sathe et al. (2011) the10

variances for a conically scanning continuous-wave system, e.g., a ZephIR 300 (Smith et al., 2006; Kindler et al., 2007), were

given by〈
wZ

2

〉
cos2φ =

∫
Φij(k)αi(k)α∗j (k)dk (21)〈

uZ
2

〉
sin2φ =

∫
Φij(k)βi(k)β∗j (k)dk (22)〈

vZ
2

〉
sin2φ =

∫
Φij(k)γi(k)γ∗j (k)dk (23)15

where ∗ means complex conjugation. The spectral weighting functions α, β and γ are

αi(k) =
1

2π

2π∫
0

ni(θ)e
idfk·n(θ)e−l|k·n(θ)|dθ (24)

βi(k) =
1

π

2π∫
0

cosθ ni(θ)e
idfk·n(θ)e−l|k·n(θ)|dθ (25)

γi(k) =
1

π

2π∫
0

sinθ ni(θ)e
idfk·n(θ)e−l|k·n(θ)|dθ . (26)

The spectra measured by the conically scanning lidar will be20

cos2φFZw (k1) = T̂f (k1)

∞∫∫
−∞

Φij(k)αi(k)α∗j (k)dk2dk3 (27)

and likewise for the u- and v-components. The function

T̂f (k1) = sinc2

(
k1Lf

2

)
(28)
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:::::
where

:::::::::::
sincx= sinx

x :
is multiplied to the integral to account for the finite time of circle scanning before a velocity estimate is

obtained. Lf is the mean wind speed multiplied with this finite time (see Sathe et al. (2011) for details).

To apply the method of squeezing and model the spectra we get from SMC processing, we now substitute Eq. (19) with

ṽr(θ,x) =

∞∫
−∞

ϕ(s)n(θ) ·u((s+ df )n(θ) + (x− dfn1(θ))e1)ds . (29)

Following the exact same steps as in Sathe et al. (2011) but using Eq. (29) instead of (19) we arrive at Eqs. (21) – (23) but5

with the complex exponential in (24) – (26) exchanged with

eidf (k·n(θ)−k1n1(θ)) (30)

4.2 2-beam method

Only the up- and downwind beams to determine the u and w components of the wind vector could introduce less averaging

than using the whole circle.10

When the mean wind is blowing from the north, the unit vectors in the up- and downwind directions are called nu and nd,

respectively. Their unit vectors are

nu = (−sinφ,0,cosφ) (31)

and with the opposite sign on the first component for nd.

Parallel to Eq. (19) the line-of-sight velocity measured by the upwind beam is assumed to be15

vu(x) =

∞∫
−∞

ϕ(s)nu ·u(snu + dfn
u +xe1)ds (32)

The u-component estimated by the lidar is normally

ulidar =
∆v

nu1 −nd1
(33)

where

∆v = vu(x)− vd(x)20

=

∞∫
−∞

ϕ(s)
[
nu ·u((s+ df )nu +xe1)

−nd ·u((s+ df )nd +x)
]
ds (34)

16



The correlation function of ∆v is

R∆v(r) = 〈∆v(x)∆v(x+ r)〉

=

∞∫∫
−∞

ϕ(s)ϕ(s′)

×
〈[

nu ·u((s+ df )nu +xe1)

−nd ·u((s+ df )nd +xe1)
]

5

×
[
nu ·u((s′+ df )nu + (x+ r)e1)

−nd ·u((s′+ df )nd + (x+ r)e1)
]〉
dsds′ . (35)

Expanding the product inside the ensemble average (〈〉) and using the definition of the correlation tensor of the velocity field,

Rij(r)≡ 〈ui(x)uj(x+ r)〉 one gets

R∆v(r) =

∞∫∫
−∞

ϕ(s)ϕ(s′)× (36)10

{
nui n

u
jRij((−s+ s′)nu + re1)

+ndi n
d
jRij((−s+ s′)nd + re1)

−nui ndjRij(s′nd− snu + df (nd−nu) + re1)

−ndi nujRij(s′nu− snd + df (nu−nd) + re1)
}
dsds′

Now we use the relation between the velocity covariance tensor and the spectral velocity tensor15

Rij(r) =

∫
Φij(k)exp(ik · r)dk (37)

where
∫
dk ≡

∫∫∫∞
−∞ dk1dk2dk3, to express the auto-covariance function as

R∆v(r) =

∞∫∫
−∞

ϕ(s)ϕ(s′)× (38)

{
nu
i n

u
j

∫
Φij(k)exp

(
ik · ((−s+ s′)nu + re1

)
dk

+nd
i n

d
j

∫
Φij(k)exp

(
ik · ((−s+ s′)nd + re1

)
dk20

−nu
i n

d
j

∫
Φij(k)exp

(
ik · (s′nd − snu + df (nd −nu) + re1

)
dk

−nd
i n

u
j

∫
Φij(k)exp

(
ik · (s′nu − snd + df (nu −nd) + re1

)
dk
}
dsds′

By interchanging the order of integration of k and the s’s we can cast the expression in terms of the Fourier transform of ϕ

which in the case of a Lorentzian is ϕ̂(k) = exp(−lR|k|). Thereafter, we Fourier transform R∆v with respect to r to get the

spectrum F∆v(k1). After that process the first term in (38) becomes25

nui n
u
j

∫
Φij(k)ϕ̂(k ·nu)ϕ̂(k ·nu)dk2dk3
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and upon rearrangement we finally obtain

F∆v,n(k1) =

∫
Φij(k)

{
nui n

u
j |ϕ̂(k ·nu)|2 +ndi n

d
j

∣∣ϕ̂(k ·nd)
∣∣2

− 2nui n
d
j ϕ̂(k ·nu)ϕ̂(k ·nd) (39)

× cos
(
dfk · (nd−nu)

)}
dk2dk3 .

The derivation of the “squeezed” spectrum is parallel to the normal spectrum. The only difference lies in the definition of ∆v.5

Now we define it as

∆vs(x) = vu(x−nu1df )− vd(x−nd1df ) (40)

Using the exact same steps that led to (39), we see that the cosine term in that equation has to be substituted with one and we

get

F∆v,s(k1) =

∫
Φij(k)

{
nui n

u
j |ϕ̂(k ·nu)|2 +ndi n

d
j

∣∣ϕ̂(k ·nd)
∣∣210

−2nui n
d
j ϕ̂(k ·nu)ϕ̂(k ·nd)

}
dk2dk3 . (41)

To obtain the spectrum of u, F∆v,(s) simply has to be divided by (nu1 −nd1)2 according to (33).

When obtaining the spectrum of v, we simply exchange the unit vectors of the up- and downwind beams nu and nd in

all equations by the values of the west- and eastbound beams nw and ne. In order to obtain the spectrum of w, ∆v defined

in Eq. (34) has to be replaced by the sum of both radial velocities vu(x) + vd(x) and F∆v,(s) must eventually be divided by15

(nu3 +nd3)2.

To compare the different methods to calculate spectra from a lidar Eqs. (39) and (41) have to be evaluated with a model for

the spectral tensor. We chose the spectral tensor from Mann (1994) and select the model parameters so that the model spectra re-

semble the spectra from available sonic measurements. The selected parameters are: L= 65m, Γ = 4 and αε
2
3 = 0.023 m

4
3 s−2

The model
:
.
:::
The

::::::::
unfiltered

::
u
:::::
target

::::::
model

:::::::
spectrum

::::
that

:::
we

:::
will

::::
later

::::::::
compare

:::
the

:::::
model

::::::
results

::::::
against

::
is

:::::
given

::
by

:
20

Fu(k1) =

∫
Φ11(k)dk2dk3

::::::::::::::::::::::

(42)

:::
and

::::::::::
respectively

:::
for

:::
the

::::::
second

::::
and

::::
third

:::::
wind

::::::::::
component.

::::
The

:::::
model

:
was tested by comparing the theoretical spectra with

results from processing computer generated wind field turbulence data (Mann, 1998) and was found to predict all four data

processing methods i.e., VAD, SMC, 2-beam and squeezed 2-beam accurately for all 3 wind speed components.
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5 Description of the measurements

5.1 Test site and instrumentation

The test data were collected at the Danish National Test Center for Large Wind Turbines at Høvsøre. The test site
:
is
:
located in

West Jutland, Denmarkjust
:
, 1.7 km east of the North Sea

:
.
:::::
Apart

:::::
from

:::
the

:::::
dunes

:::::
along

:::
the

::::::::
coastline,

:::
the

::::::
terrain is nearly flat.

A detailed description is given in Peña et al. (2016).5

The
::::::
Høvsøre

:::::::::::::
meteorological

::::
mast

::
is
:::::::
located

::
to

:::
the

:::::
south

::
of

::
a

:::
row

::
of
::::

five
:::::
wind

:::::::
turbines.

::::
The reference data were acquired

with
:
a
:
Metek USA-1 sonic anemometers that are attached to a meteorological mast

::::::::::
anemometer

::::
that

::
is

:::::::
mounted

:
at 80.5 m

height above the ground.
:
It

::
is

:::::::
attached

::
to
::

a
:::::::::
4.3 m long

:::::
boom

::::::::
pointing

:::::
north.

:::::
Mast

:::::
effects

::::
can

::
be

::::::::
observed

:::::
when

:::
the

:::::
wind

::
is

:::::::
blowing

::::
from

:::
the

:::::
south.

:::::::
Turbine

:::::
wake

::::::
effects

::::::::
influence

:::
the

:::::::::::
measurement

:::::
signal

:::::
when

:::
the

::::
wind

::::::
blows

::::
from

:::
the

:::::
north.

::::
For

:::
the

:::
data

:::
set

::
in

:::
this

::::::
study,

:::
the

:::::
inflow

::
is

::::::::::
undisturbed.

::
A
:::::::
detailed

::::::::::
description

::
of

:::
the

:::
test

:::
site

::
is
:::::
given

::
in

:::::::::::::::
Peña et al. (2016).

:
10

Collocated with the meteorological mast, the lidar measurements were taken by a Qinetiq lidar that was configured to

continuously scan at 78 m above the ground. The lidar is comparable to the current ZX 300 (previously ZephIR 300) but the

effective aperture size is slightly lower which results in a longer Rayleigh length and thus greater line-of-sight averaging. The

lidar was equipped with an opto-acoustic modulator that makes it possible to detect the direction of the radial velocities. Line-

of-sight velocities calculated from the centroid of the Doppler spectra are used in the data processing.
:::
The

::::::::
precision

::
of

:::::
these15

::::
lidar

::::::::::::
measurements

:
is
:::
not

:::::::
exactly

::::::
known

:::
but

:
is
:::
in

::::::
general

:::::
better

::::
than

:::
1%

:::::::::::::::::::
(Pedersen et al., 2012).

:

Measurement data of 32 subsequent 10-minute intervals are used. The data were acquired on 20.11.2008 between 10:30 and

15:50 local time.

The mean wind velocity measured by the sonic anemometer during this period was 19.5 ms−1 from northwest, and the

mean turbulence intensity was
:::::
varied

::::
from

:::::::::::
14.2 ms−1 to

:::::::::::::
22.6 ms−1 with

:::
an

::::::
average

:::
of

::::::::::::
19.5 ms−1 and

:
a
::::::::
standard

::::::::
deviation

::
of20

::::::::
2.0 ms−1.

::::
The

:::::::::
turbulence

:::::::
intensity

::::::
varied

:::::
from

::::
4.7%

::
to
:::::::

14.0%,
::::
with

:
a
:::::

mean
:::
of 8.8% .

:::
and

:::::::
standard

::::::::
deviation

:::
of

:::::
2.0%.

::::
The

::::
wind

::::
blew

:::::
from

:::
the

::::::::
northwest

::::
and

:::
the

::::::::::
atmospheric

:::::::
stability

::::
was

::::::
neutral.

:::::
Table

::
1
::::::::::
summarizes

:::
the

::::
most

:::::::::
important

::::::::::
information

::::
about

:::
the

:::::::::::
experimental

::::::
setup.

5.2 Data processing

The time series of all 10-minute intervals derived from all processing methods are used to compute turbulence spectra. The25

measurement rate for the used lidar is 1 Hz. Although it would have been possible in the 2-beam processing to calculate

measurement values with a rate of 2 Hz by using every newly retrieved radial velocity together with its predecessor, it was

decided to use only independent measurements acquired every full second. The data
:::::
sonic

::::::::::
anemometer

::::::::
measures

::::
with

:
a
::::
rate

::
of

:::::
20 Hz.

::::
This

::::
high

:::::::::
frequency

::::
data

:
is
:::::::::::::
down-sampled

::
by

:::
the

:::
use

::
of

:::
the

:::::::::
MATLAB

:::::::
function

:::::::::
‘resample’

::
to
::
a
::::::::
frequency

::
of

:::::
1 Hz.

::::
The

:::::::
function

:::::::
includes

:
a
::::::::

low-pass
:::::
filter

::
to

:::::
avoid

:::::::::::
anti-aliasing.

:::
The

::::
data

:
rate is thus for all methods 1 Hz. The analyzed frequency30

range from 1
600 Hz to 1

2 Hz equals the wave number range from roughly 5.4× 10−4 m−1 to 1.6× 10−1 m−1. The spectra are

then averaged for all intervals and the results are then binned into 30 logarithmically spaced wave number intervals spread

across the wave number axis to avoid high density of values and maintain readability towards higher wave numbers.
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Description Abbr. Value Unit

Measurement height h 78 [m]

Half cone angle φ 30.6 [deg]

Cone diameter D
:::
DC 92.3 [m]

Focus distance df 90.6 [m]

Prism rotation fS 1 [Hz]

Measurements per cycle N 50 [1]

Laser wave length λ 1550 [nm]

Effec. aperture diam. a0 24 [mm]

Mean wind speed Umean 19.5 [ms−1]

1. Resonance λres1 184.5 [m]

kres1 0.034 [radm−1
::::
m−1]

2. Resonance λres2 61.5 [m]

kres2 0.102 [radm−1
::::
m−1]

No. of cycles to cover τ M 0-5 [1]

Rayleigh length lR 7.03 [m]

Full width half maximum 2lR 14.07 [m]
Table 1. Key specifications of the lidar used in the measurements

The effects of de-trending (Hansen and Larsen, 2005) and spike removal (Hojstrup, 1993) on the spectra were both negligible

for this dataset, so neither was applied here.

6 Discussion of the results

6.1 u-spectra

Figure 5 shows the spectra of the u-fluctuations for all processing methods from measurement data (square
::::::
triangle

:
markers)5

and the corresponding model predictions (solid lines). We will first discuss the results from processing the whole measurement

circle shown in Fig. 5a, followed by the discussion of the results of the 2-beam method, shown in Fig. 5b.

6.1.1 Circle processing

To begin with, the model predictions of conventional VAD processing and the new SMC method are compared against each

other and with regard to the
:::
true u target spectrum.

:::::
model

::::::::
spectrum

:::::::
acquired

:::::
from

:::
the

:::::::
spectral

:::::
tensor

:::::::::
according

::
to

::::
Eq.

:::
42.10

The model prediction of the conventionally processed VAD lidar data shows some attenuation of the spectral energy even

for very low wave numbers. This can be partly explained by the infinitely long tails of the line-of-sight averaging func-

tion given in Eq. (8). That means that even very large eddies are slightly weakened by the underlying Lorentzian function.
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Figure 5. Modelled (solid lines) and measured (square
::::::
triangle markers) u-spectra from data processing where (a) all radial measurements

are used and (b) only two beams are used. Colors correspond to processing method.
:::
The

::::
grey

::::::
vertical

:::::
dashed

::::
lines

:::::::
represent

:::
the

::::
first

:::
and

:::::
second

::::::::
resonance

::::
wave

::::::
number.

Averaging along the measurement circle might also have some small additional impact on large scale turbulence. Both av-

eraging effects get more and more severe for increasing wave numbers until the measured spectral energy reaches values

close to zero at roughly k1 = 10−1 radm−1
:::::::::::::
k1 = 10−1 m−1

:
and above. The tendency of increasing attenuation with regard

to the target spectrum is interrupted around the first resonance frequency that is indicated by a vertical grey dashed line

at k1 = 3.4× 10−2 radm−1
:::::::::::::::::
k1 = 3.4× 10−2 m−1. Here the energy density increases and reaches coincidentally roughly the5

value of the target spectrum. This behavior is as expected an effect of the cross-contamination with energy from both the w-

spectrum and to a small extend also from v. A resonance effect at the second resonance frequency is hardly pronounced since

the energy is nearly fully consumed by the line-of-sight averaging.
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The SMC model spectrum predicts a similar shape but without the cross-contamination effect from longitudinal separation.

Thus, we find no resonance in the computations. The total variance of the u-fluctuations σ2(u′) is lower here since less

additional energy from thew component is contained in the uSMC signal. The signal is still contaminated by contributions from

other components because the lateral separation cannot be reduced by squeezing. But the averaging along the measurement

circle is so strong that for example for wave numbers above around k1 = 10−2 radm−1
::::::::::::
k1 = 10−2 m−1

:
less than half of the5

energy of the target spectrum is expected to be detected by the lidar.

First, when the model is compared with the measurement data, the chosen spectral tensor does not fit the actual wind

conditions very well in the wave number range below k1 = 10−2 radm−1. This
:::::::::::::
k1 = 10−2 m−1.

:::
The

:::::
extra

::::::
energy

::
at

:::
low

:::::
wave

:::::::
numbers

::::::::
compared

:::
to

:::
the

:::::::
spectral

:::::
tensor

::::::
model

:::
for

:::
this

::::
site

:::
has

:::::
been

::::::::
observed

:::::
before

::::
and

::
is

::::::
related

::
to

:::
the

::::::::::::::
inhomogeneous

::::::::
landscape

::
at

::
H

:
ø
::
vs

:
ø

:
re

::::
with

:::
its

:::
sea

::
to

::::
land

::::::::
transition

::
in
:::

the
:::::

main
:::::
wind

:::::::
direction

:::::::::::::::::::
(Sathe et al., 2015) and

:::::::::
mesoscale

::::::
effects

::::
that10

::::::
overlay

:::
the

::::::::
expected

:::::::
spectral

::::
gap

:::::::::::::::::
(Larsén et al., 2016).

:::::::
Luckily,

::::
this

:
does not severely impede the analysis since the most

interesting effects are expected at higher wave numbers and tendencies can
:::
still

:
be determined from the relative distances

between the markers and lines without matching the absolute values. The extra energy at low wave numbers compared to the

spectral tensor model for this site and wind direction has been observed before and is related to inhomogeneous landscape

(Sathe et al., 2015). Next, the comparison of data from sonic measurements and VAD as well as SMC processed lidar data15

shows in the very low wave number range at k1 < 3× 10−3 radm−1
::::::::::::::::
k1 < 3× 10−3 m−1

:
that VAD and SMC processing

produce similar results with a slight tendency towards lower energy densities in the SMC measured spectrum that is not found

in the model computations. A possible explanation is that the fluctuations of the u- and especially the w-component in the real

wind field are not perfectly correlated,
:::
i.e.

:::
the

:::::
frozen

:::::::::
turbulence

:::::::::
hypothesis

:
which the model assumes

:
is

:::::::
slightly

:::::::
violated. The

result is a small contribution of wwind on ulidar that appears only
:
to

::
a
::::::
greater

:::::
extent

:
in the VAD processed spectrumbecause it20

is compensated for by the .
::::
The

::::::
reason

::
for

:::
the

:::::::::
difference

::
is

:::
that

:::
the

:::::::::
correlation

::
is

:::::
closer

::
to

:::::
unity

::
in

:::
the

:::
case

:::
of SMC processing.

Apart from some exceptions (e.g., at k1 = 3× 10−3 radm−1
::::::::::::::::
k1 = 3× 10−3 m−1), a relatively increasing averaging effect to-

wards higher wave numbers is found for the lowest wave numbers as expected. In the wave number range k1=10−2 radm−1 to 6× 10−2 radm−1
:::::::::::::::::::::::
10−2 m−1 to 6× 10−2 m−1 the

sonic spectrum and the VAD spectrum follow the corresponding modelled spectra nicely through the first resonance point. That

shows that the cross-contamination caused by longitudinal separation is present in the measurements and is properly modelled.25

The spectrum derived from SMC processed data shows a clear tendency towards its modelled spectrum but does not com-

pletely reach it. It does not show the resonance effect seen for VAD processing, but the overall energy level is higher than

predicted for k1 > 10−2 radm−1
::::::::::::
k1 > 10−2 m−1. It is not possible to determine what causes this deviation. One possible rea-

son is that the model assumes a perfect delay of the measurement timing. In reality this is not possible due to only discrete

acquisition times being available. Also the air packages are in reality not always advected with the exact mean wind speed and30

direction. Both imperfections justify that the behavior of real SMC processing lies in between the modelled SMC and VAD

processing.

For k1 > 7× 10−2 radm−1
::::::::::::::::
k1 > 7× 10−2 m−1

:
VAD and SMC processed data are nearly identical. As shown in e.g.,

Schlipf et al. (2010)
::::::::::::::::
Schlipf et al. (2010), the assumption of frozen turbulence is not valid for high wave numbers. In this region,

fluctuations separated by the distances between the relevant focus points are uncorrelated and the squeezing has no effect. The35
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lack of coherence also explains that the values are higher than predicted because the u-spectrum is highly contaminated by w-

and v-fluctuations.

6.1.2 2-beam processing

The plotted model spectrum for the conventional 2-beam processing method shows a significantly lower averaging effect

compared to whole circle processing methods at all wave numbers except in the very low wave number region, where the5

methods are expected to perform similarly well.

With the 2-beam method it is expected that fluctuations with the highest wave numbers analyzed are to some extent included

in the spectrum, while they were close to zero when circle processing was applied. The normal 2-beam processing in the model

is prone to cross-contamination at both resonance points (vertical dashed lines). This situation is explained in detail in Sect. 2.5.

In contrast, the method of squeezing applied to the 2-beam processing shows as expected no cross-contamination in the model10

calculations.

Overall, spectra calculated from the 2-beam processed measurement data show very good agreement to the model.
::
It

::
is

::::::::
important

::
to

::::
keep

::
in

:::::
mind

::::
that,

:::
due

::
to

:::
the

::::
poor

::
fit

::
of
:::
the

:::::::::
measured

::::::
spectra

::
of

:::
the

::::::::
horizontal

:::::
wind

::::::::::
components

:::
and

:::
the

::::::::
modeled

::::::
spectra

::
at

:::
low

:::::
wave

::::::::
numbers,

:::
we

::::
can

:::::::
compare

:::
the

::::::::
relations

:::::::
between

:::
the

::::::::
different

:::::::
methods

::::
but

:::
not

:::::::
absolute

::::::
values.

:
At low

wave numbers, the measured spectra are on average closer to the target spectrum than in the case of circle processing. The15

slightly lower energy content of "squeezed" measurements that we observed and explained for circle processing is found here

as well. Also, when it comes to deviations from the modelled behavior like for example the higher energy density at some wave

numbers (e.g., k1 = 3× 10−3 radm−1
::::::::::::::::
k1 = 3× 10−3 m−1), we find similar tendencies as in circle processing, and the reason

is likewise unclear.

The strong cross-contamination at the first resonance frequency is clearly represented in the normal 2-beam processing and20

can be completely avoided by squeezing the two focus points to virtually one point. It is worth mentioning that the squeezing

procedure works more like expected when applied to the 2-beam method than when applied to the circle processing. This can

be explained by the error caused by not having continuous but only discrete delaying times τ available. The relative impact of

this error is lower in the case of the 2-beam method because then the maximum separation distance DC must be compensated

for. In circle processing mode, the shorter separations where the relative error is larger also contribute to the result.25

At k1 > 7× 10−2 radm−1
::::::::::::::::
k1 > 7× 10−2 m−1 the two processing methods result in nearly identical values again, and we

assume the lack of coherence of short eddies to be the cause also here.

6.2 v-spectra

Figure 6 shows the spectra of the v-fluctuations for all available data processing methods from both measurement data (square

::::::
triangle

:
markers) and the corresponding model predictions (solid lines). Also here, we first discuss the results from processing30

the whole measurement circle shown in Fig. 6a, followed by the discussion of the results of the 2-beam method shown in

Fig. 6b.
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Figure 6. Modelled (solid lines) and measured (square
::::::
triangle markers) v-spectra from

::
all data processing where (a) all radial measurements

are used and (b) only two beams are used
::::::
methods. Colors correspond to processing method.

6.2.1 Circle processing

The modelled spectra of conventionally VAD processed lidar measurements predict energy densities that slightly exceed the

target spectrum for very long fluctuations with k1 < 1.3× 10−2 radm−1
:::::::::::::::::
k1 < 1.3× 10−2 m−1. This behavior can be explained

by uncorrelated w-fluctuations between the eastern and western sides of the measurement circle that contaminate the v-signal.

This contamination is slightly stronger than averaging that is very weak at low wave numbers.5

By contrast, fluctuations shorter than approximately k1 = 1.3× 10−2 radm−1
::::::::::::::::::
k1 = 1.3× 10−2 m−1 appear dampened in

the spectrum, and fluctuations with higher wave numbers k1 > 10−1 radm−1
::::::::::::
k1 > 10−1 m−1

:
are not even present in the v-

spectrum due to the strong averaging. Unlike the u-spectrum, the v-spectrum does not have characteristic behavior around the

first resonance wave number. This is not surprising because the lines-of-sight that are the most important for the detection

of v-fluctuations lie, according to Eq. (26), orthogonal to the mean wind direction in which turbulence is advected. So, no10

resonance occurs.

When the model spectrum for SMC processing is analyzed, we find a higher variance for all wave numbers above approxi-

mately k1 = 1.3× 10−2 radm−1
::::::::::::::::::
k1 = 1.3× 10−2 m−1. Reduced averaging along the measurement circle is the reason for the

higher energy in the SMC spectrum. It is caused by the following: The process of squeezing reduces the longitudinal separation

of the focus points ideally to zero while the lateral separation remains unchanged. We know that the lines-of-site perpendicular15

to the mean wind direction on both sides of the measurement circle are the most important for the determination of vlidar. Let

us assume these are the easterly and westerly beams. The exact east- and westbound beams are not affected by the process

of squeezing. But for example the north-east and the south-east beam (respectively the north-west and north-east on the other

side) see different turbulent structures in conventional VAD processing. With SMC processing, these two beams see the same

structure. In the subsequent calculation of the v component all lines-of-sight are combined and the pairs of radial velocities20
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that lie in line with the mean wind contribute with the average of their amplitudes. This average of amplitudes is lower than the

common amplitude measured by the beam pairs under SMC processing. More simply, there is less averaging along the mea-

surement circle when SMC is applied. As a result, the spectrum of SMC shows higher energy densities for all wave numbers

where uncorrelated fluctuations dominate.

Now we compare the measurements with the model. Unfortunately, the
:::::
similar

::
to

:::
the

::::::::::::
u-fluctuations,

:::
the target spectrum does5

not represent the sonic measured values properly, especially for low wave numbers. We will therefore concentrate on the ten-

dencies and proportions between the spectra from different methods. While the model predicts the behavior at the lowest wave

numbers more or less satisfactorily, we are faced with two outliers at k1 = 1.65× 10−3 radm−1 and k1 = 2× 10−3 radm−1

::::::::::::::::::
k1 = 1.65× 10−3 m−1

::::
and

::::::::::::::::
k1 = 2× 10−3 m−1 where both the VAD and SMC processing lead to excessive energy estimations.

The reason is unclear and not further investigated. At all other wave numbers, the agreement of model and measurements is10

very satisfactory. In particular, the differences between the two methods are found in the measurements, as predicted. The good

agreement between model spectra and measurement spectra at wave numbers above approximately k1 = 2× 10−2 radm−1

::::::::::::::::
k1 = 2× 10−2 m−1 might be surprising with regard to the poor agreement of sonic measurements and target spectrum. The

reason is that the shape of the lidar v-spectra is mainly determined by the cross-contamination from the w-component which,

as we describe in 6.3, agrees better with its model representation.15

The identity of VAD and SMC derived measurement spectra that we saw for u-fluctuations for k1 > 7× 10−2 radm−1

::::::::::::::::
k1 > 7× 10−2 m−1

:
is found here at k1 > 10−1 radm−1

:::::::::::::
k1 > 10−1 m−1. The reason is obvious when we look at the rele-

vant longitudinal separation distances. They are much shorter when processing v-fluctuations than u-fluctuations, and the

assumption of frozen turbulence is more valid for short separation distances. Therefore squeezing can maintain its effect into a

somewhat higher wave number region.20

6.2.2 2-beam processing

When the 2-beam method is applied, i.e., using only the east and west beam to derive the v-component of the wind vector, the

method of squeezing has no effect. In both cases, we get the same model behavior shown in Fig. 6b. In comparison with the

whole circle processing, the 2-beam method is characterized by lower energy estimates at low wave numbers and higher energy

estimates at higher wave numbers .
::::
(see

:::
Fig.

:::
6). One reason for the first is assumed to be the lower coherence of v-fluctuations25

separated by the full distance DC . That implies that 2-beam processing gets a somewhat lower contribution of vwind to vlidar.

A second reason is that there is not cross-contamination from u on v occurring for the 2-beam processing. The higher energy

content at high wave numbers results from the absence of averaging along the measurement circle.

The model cannot be compared with measurements because the line-of-sight velocities of the east and west beams were

erroneous. The absolute values we measured are unrealistically biased towards non-zero values. This effect has been previ-30

ously reported (Mann et al. (2010) and Dellwik et al. (2010))
:::::::::::::::::::::::::::::::::
(Mann et al., 2010; Dellwik et al., 2010).

:::
We

:::::::
included

:::
the

::::::
model

:::::::
behavior

::
of

:::::::
2-beam

:::::::::
processing

:::
for

:::
the

::::
sake

::
of

:::::::::::
completeness

:::
and

:::
to

::::
show

::::
that

:::
the

:::::::::
availability

::
of

:::::::
reliable

:::::::::::
measurement

::::
data

:::
for

::
the

::::
east

:::
and

:::::
west

:::::
beams

::::::
would

::
be

::
of

::::::
hardly

:::
any

:::
use.
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Figure 7. Modelled (solid lines) and measured (square
::::::
triangle markers) w-spectra from data processing where (a) all radial measurements

are used and (b) only two beams are used. Colors correspond to processing method.
:::
The

::::
grey

::::::
vertical

:::::
dashed

::::
lines

:::::::
represent

:::
the

::::
first

:::
and

:::::
second

::::::::
resonance

::::
wave

::::::
number.

6.3 w-spectra

Figure 7 shows the spectra of the w-fluctuations for all processing methods from both measurement data and the corresponding

model predictions. Again, we discuss the results from processing the whole measurement circle first and then the results of the

2-beam method.

6.3.1 Circle processing5

To begin with, we compare the model predictions of conventional VAD processing and the new SMC method against one

another and with regards to the w target spectrum. The results of the actual measurements follow. The model prediction of

the conventionally processed VAD lidar data shows some attenuation of the spectral energy even for very low wave num-
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bers. The reason is mainly the infinitely long tails of the line-of-sight averaging function and to a lesser extent the averaging

along the measurement circle. Both averaging effects become quickly stronger for increasing wave numbers. The spectrum

from VAD processed data is expected to drop at the first resonance point marked with a grey dashed vertical line in Fig. 7.

This drop is minor due to the overall low energy level present in the spectrum. The spectrum reaches a value near its final

minimum with variance values close to zero already at around k1 = 5× 10−2 radm−1
:::::::::::::::
k1 = 5× 10−2 m−1

:
just after cross-5

ing the first resonance point. w-fluctuations with higher wave numbers are not detectable with conventional VAD processing.

According to the model, the SMC processing improves the situation slightly by removing the longitudinal separation that

makes lidar blind to w-fluctuations at the resonance points with VAD processing. Squeezing the measurements also helps im-

prove the measurements well above and below the resonance wave number. But still, due to the remaining averaging effects,

only a minor fraction of the energy in the vertical wind can be detected with both methods at wave numbers above roughly10

k1 = 10−2 radm−1
::::::::::::
k1 = 10−2 m−1.

The
:::::
Unlike

:::
for

:::
the

:
u
::::
and

:::::::::::
v-component,

:::
the

:::
fit

:::::::
between

:::::
target

::::::::
spectrum

:::
and

:::::::::::
measurement

::::
data

::
is

::::
good

:::
for

:::
the

::::::::::::
w-component

:::
also

::
in
:::
the

::::
low

:::::
wave

::::::
number

:::::::
region.

:::
The

::::::
results

::
of

:::::::::::::::::::::
Larsén et al. (2016) show

::::
that

:::
the

::::::
spectra

:::
for

:::::::
vertical

::::::::::
fluctuations

:::
are

:::
not

:::::
prone

::
to

:::::::::::
contributions

::::
from

:::
the

:::::::::
mesoscale

::::::::
spectrum.

::::
The measurement data overall support these model predictions and show

that the process of squeezing functions well over the entire frequency range in this study. In detail, we only find some mismatch15

for very low wave numbers where k1 < 10−3 radm−1
:::::::::::::
k1 < 10−3 m−1. The measured spectra lie above the target spectrum here

although we expected some attenuation. The discrepancy is caused by the real u-wind spectrum being much higher than the

underlying target spectrum, see Fig. 5. We already found that large scale u-fluctuations are also not perfectly correlated and

thus contaminate the measured lidar spectra, which is not considered in the model. At higher wave numbers we find very good

:::::::::
reasonable forecasting of measured w-spectra by the model.20

6.3.2 2-beam processing

The modelled 2-beam spectra in Fig. 7b lie considerably closer to the target w-spectrum for all wave numbers. That can be

explained by the absence of circle averaging. The strong influence of resonance visible at the two first resonance wave numbers

underlines the importance of squeezing when striving for more realistic spectra from lidar measurements.

At low wave numbers with k1 < 10−2 radm−1
::::::::::::
k1 < 10−2 m−1

:
the measured spectra contain higher energy densities than25

modelled. A similar but less pronounced effect was found in circle processing only at the lowest wave numbers. The ex-

planation we gave there must therefore be supplemented by mentioning that the assumed decorrelation is stronger for the

maximal separations that are involved in the 2-beam method. The further comparison of spectra from experiment and model

show that the process of squeezing also leads to the expected effect in the case of using only two beams to determine

the w component of the wind vector. As in the case of u-fluctuations, this statement must be limited to wave numbers30

k1 < 7× 10−2 radm−1
::::::::::::::::
k1 < 7× 10−2 m−1.

:

6.4
::::::::
Extended

:::::::::
discussion
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:::
The

::::::
results

::::::::
discussed

::::
here

:::
are

::::::::
extracted

::::
from

:
a
::::::
single

::::
data

::
set

::::
that

:::::
covers

::::
one

:::::::::::
measurement

:::::
height

::::
and

:
a
::::::
narrow

:::::
band

::
of

:::::
mean

::::
wind

:::::::
speeds,

:::::::::
turbulence

:::::::::
conditions

:::
and

::::::
inflow

:::::::::
directions

::
at

:
a
::::::
single

:::::::
location.

::::
All

::
of

:::::
these

::::::
factors

::::::::
influence

:::
the

::::::
results

::::
that

:::::
should

:::
be

::::::::::
investigated

::
in

::::::
further

::::::
studies.

:

::::::::
Changing

:::
the

:::::::::::
measurement

::::::
height

::::
has

:::
the

::::::::
strongest

::::::::
influence

:::
on

:::
the

:::::::::::
lidar-derived

:::::::
spectra.

:::
For

::::::::
example,

:::::::::
increasing

::::
the

:::::::::::
measurement

:::::
height

::::::
would,

::::
first,

:::::
make

::
the

:::::::::
averaging

::::
along

:::
the

:::::::::::
measurement

:::::
circle

:::::
more

:::::
severe

:::
due

::
to

:::
the

::::::::
increased

:::::::::::
measurement5

::::
circle

::::::::
diameter.

:::::::
Second,

:::
the

::::::::
resonance

:::::
wave

:::::::
numbers

:::
are

::::
then

:::::
shifted

:::::::
towards

:::::
lower

::::::
values,

:::::
which

:::::
leads

::
to

:::::::
different

::::::::::::::::
cross-contamination

:::
due

::
to

:::::
lateral

::::::::::
separation.

:::::
Third,

:::
the

:::::::::::::::::
cross-contamination

:::
due

::
to
::::::
lateral

:::::::::
separation

:::::::
becomes

::::
even

:::::
more

::::::
severe

:::
due

::
to

:::
the

::::::
longer

::::::::
separation

::::::::
distances

:::
of

:::::::
opposite

:::::::::::
line-of-sight

::::::
beams.

::::::
Fourth,

::
a
::::::
further

:::::::
increase

:::
of

:::
the

:::::
focus

:::::::
distance

:::::
leads

::
to

::::
even

::::::::
stronger

::::::::::
line-of-sight

:::::::::
averaging.

::::
Fifth,

:::
the

::::
time

:::
lag

::::
that

:
is
:::::::::
introduced

:::
for

:::::::::
squeezing

::::
must

::
be

::::::
longer,

:::
and

:::
the

::::::
frozen

:::::::::
turbulence

:::::::::
hypothesis

::::
loses

:::::
some

::::
more

::
of

:::
its

:::::::
validity.

::::::::
Changing

:::
the

:::
half

:::::
cone

:::::::
opening

::::
angle

::
to
::
a
::::::
smaller

:::::
value

:::::
would

:::
on

:::
the

:::
one

::::
hand

::::::
reduce

:::
the

::::
first10

::::
three

::
of

:::
the

:::::::::::::
aforementioned

::::::
effects

:::::::::
effectively,

::::
but

::
on

:::
the

:::::
other

::::
hand

::
it

:::::
would

::::
lead

::
to
:::::
much

::::::::
stronger

::::::::::::::::
cross-contamination

::::
due

::
to

::
the

::::::::
increased

:::::::::
sensitivity

:::
for

::::::::::::
w-fluctuations

::::::::
according

::
to

::::::
Eqs.14

:::
and

:::
16.

:::::
Lidar

::::::::::::
measurements

::
at

:::::
lower

:::::
mean

::::
wind

::::::
speeds

::::
give

::
the

:::::::::
turbulence

:::::
more

::::
time

::
to

::::::
evolve

:::::
while

:::::::
crossing

:::
the

:::::::::::
measurement

::::::
circle,

:::::
which

:::::
might

::::
lead

::
to

:
a
::::::::

deviation
:::::
from

:::
the

::::::::
predicted

::::::
spectra

::
at

:::::::::
somewhat

:::::
lower

:::::
wave

:::::::
numbers

::::
than

::::::::
observed

::
in
::::

our
::::::
results.

::::
The

:::::::::
numerical

::::::
models

::::
will

:::::
work

:::
for

:::
all

:::::::::
turbulence

:::::::::
intensities,

:::
and

:::
the

::::::
shape

::
of

:::
the

:::::::
spectra

::
is

::::::
mainly

::::::::::
determined

::
by

:::
the

::::::
degree

:::
of

:::::::::
anisotropy

::::
and

:::
the

:::::::::
turbulence

::::::
length

:::::
scale.15

::::::::::
Atmospheric

::::::::
stability

:::::::::
conditions

::::
other

:::::
than

::::::
neutral

::::::
would

:::
not

::::::
change

:::
the

::::
way

::::
the

::::
lidar

:::::::::
measures.

:::
But

::
a
::::::::
modified

:::::::
spectral

:::::
tensor

:::::
model

::::
like

:::
the

:::
one

::::::::
presented

::
in

::::::::::::::::::::::::
Chougule et al. (2017) could

::
be

::::
used

::
to

:::::
better

::::::::
compare

:::::
model

::::::
values

::::
with

:::::::::::
experimental

:::::
results.

7 Conclusions

This paper presents two advanced data processing methods for improving turbulence spectrum estimations with VAD scanning20

wind lidars, with an aim to reduce cross-contamination and averaging effects. The models of these approaches, developed in

Sect. 4, are supported by the comparison with experimental data. Discrepancies can be explained for the most part by the

limitations of the frozen turbulence hypothesis that underlies the model calculations yet has slightly reduced validity in real

measurements. Also the fact that the spectra in the experiment do not agree very well with the spectral tensor model is a cause

of differences.25

We found that the method of squeezing eliminates the resonance effect caused by the longitudinal separation of combined

measurement points successfully. It also considerably reduces the averaging along the measurement circle.

The method of using only two beams for the estimation of the u and w components of the wind vector eliminates the

averaging along the measurement circle completely. When it is combined with the method of squeezing, the measurements

deviate from the sonic measurements mainly due to line-of-sight averaging. This combination of both methods substantially30

improves the measurability of the w-spectrum, which is hardly measurable with current VAD processing.

Accurate measurements of the v-spectrum remain difficult, even with the approaches described here. The 2-beam method is

not applicable to current continuous-wave lidars which in most cases are homodyne. Whether the use of squeezed measurement
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circles always leads to systematically better results is unclear, because the resulting spectra are dominated by contamination

from w-fluctuations of the wind.

In conventionally processed lidar data, cross-contamination compensates for averaging effects, meaning that in general, total

variance might be close to target values, but for the wrong reasons. For systematically better turbulence measurements from

VAD scanning lidars, the findings presented here should be included in raw data processing. Both approaches presented here5

can be applied to any existing VAD scanning continuous-wave profiling lidar unit.
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