This document contains the responses to the 2 reviewers (response to the reviewer 1 starts in page 1 and response to the reviewer 2 starts in page 6), response to the editor (starts in page 8) followed by a marked-up version 3 manuscript (starts in page 12).

The reviewers' comments and questions are in bold. For each comment / question, the authors' reply / answer is in black, and the corresponding modifications and line number is the manuscript version 3 are marked in blue colour.

(1) Author's response to Anonymous Referee #1

Thank you very much for your comments to our manuscript. The introduction has been trimmed. We also have revised the entire manuscript. The following are the responses to your specific comments.

Line 20-21: a difference in SSA of 0.06 is very big as far as aerosol remote sensing and climate applications are concerned! It is not "slightly" smaller.

We admit that a difference 0.06 is not a small value for SSA and we have deleted this word accordingly. This statement has been rephrased into The retrieved mean ω_0 at 550 nm for the entire plume over the period from 26-30 January 2017 varies from 0.81 to 0.87, whereas the nearest AERONET station reported values in the range from 0.89 to 0.92 (line 21 - 23).

But it is comparable with previous research. Hu et al. (2007) used TOMS AAI to retrieve SSA; their analytical uncertainty is 15%. For the typical AOD level in our case (0.3 – 0.7), the SSA uncertainty is 0.02 – 0.06 according to Hu et al. (2007) research, which matches with our results.

Furthermore, as we mentioned in the abstract and stressed throughout the manuscript, the AERONET site and the plume we defined are not collocated (the AERONET site is in the city centre as mention in line 200, which potentially overestimates the SSA). This makes this kind of retrieving to be validate. Other concerns, such as the lack of aerosol layer height, uncertainty in MODIS AOD and AERONET itself, should also be considered.

Also, missing what is the purpose of this study? And what are the conclusions that the reader should take out of this work?

This application attempts to quantify the aerosol absorption by retrieving SSA from satellite measured AAI. The conclusion is satellite retrieved AAI is a useful parameter to constrain forward simulation and to derive SSA. Although currently we have a difference of 0.06 compared with AERONET, this discrepancy can be interpreted by the uncertainties in the inputs and AERONET itself as well as difference in measurement techniques (i.e. satellite vs ground-based measurements).

The purpose is presented in the last paragraph in Section 1 (line 59 - 61).

Line 41: incorrect definition of SSA, it is not a ratio of radiation. This is too basic to be missed.

Thank you for the correction on the SSA definition.

We have rephrased to ω_0 is defined as the ratio of the aerosol scattering over the extinction (line 33).

Line 43-44: No, POLDER does not measure the “aerosol polarized phase function”. It measured polarized radiation that can be linked after modeling to the aerosol phase function.

Thank you for the correction.
We have rephrased to More advanced sensors, such as the POLarization and Directionality of the Earth's Reflectances (POLDER), can retrieve ω_0 from a combination of multi-angular, multi-spectral observations of the polarized radiation (line 36-38).

It may be a misunderstanding. We are not saying aerosol absorption has no effect on AOD, we are just saying AOD is less sensitive to aerosol absorption. AOD could be large under either a very scattering case or a very absorbing case.

The reference as you mentioned here states the effect of retrieving AOD from a constant pre-assumed SSA, and this effect is presented as the systematic bias of retrieved MODIS AOD from AERONET AOD. This statement stresses more on the AOD retrieval bias is sensitive to SSA, rather than AOD itself.

Because the major revision in the Section 1 Introduction part, this sentence is no longer available.

Line 60-61: not clear with what you mean that the AAI reduces the retrieval uncertainty. Uncertainty of what?

Using AAI, instead of AOD to constrain the inversion of aerosol properties retrieval can reduce the uncertainty of retrieved aerosol parameters. For AAI, the uncertainties come from the measured reflectance. But for AOD, the uncertainties come from both the measured reflectance and pre-assumed aerosol types.

Because the major revision in the Section 1 Introduction part, this sentence is no longer available. The corresponding content is in line 48 – 49: The most important advantage of the satellite retrieved AAI is that it does not depend on assumptions on aerosol types, while a-prior aerosol types are major uncertainties in aerosol parameter retrievals, such as τ.

Line 66-67: this is a poorly phrased sentence and very confusing, the AAI in presence of aerosol is sensitive to aerosol height, SSA and concentration, not SSA alone.

Sorry for the confusion. But we do not mean that AAI is only sensitive to SSA, just in terms of SSA, AAI is more sensitive than AOD.

Because the major revision in the Section 1 Introduction part, this sentence is no longer available. The corresponding content is in line 53: Moreover, the near-UV AAI is by definition highly sensitive to ω_0.

Line 98-99: incomplete/confusing sentence

Sorry for the confusion.

We have rephrased to The basic idea of the residue method is that in a pure Rayleigh atmosphere, the reflectance (or equivalently the radiance (I_λ)) decreases strongly with the wavelength (line 79-80).

Equation 2: what is the definition of delta(λ)? This equation is different than what other groups use as definition of AAI. Can you provide a reference where this equation is derived? It seems to me a minus sign is missing, also not clear where the delta is coming from? For example de Graaf et al., (2007) uses the standard definition of AAI. how does you equation related with the more commonly used equations? (de Graaf, M., P.

We have added the definition of ΔI in line 88. We also have added that AAI calculation assumes a Rayleigh atmosphere at λ_2, $I_{\lambda_2}^{\text{Ray}}(a_2) = I_{\lambda_2}^{\text{obs}}$ (Herman et al., 1997) in line 87. The derivation from Eq.(1) to Eq.(2) is then not difficult (line 83). If it is still not clear to you, here is the derivation procedure:

According to the AAI definition:

$$\text{AAI} = -100 \left(\log_{10} \left(\frac{I^{\text{obs}}}{I^{\text{obs}}} \right) - \log_{10} \left(\frac{I^{\text{Ray}}}{I^{\text{Ray}}} \right) \right)$$ \hspace{1cm} (1)

$\log_{10} \left(\frac{I^{\text{Ray}}}{I^{\text{Ray}}} \right)$, which can be re-written into:

$$\text{AAI} = -100 \left(\log_{10} \left(I^{\text{obs}}(I_{\lambda_2})^{\text{Ray}} - \log_{10} \left(I^{\text{Ray}}(I_{\lambda_2})^{\text{Ray}} \right) \right) \right)$$ \hspace{1cm} (2)

the Rayleigh radiance is calculated by a surface albedo that satisfies $(I_{\lambda_2})^{\text{Ray}} = (I_{\lambda_2})^{\text{Ray}}$, then Eq.(2) can be re-written into:

$$\text{AAI} = -100 \left(\log_{10} \left(\frac{I_{\lambda_2}^{\text{obs}} - \log_{10} \left(I_{\lambda_2}^{\text{Ray}} \right) \right) \right)$$ \hspace{1cm} (3)

reformed into:

$$\text{AAI} = 100 \left(\log_{10} \left(\frac{I_{\lambda_2}^{\text{Ray}}}{I_{\lambda_2}^{\text{Ray}}} \right) \right)$$ \hspace{1cm} (4)

$$\text{AAI} = 100 \log_{10} \left(\frac{I_{\lambda_2}^{\text{Ray}}}{I_{\lambda_2}^{\text{Ray}}} + \Delta I \right)$$ \hspace{1cm} (5)

Here we define $(I_{\lambda_2})^{\text{Ray}} = (I_{\lambda_2})^{\text{obs}} + \Delta I$, where ΔI can be explained as the change of radiance spectral dependency between a Rayleigh atmosphere and an observed atmosphere. Under cloud-free condition, the presence of absorbing aerosols lead to a positive ΔI. The definition of ΔI is also mentioned at line 105 in the manuscript. Then Eq.(5) can be re-written into:

$$\text{AAI} = 100 \log_{10} \left(\frac{(I_{\lambda_2})^{\text{Ray}} + \Delta I}{(I_{\lambda_2})^{\text{Ray}}} \right)$$ \hspace{1cm} (6)

$$\text{AAI} = 100 \log_{10} \left(\frac{(I_{\lambda_2})^{\text{Ray}} + \Delta I}{(I_{\lambda_2})^{\text{Ray}}} + 1 \right)$$ \hspace{1cm} (7)

which is the Eq.(2) in the manuscript.

Line 117: Linear interpolation of what? What parameters are being interpolated? Please explain.

Linear interpolation of complex refractive index over spectral range from 340 to 675 nm.

We have rephrased into part into We obtain the size distribution function and complex refractive index at 440, 675, 880 and 1018 nm from AERONET, and apply the linear interpolation / extrapolation to derive the complex refractive index over the spectrum from 340 to 675 nm, with spectral resolutions of 2 nm. Then DISAMAR uses above information to calculate the aerosol phase function $P(\theta)$ and so-over the full spectrum (line 103-106).

Line 123: AERONET Phase function data is not reported at 354 nm, where does this come from? As it is, this is not correct.

The phase function at 354 nm is calculated by the radiative transfer model DISAMAR with AERONET constraints. We took size distribution function, and complex refractive index at 440, 675, 870 and 1018 nm from AERONET. We used
linear extrapolation method to extend the spectrum refractive index to 340 nm. Then the radiative transfer model used
that information to calculate the phase function and SSA over the full spectrum (those are intermediate outputs). That is
how the phase function and SSA at 354 nm comes. With those intermediate outputs (that carry information on aerosol
types), DISAMAR can execute forward simulation of AAI.

We have rephrased this part into

We obtain the size distribution function and complex refractive index at 440, 675, 880
and 1018 nm from AERONET, and apply the linear interpolation / extrapolation to derive the complex refractive index
over the spectrum from 340 to 675 nm, with spectral resolutions of 2 nm. Then DISAMAR uses above information to
calculate the aerosol phase function $P(\Theta)$ and ω_0 over the full spectrum (line 103-106).

Figures 3 and 4 cannot be interpreted because deltaI has not been explained/defined. No further reading of the
manuscript since what I found until here warrants a rejection.

Please refer to the derivation of Eq (2) ($I_{\text{ ray}} = (I_{\text{ obs}}) + \Delta I_{\text{ ray}}$ in previous or line 88 in the manuscript.

Line 15: what max value was observed?
To your question, the maximum AAI observed by OMI for Chile 2017 wildfires over all the pixels of the 4 days is 5.80.
The maximum median value is 4.05 and obtained on 29 January 2017.

Line 18: what measurements/obs you are referring to? Radiances?
We are referring to the CALIOP backscatter coefficient measurements.

The simulated plume ascends to an altitude of 4.5-4.9 km, which is in good agreement with
available CALIOP backscatter coefficient measurements (line 18-19).

Line 18-20: not clear what you want to say in the sentence starting with "Due to the relatively..."
To your question, the OMI observation is sparsely distributed which may contains geographical outliers that may not be
the plume even it has AAI value larger than 1. Therefore, we applied an additional data quality control procedure with
interquartile range technique. That is, calculate the difference between simulated and observed AAI, and remove the
pixels that have AAI difference outside the interquartile range. This is detailed described in line 250-260.

We have rephrased into Due to the heterogeneity of the data that may contain the pixels outside the plume, an outlier
detection criterion has to be applied (line 19-20).

Line 20-21: are these SSA values averages over the plume or specific pixels?
To your question, the retrieved SSA is the mean value for the entire plume over the period from 26-30 January 2017.
We have rephrased to The retrieved mean SSA at 550 nm for the entire plume over the period from 26-30 January 2017
varies from 0.81 to 0.87, whereas the nearest AERONET station reported values in the range from 0.89 to 0.92 (line 21-23).

Line 33: replace "bright surfaces" with "snow", I am assuming this is what you meant.
Thank you for correction.

Because the major revision in the Section 1 Introduction part, this sentence is no longer available.
Line 82-83: what are the locations of Pichilemu and Constitution? Are those forests? Cities? Regions? Please provide more details of the geographical setting. Was there a drought?

The location of Pichilemu and Constitución are two cities at the central of Chile as mentioned in line 62. The local forestry industry (pine and eucalyptus) contributed a large fraction of the fire source in line 64. There was a drought as mentioned in line 61. All this information was actually mentioned in the version 2 manuscript.

Line 84: figure 1 has very poor contrast when printed, please correct.
The original plot is from NASA. It has been adjusted now (line 515).
Author’s response to the Anonymous Referee #2

Thank you very much for your comments on our manuscripts. The following are the responses to your comments.

1. On page 6 authors write: “the fine and coarse mode are derived separately from AERONET”. This is not true. AERONET inversion algorithm primarily retrieves aerosol size distribution (ASD) in 22 discrete radius points. The separation in two modes is done after the inversion by finding inflection point in between two ASD peaks and then approximation each part of ASD by log-normal distribution. The parameters of these approximations are provided as ASD parameters for fine and coarse modes. The detailed description of this procedure can be find at https://aeronet.gsfc.nasa.gov/new_web/Documents/Inversion_products_V2.pdf. Therefore the averaging of SSA of two modes is not needed. The total SSA for the initially retrieved ASD (at 22 points) can be used instead. I am wondering how close averaged SSA to the total SSA is provided by AERONET.

In addition, SSA for fine and coarse modes are not advised to use because retrieval is implemented under assumption that complex index of refraction is the same for all the sizes.

Sorry for the confusion. We are not indicating that the AERONET derives fine and coarse mode separately, but indicating that we obtained the two modes by finding the peaks in the size distribution function provided by AERONET.

The radiative transfer model DISAMAR currently cannot directly apply bi-modal distribution function. Instead, we built two modes individually, corresponding to the two modes taken from AERONET. For each mode, we assigned the optical properties (refractive index) provided by AERONET. Then DISAMAR calculates the phase function and SSA for each mode. Finally, we combined two modes into one weighted by number density fraction and extinction cross section.

We have rephrased the sentence into “The fine and coarse mode particle size are derived by finding the two peaks of the log-normal distribution function provided by AERONET. The complex refractive index is assumed the same for both modes. Since bi-modal aerosol is not applicable in DISAMAR yet, we first calculate optical properties of two modes individually, then we externally combine the optical properties of two modes into a bi-modal aerosol with a fraction (line 210-213).

2. On page 1 authors mention that retrieved SSA (0.84) is slightly lower that AERONET value. I encourage authors to replace or remove word slightly because the absolute difference 0.06 is significant in terms of radiative forcing estimation.

Thank you for your suggestion. We admit that 0.06 difference for SSA retrieval is not minor, and ‘slightly’ is not properly used.

We have deleted ‘slightly’ accordingly, and rephrased into “The retrieved mean weighted SSA at 550 nm for the entire plume over the period from 26-30 January 2017 varies from 0.81 to 0.87, whereas the nearest AERONET station reported values in the range from 0.89 to 0.92 (line 210-213).

3. Page 2. “The foremost advantage of the AAI is its independence from assumptions on aerosol types, which significantly reduce the retrieval uncertainty”. This statement is confusing because the simulation of AAI is still dependent on aerosol type.

Sorry for the confusion. Indeed, AAI forward simulation (like what we do in this study) needs aerosol information, including aerosol loading, profile, micro-physics, etc. But AAI retrieval from satellite is independent of pre-assumed...
aerosol types. It is calculated directly from the measured radiance (Eq.(1)). Here we want to stress that the AAI retrieval is independent of aerosol information itself, thus there is fewer uncertainties in the retrieved AAI. We have rephrased this sentence into The most important advantage of the satellite retrieved AAI is that it does not dependent on assumptions on aerosol types, while a-prior aerosol types are major uncertainties in aerosol parameter retrievals, such as τ (line 48-49).

4. Page 3. What wavelength interpolation is used for? Index of retraction or aerosol optical parameters?

To your question, we used linear interpolation to interpolate the AERONET refractive index from 440 to 1080 nm, and used the same technique to extrapolate the spectrum to 340 nm. With wavelength dependent size distribution function and refractive index, the radiative transfer model (DISAMAR) calculates the phase function and SSA for the full spectrum we specified (340 to 675 nm, with resolution of 2 nm) (those are intermediate outputs). With those intermediate outputs (that carry information on aerosol types), DISAMAR can execute the forward simulation of AAI. We have rephrased this part into We obtain the size distribution function and complex refractive index at 440, 675, 880 and 1018 nm from AERONET, and apply the linear interpolation / extrapolation to derive the complex refractive index over the spectrum from 340 to 675 nm, with spectral resolutions of 2 nm (line 103-105). This is also mentioned in line 223-225 where we applied the same method for the case study: To constrain the spectral dependency of optical properties in the near-UV band, complex refractive index n and n in the UV band are linearly extrapolated using available data between 440 and 675 nm as mentioned in Section 2.2. In line 225-226 we mentioned the treatment for AERONET AOD and SSA (we use them for evaluating our results): Finally, the AERONET retrieved τ and ω is also linearly interpolated to 550 nm.
Author’s response to the editor

Thank you very much for your comments on our manuscript. In the followings please find responses to your comments.

Your manuscript # amt-2018-40 has received comments and suggestions from two anonymous reviews for which you have just submitted a response addressing their concerns. Thank you. Along the review process, I have read your paper and gave some thoughts on the research content. As I understood, the concept of the retrieving aerosol SSA in the near-UV region by constraining AOD quite resembles to the methods presented in Satheesh et al. (2008) and Gassó and Torres (2016). Both earlier studies, and the results of your own paper demonstrate that it is possible to retrieve aerosol SSA and layer height from the color ratio information (UVAI) in the near-UV given the AOD as an a priori and a pre-defined aerosol model. It was a surprise that your paper completely misses to discuss and cite these two papers relevant to the present study.

We have read the two research papers we missed out upon that you mention in the comment. We appreciate the studies you suggested here (the publication of Satheesh et al. was actually published in 2009). From our view, the goals and / or the methods of these two studies do not resemble to ours. Satheesh et al. (2009) provided a hybrid retrieval method by combining OMI and MODIS measurements, and Gassó and Torres (2016) aimed to discuss the discrepancy between OMAERUV AOD and other independent measurements. But both studies did discuss the relation among aerosol layer height, aerosol concentration, and aerosol absorption, thus we have included them in the introduction part.

Satheesh et al. (2009) used a hybrid approach to retrieve aerosol layer height (ALH) and aerosol single scattering albedo (SSA). They combined the OMI aerosol product (OMAERUV), which is sensitive to ALH and aerosol absorption, with MODIS’s accurate aerosol optical depth (AOD), which is insensitive to ALH. Their study has a similar object as ours, that is to retrieve SSA from satellite measurements, but the method is not the same. Both studies retrieve ALH and SSA from given a priori aerosol models. Satheesh et al. used MODIS AOD as the parameter to constrain the operational OMAERUV retrieval, while we use the absorbing aerosol index (AAI). The role of AAI used in Satheesh et al. (2009) is a qualitative parameter to distinguish absorbing aerosols from non-absorbing ones.

Specifically, Satheesh et al. (2008) extrapolated MODIS AOD to the near UV band. Using this MODIS-produced AOD to constrain the standard OMI AOD inversion procedure (OMAERUV) allows to derive improved ALH and SSA (that specified in the LUT). In our study, we used MODIS standard AOD at 550 nm to constrain the radiative transfer calculation in the forward simulation, and used OMI measured AAI to constrain the backward retrieval of ALH and SSA. Furthermore, Satheesh et al. (2009) only compared the SSA retrieved with the hybrid-algorithm with that retrieved with the standard OMI algorithm SSA. They did not validate it with measurements from other instruments such as AERONET.

Satheesh et al. mentioned the difficulty of extrapolating MODIS AOD from visible band to 388 nm where OMI requires the AOD information for retrieval (especially difficult for small particles, e.g. biomass burning aerosols). They first applied a linear least square fitting (log-log scale) for AOD as a function of wavelength, then they improved the method by including information on the AOD spectral curvature. The relation between UV and visible AOD may provide some clues to determine the relation between UV and visible SSA and refractive index, and it is worth to study in a separated research. Satheesh et al. also mentioned that measurements of aerosol absorption in the UV spectral range are rare, which makes it difficult to validate the retrieval results. We met similar difficulties in determining the spectral dependence of aerosol properties from the visible to the UV band. But most importantly, we did not notice that the use of MODIS AOD can eliminate the uncertainty of ALH assumption. We have included this as one of the reason that use MODIS AOD to constrain the forward simulation.
Gassó and Torres (2016) compared the OMAERUV aerosol product with independent measurements (MODIS and AERONET) in order to: (1) assess the quality of the OMAERUV AOD retrieval over ocean (section 3); (2) estimate the impact of cloud contamination on their AOD retrieval (section 4); (3) demonstrate the effect of variations in aerosol concentration and height on OMAERUV by comparing the operational OMAERUV algorithm and the OMI-MODIS joint algorithm presented in Satheesh et al. (2009) (section 5); (4) determine whether the assumed aerosol models that leads to discrepancies in AOD retrieval of section 5 (section 6). Gassó and Torres (2016) aimed to evaluate the influences of several factors on the AOD retrieval, rather than to retrieve the SSA from measured AAI (with MODIS AOD constrain).

Through case studies, Gassó and Torres (2016) evaluated the hybrid retrieval method presented by Satheesh et al. (2009) via case studies. At high AAI magnitude (AAI > 1.8), the retrieved ALH is comparable with CALIOP measurements, although their method is quite sensitive to small variations in the input AOD in case of low AAI. Although they seemed to discuss the interplay among AAI, ALH and AOD, the AAI was not used as the constraint to retrieved aerosol absorption. However, Gassó and Torres (2016) concluded that AAI alone cannot be used quantitatively if no ALH or AOD information is available. This is consistent with our finding that the accuracy of the retrieved SSA depends strongly on the uncertainties in AOD and ALH.

In summary, although these two studies discussed the interplay among AOD, ALH, and aerosol absorption (SSA / AAI / refractive index), but the purpose / method differ from ours. We use the measured AAI as an additional constraint to retrieve SSA, which is not the case the other two studies. But both studies provided useful information in aerosol research that we can include in our manuscript. Here are the corresponding contents that we have included study of Satheesh et al. (2009) and Gassó and Torres (2016):

In section 1 introduction: But this aerosol absorption over near-UV is highly sensitive to the assumption on aerosol layer height. Satheesh et al. (2009) found that the increased the τ from MODerate-resolution Imaging Spectroradiometer (MODIS), which is independent of aerosol layer height, to constrain the OMAERUV retrieval. The validation showed that compared with operational OMAERUV algorithm, the retrieved aerosol height by the hybrid method is in a better agreement with air-borne measurements, implying a potential improvement in aerosol absorption retrieval. This OMI-MODIS joint retrieval was also evaluated by Gassó and Torres (2016). They found under less absorbing condition, the hybrid method is sensitive to the variations in the input τ, which is used to select the retrieved pair of aerosol layer and so. (line 43 - 49)

In section 3.1.2 MODIS and OMI aerosol optical thickness: Besides, the MODIS retrieved τ is free from the uncertainty triggered by assumed aerosol profile (Satheesh et al., 2009). (line 187 - 188)

In section 3.2 Methodology: Previous research suggested AAI cannot be quantitatively used without τ or z_{ref} information (Gassó and Torres, 2016). (line 257 - 258)

In this inversion process, your study employs an aerosol model developed using the AERONET data. It was not clear in the Methodology section what kind of spectral dependence is assumed between the two near-UV wavelengths. A number of studies, using laboratory measurements and satellite data, have shown that the carbonaceous aerosols generated from the open field agricultural burning and wildfires exhibit a strong wavelength-dependent of absorption (imaginary part of the refractive index) in the near-UV region. In our earlier study (Jethva and Torres, 2011, ACT), we learned that the relative spectral dependence in the imaginary part of the refractive index needs to be increased to 20% with reference to no spectral dependence (equivalent to black carbon) in order to obtain a better agreement in AOD and SSA between OMI and AERONET. A strong wavelength dependence in aerosol absorption in the UV has been shown as a proxy for the amount of organics in the biomass burning smoke.

The color ratio (UVAI) information in the near-UV strongly varies with the Absorption Angstrom Exponent, a parameter that quantifies the spectral dependence of aerosol absorption. Since your paper lacks to provide this essential information, it is hard to interpret the SSA retrievals presented in the paper. Perhaps, a significant disagreement of
allow simulations to reach a higher AAI while two UV wavelengths was applied to OMAERUV algorithm.

Measurements between 354 and 388 nm is less than 5%. This small spectral dependence of refractive index to constrain the forward simulations. According to This would also affect the complex refractive index used in radiative transfer calculation, since we use is located in downtown, where reflective urban or industrial Santiago_Beauchef is not exactly have added factors can amplify the spectral dependence, it is not very large due to the flat character of the original refractive index. AERONET measured (dashed line) and retrieve nm is less than 5%, which is smaller than the 20% in Jethva and Torres (2011). We have also added a plot to show the original AERONET measured (dashed line) and retrieved complex refractive index (scaled by a factor) in Fig.9. Although the scaling factors can amplify the spectral dependence, it is not very large due to the flat character of the original refractive index. We have added an explanation for this: There are many sources accounting for this discrepancy. First of all, the nearest site Santiago_Beauchef is not exactly in the primary biomass burning regions as mentioned in section 3.1.3. The AERONET site is located in downtown, where reflective urban or industrial aerosols may have been mixed with the smoke enhancing the \(n_R \). This would also affect the complex refractive index used in radiative transfer calculation, since we use the AERONET measured refractive index to constrain the forward simulations. According to Table 2, the retrieved \(n_R \) reveals that the difference between 354 and 388 nm is less than 5%. This small spectral dependence of \(n_R \) is mainly determined by AERONET measurements in the visible band (dashed lines), whereas the effect of the scaling factor is minor in this case (Fig.9). We thus find a much weaker wavelength dependence than in the Jethva and Torres (2011) study, where a 20% difference between the two UV wavelengths is applied to OMAERUV algorithm to achieve the result that 70% of the retrieved \(s_A \) differ less than \(\pm 0.05 \) from the \(s_A \) from the AERONET measurements. A stronger spectral dependence of \(n_R \) between 354 and 388 nm would allow simulations to reach a higher AAI while keeping \(n_R \) at a relatively low level, so would retrieve a higher \(s_A \) at 550 nm. The presence of non-absorbing aerosols weakens the spectral dependence (particularly in the UV spectral range) and the linear
extension would overestimate the aerosol absorption. In this situation, the uncertainties due to assumed spectral aerosol properties might compensate the measurement errors to some extent (line 313 - 326).

In our case, we use the AERONET measurement to constrain the spectral dependence of aerosol properties, but it might be improved if observations from other observational aerosol properties in UV band would be available as constraint. This is summarized in the conclusion: This study proves the potential of utilizing OMI measured AAI to quantitatively characterize aerosol optical properties like ω_0. Currently, it is challenging to retrieve and validate results without reliable aerosol profile information. In the future, the availability of daily global aerosol profile data, e.g. the L2 aerosol layer height product TROPOspheric Monitoring Instrument on-board Sentinel-5 Precursor (TROPOMI) that is underdevelopment (Sanders and de Haan, 2016), are expected to provide a stronger constraint on the forward calculation and to significantly reduce the uncertainty in the retrieved aerosol properties. Perhaps, more sophisticated assumptions on spectral-dependent aerosol absorption (e.g. steeper gradient of n_1 in UV than visible band) have to be made and evaluated by other observational aerosol properties in UV spectral range, e.g. AERONET measured τ in UV band, instead of only depending on measured refractive index in visible band (lie 381 - 388).
Quantifying the single scattering albedo for the January 2017 Chile wildfires from simulations of the OMI absorbing aerosol index

Jiyunting Sun1,2, J. Pepijn Veefkind1,2, Peter van Velthoven3, Pieterernel F. Levelt1,2

1Royal Netherlands Meteorological Institute, De Bilt, 3731 GA, the Netherlands
2Department of Geoscience and Remote Sensing (GRS), Civil Engineering and Geosciences, Delft University of Technology, Delft, 2628 CD, the Netherlands
3Correspondence to: Jiyunting Sun (jiyunting.sun@knmi.nl)

Abstract. The absorbing aerosol index (AAI) is a qualitative parameter directly calculated from satellite measured reflectances. Its sensitivity to absorption by aerosol particles in combination with a long data record starts in the late 1970’s makes it an important parameter for climate research. In the first part of this study, a series of AAI sensitivity analyses is presented exclusively on biomass burning aerosols. Later on, this study applies a radiative transfer model (DISAMAR) to simulate the AAI measured by the Ozone Monitoring Instrument (OMI) in order to derive the aerosol single scattering albedo (ωs). The inputs for the radiative transfer calculations are satellite measurement geometry and surface conditions from OMI, aerosol optical thickness (τ) from the MODerate-resolution Imaging Spectroradiometer (MODIS), and aerosol microphysical parameters from the AERosol ROBotic NETwork (AERONET), respectively. This approach is applied to the Chile wildfires for the period from 26 to 30 January 2017, when the OMI observed AAI of this event reached its peak. The Cloud and Aerosol Lidar with Orthogonal Polarization (CALIOP) failed to capture the complete evolution of the smoke plume, therefore, the aerosol profile is parameterized. The simulated plume ascends to an altitude of 4.5-4.9 km, which is in good agreement with available CALIOP backscatter coefficient measurements. Due to the heterogeneity of the data that may contain the pixels outside the plume, an outlier detection criterion has to be applied. The results show that the AAI simulated by DISAMAR is consistent with observations. The correlation coefficients fall into the range between 0.83 and 0.95. The retrieved mean ωs at 550 nm for the entire plume over the period from 26-30 January 2017 varies from 0.81 to 0.85, whereas the greatest AERONET station reported values in the range from 0.89 to 0.92, The difference in geolocation of the AERONET site and the plume, the assumption of homogeneous and static plume properties, the lack of the aerosol plume profile information, and the uncertainties in the inputs for radiative transfer calculation are primarily responsible for this discrepancy.

1 Introduction

Biomass burning aerosols are generated from combustion of carbon-containing fuels, either by natural or anthropogenic processes (Bond et al., 2004; IPCC, 2014). They are of great concern from the perspective of climate (Kaufman and Boucher, 2001; IPCC, 2007; Koch and Del Genio, 2001; Huang et al., 2013; IPCC, 2014). The reported radiative forcing of black carbon (BC) produced by fossil fuel and biofuel is about 0.4 Wm−2 (0.05 – 0.80 Wm−2) (Ramanathan and Carmichael, 2008; Bond et al., 2013; Huang et al., 2013). But this estimate is highly uncertain. Accurate measurements of the aerosol single scattering albedo (ωs) on a global scale can reduce the uncertainty in radiative forcing assessments (Hu et al., 2007). ωs is defined as the ratio of the aerosol scattering over the extinction. Currently ωs is mainly measured by ground-based instruments (Dubovik et al., 1998; Eck et al., 2003; Petters et al., 2003; Kaiser et al., 2005; Cerr et al., 2009; Yin et al., 2015). Satellite sensors, such as the POLarization and Directionality of the Earth’s Reflectances (POLDER), can retrieve ωs from a combination of multi-angular, multi-spectral observations of the polarized radiation. By measuring the anisotropy of the reflected radiance for each ground pixel, POLDER is expected to determine the reflected solar flux more accurately (Leroy et al., 1997). Unfortunately, there is no continuous temporal coverage because the first two POLDER missions ended prematurely due to technical problems on the satellite level. The third POLDER mission only covered the period 2004-2014.
Instead, satellite derived ω_a is usually retrieved simultaneously with the aerosol optical thickness (τ) based on the pre-defined aerosol properties, such as the near-UV aerosol product (OMAERUV) of the Ozone Monitoring Instrument (OMI) (Torres et al., 2005; Torres et al., 2007). But this aerosol absorption over near-UV is highly sensitive to the assumptions on aerosol layer height. Satheesh et al. (2009) therefore used the r from MODerate-resolution Imaging Spectroradiometer (MODIS), which is independent of aerosol layer height, to constrain the OMAERUV retrieval. The validation showed that compared with operational OMAERUV algorithm, the retrieved aerosol height by the hybrid method is in a better agreement with in-situ measurements, implying a potential improvement in aerosol absorption retrieval. This OMI-MODIS joint retrieval was also evaluated by Gassó and Torres (2016). They found under less absorbing condition, the hybrid method is sensitive to the variations in the input r, which is used to select the retrieved pair of aerosol layer and ω_a.

Herman et al. (1997) first defined the near Ultra-Violet (UV) absorbing aerosol index (AAI), which provides an alternative methodology to retrieve ω_a from satellite observations. The near-UV AAI, usually derived from the spectral range between 340 and 390 nm, is a qualitative measure of absorbing aerosols that was first provided by the Total Ozone Mapping Spectrometer (TOMS) on-board Nimbus-7 in 1979. Since then several instruments have contributed to the AAI data record, that now spans nearly four decades. This long data record is an important motivation for us to improve methods to derive quantitative aerosol information from the near-UV.

The most important advantage of the satellite retrieved AAI is that it does not depend on assumptions on aerosol types, while a-prior aerosol types are major uncertainties in aerosol parameter retrievals, such as ω_a (Ginoux et al., 2004) suggested that comparing model simulations with AAI from TOMS allows a better control of discrepancies because the only error source is the model. Further advantages of AAI are the low reflectivity of the Earth’s surface and the absence of significant molecular absorption over the near-UV range. Using this band can ensure the aerosol absorption is one of the major contributors to the total signal. Moreover, the near-UV AAI is by definition highly sensitive to ω_a. Previous studies have proven the potential of the near-UV AAI from TOMS in aerosol properties retrieval. Torres et al. (1998) provided the theoretical basis of an inversion method to derive τ and ω_a from backscattered radiation. This method was validated by ground-based observations during the Southern African Regional Science Initiative (SARFI) 2000 measurement campaign.

The agreement of τ and ω_a reaches ±30% and ±0.03, respectively (Torres et al., 2005). Hu et al. (2007) retrieved global columnar ω_a based on the AAI from TOMS with an average uncertainty of 15%.

This study is inspired by previous research to quantify the aerosol absorption from AAI. We use the near-UV AAI provided by OMI on-board Aura, the successor of TOMS, to derive the aerosol properties of the Chile wildfires in January 2017. Triggered by a combination of long-term drought and high temperature, this series of fires occurring in central Chile (Pichilemu 34.39°S, 72.00° W and Constitución 35.33°S, 72.42° W) was regarded as the worst wildfire season in the national history (The Guardian, 2017). The fires led to evacuations of the affected areas and caused massive losses of the local forestry industry (pine and eucalyptus forests) (NASA.gov, 2017). The smoke plume was transported away from the source regions towards the tropical area in the Pacific Ocean by north-westward winds (Fig.1). In this study, we quantitatively retrieve the use of this smoke by simulating the near-UV AAI from OMI with the radiative transfer model Determining Instrument Specifications and Analyzing Methods for Atmospheric Retrieval (DISAMAR). The aerosol inputs of DISAMAR includes the r retrieved from MODIS on-board the NASA EOS Aqua satellite, and information on aerosol micro-physical parameters provided by AERONET. In the next section, we provide a brief introduction on the near-UV AAI and its sensitivity to various parameters. The retrieval methodology is described in section 3. In section 4, retrieved results and uncertainty analysis of Chile 2017 wildfires are discussed, followed by main conclusions in section 5.
2.1 Near-UV AAI definition

The concept of the near-UV AAI was first conceived to detect UV-absorbing aerosols from the spectral contrast provided by TOMS observations, known as the residue method (Herman et al., 1997). The basic idea of the residue method is that in a pure Rayleigh atmosphere, the reflectance (or equivalently the radiance \(L_\lambda \)) decreases strongly with the wavelength. The presence of absorbing aerosols will reduce this spectral dependency of \(L_\lambda \). The change in this wavelength dependency is summarized as the AAI, which is calculated from the \(L_\lambda \) at the wavelength pair \(\lambda_1 \) and \(\lambda_2 (\lambda_2 < \lambda_1) \):

\[
\text{AAI} = -100 \left(\log_{10}(L_{\lambda_2}^{\text{obs}}) - \log_{10}(L_{\lambda_2}^{\text{Ray}}) \right),
\]

(1)

The \(L_{\lambda_2}^{\text{obs}} \) and \(L_{\lambda_2}^{\text{Ray}} \) denote the \(L_\lambda \) from the satellite measurement and calculated using a Rayleigh atmosphere, respectively. The longer wavelength \(\lambda_2 \) is treated as reference wavelength where the surface albedo \(a_\lambda \) is determined by fitting the observed radiance, i.e. \(L_{\lambda_2}^{\text{obs}} = L_{\lambda_2}^{\text{Ray}} \). This is done using an atmosphere containing only molecular scattering by a Lambertian surface. The spectral dependence of the surface albedo is neglected thus \(L_{\lambda_2}^{\text{Ray}} \) is calculated using the same value for \(a_\lambda \). Defining \(\Delta L_{\lambda_2} = L_{\lambda_2}^{\text{obs}} - L_{\lambda_2}^{\text{Ray}} \), Eq. (1) can be rewritten as:

\[
\text{AAI} = 100 \log_{10}(\frac{L_{\lambda_2}^{\text{Ray}}}{L_{\lambda_2}^{\text{Ray}}}) = 100 \log_{10}(\frac{L_{\lambda_2}^{\text{Ray}}}{L_{\lambda_2}^{\text{Ray}}}) + 1
\]

(2)

It is advantageous to use Eq. (2) because the AAI can be simply interpreted as the ratio between the simulated and observed radiance at \(\lambda_2 \).

2.2 Near-UV AAI sensitivity studies

In this section, we present results from sensitivity studies performed with the radiative transfer model DISAMAR. DISAMAR can perform simulations of the forward \(L_\lambda \) spectrum in a wide spectral coverage (270 nm to 2.4 µm) and models scattering and absorption by gases, aerosols and clouds, as well as reflection by the surface (De Haan, 2011). It uses either the Doubling-Adding method or the Layer Based Orders of Scattering (LABOS) for the radiative transfer calculations. In this study the latter one is used because it is less computationally intensive (De Haan et al., 1987; De Haan, 2011).

DISAMAR allows to apply several aerosol scattering approximations. Here we assume Mie scattering aerosols. The parameters to describe Mie particles and their corresponding values are listed in Table 1. Considering the Chile wildfires plumes, which were dominated by biomass burning aerosols, these sensitivity studies are specifically performed for parameterized smoke aerosols, with only fine mode particles and weak linearly wavelength dependency of the complex refractive index \((n_2, n_3)\). The default values refer to observations of the daily average on January 27 of the AERONET station Santiago Beaucé (33.46°S, 70.66°W). We obtain the size distribution function and complex refractive index at 440, 675, 870 and 1018 nm from AERONET, and apply the linear interpolation / extrapolation to derive the complex refractive index over the spectrum from 340 to 675 nm, with spectral resolutions of 2 nm. Then DISAMAR uses above information to calculate the aerosol phase function \(P(\Theta) \) and \(\omega_\Theta \) over the full spectrum. The corresponding \(P(\Theta) \) at 354 nm is presented in Fig. 2. DISAMAR requires \(\omega_\Theta \) to be defined at reference wavelength 550 nm. Surface parameters include a spectrally flat \(a_\lambda \) and the surface pressure \(P_0 \). The aerosol profile is parameterized as a single layer box shape, with its bottom at \(z_{\text{bot}} + \Delta z / 2 \) and top at \(z_{\text{top}} + \Delta z / 2 \), where \(z_{\text{bot}} \) and \(\Delta z \) are the geometric central height and the geometric thickness of the aerosol layer, respectively. The whole sensitivity analysis is performed for cloud-free conditions. The wavelength pair of OMI (354 and 550 nm) is always used.
The AAI depends also on the Sun and terrain height rises (P) above the surface and in agreement with the measured Θ. This results in low values of the AAI, which correspond to a large w_0 (Fig. 3 (b)). Under the condition that measurement angles Θ is 60° to 150°, the declining g implies that more light is scattered in the line-of-sight of the detector, thus the higher Δ_{ra}. Conversely, the imaginary part of the geometrical factor q, which is directly associated with w_0, has an opposite influence; see Fig. 3 (c) and (d). The particle size distribution has a more complicated influence on the AAI. As shown in Fig. 3 (e), the AAI first decreases and then increases, when τ_s is varied from 0.1 to 4.0 μm. The AAI primarily follows the behaviour of Δ_{ra}, whereas w_0 is continuously decreasing and g is continuously increasing.

In addition to the micro-physics, the concentration and vertical distribution of aerosols also have a strong influence on the wavelength dependency of the aerosol layer. As shown in Fig. 4 (a), the AAI is positively correlated with Δ_{ra}. The AAI is highly sensitive to the aerosol vertical distribution (Herman et al., 1997; Torres et al., 1998; de Graaf et al., 2005). As the aerosol layer ascends (Fig. 4(b)), more molecular scattering beneath the aerosol layer is shielded, which reduces Δ_{ra}, while Δ_{ra} increases Δ_{ra}. The relation between the AAI and Δ_{ra} is almost linear. Fig. 4 (c) shows that at the same altitude, the AAI slightly increases with the geometrical thickness of the aerosol layer. The reason could be that a larger Δ_{ra} indicates the coming sunlight has a higher possibility to be absorbed by aerosols, amplifying the absorption of the aerosol layer.

The calculated AAI does not only depend on the aerosols themselves, but also on ambient parameters such as surface and clouds. Although the near-UV AAI is capable to distinguish absorbing and non-absorbing agents (Herman et al., 1997; Torres et al., 2012), the uncertainty triggered by clouds is relatively high and therefore cloudy conditions are excluded in this study. Surface conditions are parameterized by P and w_0, as shown in Fig. 5 (a) that a decrease in P, or an equivalently an elevated terrain height, leads to less Rayleigh scattering shielded between the surface and the aerosol layer. As a result, the AAI decreases significantly due to smaller Δ_{ra}, in agreement with a previous study (de Graaf et al., 2005). According to de Graaf et al. (2005), increasing τ_s has two counteracting effects. On the one hand, it increases the amount of directly reflected radiation at the top of the atmosphere, namely a larger Δ_{ra}, on the other hand it enhances the role of absorption by the aerosol layer rather than the surface, namely a larger Δ_{ra}. Which effect of τ_s is decisive depends on P (Fig. 5 (b)). When the aerosol layer is relative to the sea level ($P = 1013$ hPa), the first effect dominates. However, a brighter surface compensates the loss of molecular scattering shielded by the aerosols when the terrain height rises ($P = 813$ hPa), which makes the absorbing layer more detectable. The AAI depends also on the Sun-satellite geometry. Here we provide the AAI as a function of the measurement geometries for the default case with the relative azimuth angle $\Delta_{\psi} = 180^\circ$. As presented in Fig. 6 (a), the AAI becomes very sensitive to the geometries for zenith angles larger than 60°, which confirms previous research (Herman et al., 1997; Torres et al., 1998; de Graaf et al., 2005). This is mainly due to the significant growth of Ψ when Θ becomes smaller (Fig. 2). It is thus suggested that the OMI measurement with Θ larger than this value should be removed due to large variations in the AAI. To analyse the radiance behaviour as previously, we plotted the Ψ and Δ_{ra} as a function of the top across the section, respectively (Fig. 6 (b)). It is noted that Ψ increases when Θ is larger than 90°, whereas the $P^(\text{ opt})$ decreases at this range (Fig. 2). The reason could be that the Rayleigh scattering has an increasing contribution to the radiance at those measurement angles (backscattering).
3 Methodology and datasets

3.1 Datasets

3.1.1 OMI and GOME-2 absorbing aerosol index

The TOMS near-UV AAI retrieval has been proven a robust algorithm and applied to successive sensors, such as OMI onboard Aura and GOME-2 on-board MetOp-A/B. GOME-2 has higher spectral resolution (0.2-0.4 nm) than TOMS, but the spatial resolution is rather coarse (20 x 40 km²). In this study, GOME-2 measured AAI at wavelength pair 340 and 380 nm (http://archive.eumetsat.int) is only used as an independent dataset to assess the potential bias of the OMI measurements. OMI combines advantages of both TOMS and GOME-2. It covers wavelengths from 264 to 504 nm with a spectral resolution of approximately 0.5 nm and has a much higher spatial resolution than GOME-2 of 13 x 24 km² (Levelt et al., 2006). Since OMI was launched in 2004, the AAI retrieved from this instrument has been widely used in various applications. Kaskaoutis et al. (2010) employed the OMI measured AAI for regional research of the aerosol temporal and spatial distribution in Greece. Torres et al. (2012) utilized the advantage of near-UV AAI to detect aerosols over clouds. The OMI observed AAI was even used to evaluate the impact of surface dust loading on human health (Deroubaix et al., 2013).

Buch et al. (2015) validated the NASA MERRA aerosol reanalysis with the AAI retrieved from OMI. In this study, the OMI level 2 product OMAERO (https://disc.gsfc.nasa.gov) is used to provide AAI retrieved at the wavelength pair 354 and 388 nm, and the corresponding viewing geometry and the surface condition when the measurements took place. The samples are included in the radiative transfer simulation only if the angle smaller than 60°, and if ground pixels are not contaminated by sun-glint, clouds, row anomalies of the instrument, etc. The simulation is only applied to ground pixels inside the biomass burning plume, which are AAI values larger than 1, for both OMI and GOME-2.

3.1.2 MODIS and OMI aerosol optical thickness

MODIS on-board Aqua/Terra is a sensor that was specifically designed for atmosphere and climate research. The combination of two satellites ensures daily global coverage. The spatial resolution ranges from 250 m to 1 km and it has 36 spectral bands in the wavelength range between 400 nm and 14.4 μm (Remer et al., 2005). MODIS employs separated algorithms for aerosol retrieval over oceans and land, respectively (Tanré et al., 1997; Kaufman and Tanré, 1998; Hu et al., 2004, Remer et al., 2005). Currently the τ provided by MODIS is one of the most reliable datasets (Lee et al., 2009) with an estimated uncertainty of only 3.5% over ocean and 5-15% over land (Remer et al., 2005). Besides, the MODIS retrieved τ is free from the uncertainty triggered by assumed aerosol profile (Satheesh et al., 2009). As mentioned before, DISAMAR requires τ at 550 nm. This study uses cloud-filtered τ at 550 nm from the Collection 6 level 2 product MYD04 as the input for radiative transfer calculation (https://ladsweb.modaps.eosdis.nasa.gov).

In addition, the τ measured by OMI and AERONET are treated as a reference dataset to evaluate potential biases in MODIS. The OMAERO retrieval uses multi-spectral fitting techniques. The retrieved τ is in good accordance with AERONET and is highly correlated with MODIS (Torres et al., 2007), with a correlation of 0.66 over land and 0.79 over the oceans (Curier et al., 2008), although it suffers from cloud contamination due to the relatively coarse spatial resolution of OMI. Due to the wavelength difference, the τ measured by OMI at 442 nm has to be transferred to 550 nm using the Ångström exponent (ÅE) 440 – 675 nm taken from AERONET at the time when OMI flies over the selected site. The AERONET dataset used in this study is introduced in the next section.
3.1.3 AERONET aerosol properties

AERONET is an aerosol monitoring network of ground-based sun photometers. With standardized instruments, calibration, processing and distribution, AERONET provides a long-term global database for aerosol research and air-borne and space-borne measurement validation. The system takes two basic measurements: the and ÅE are retrieved from the direct solar irradiance measurements; the and (Nakajima et al., 1983; Nakajima et al., 1996) and are derived from multiple-angular measurements of sky radiance.

The AERONET site nearest to the fire sources of 2017 Chile wildfires is the Santiago Beaufor (33.46°S, 70.66°W) (https://aeronet.gsfc.nasa.gov). The dataset in use is version 2 level 1.5 product. To minimize the influence of temporal difference, the parameters of AERONET measured closest to the time of the OMI overpass of the site are used to simulate the optical properties of Mie scattering aerosols in DISAMAR. Note that the level 1.5 dataset is not quality-assured, and the location of this site is in downtown of Santiago City and close to major roads. The presence of scattering aerosols may bias the measurements of the plume.

The AERONET direct sun product provides and are used to evaluate the MODIS and retrieved , respectively. The AERONET measured is transferred to 550 nm using the ÅE in range 440 – 675 nm while the ÅE at 550 nm is linearly interpolated from values between 440 and 675 nm.

The AERONET inversion product needs to be processed into the inputs required by DISAMAR. Firstly, a conversion from the volume size distribution to the number size distribution and used in DISAMAR is required:

\[
N(r, \sigma) = V(r, \sigma) \frac{3}{2} r^2 \sigma^2 \exp(-2.34 \sigma^2),
\]

The following relation between the geometric and volumetric mean radii () and standard deviations () is assumed:

\[
\sigma = \frac{r}{2.355 \sigma_g}.
\]

The fine and coarse modes are derived by finding the two peaks of the log-normal distribution function provided by AERONET. The complex refractive index is assumed the same for both modes. Since bi-modal aerosol is not applicable in DISAMAR yet, we first calculate optical properties of two modes individually, then we externally combine the optical properties of two modes into a bi-modal aerosol, with a fraction:

\[
w_f = \frac{N_f(r_f, \sigma_f)}{N_f(r_f, \sigma_f) + N_c(r_c, \sigma_c)}
\]

\[
w_c = 1 - w_f.
\]

Then the weights for calculating the total of the mixed aerosol are:

\[
w_{ef} = \frac{w_f}{w_f + w_c}
\]

\[
w_{ec} = \frac{w_c}{w_f + w_c},
\]

Where and are the extinction cross section of the fine and coarse aerosols. The expansion coefficients of the mixed aerosol is weighed by the of the fine and coarse aerosols (and), respectively:

\[
w_{eef} = \frac{w_{ef} \sigma_f}{\sigma_f + \sigma_c}
\]

\[
w_{eec} = 1 - w_{eef},
\]
The spectral bands of the AERONET instrument at this site only cover the visible band. Due to the absence of observations, assumptions have to be made on the spectral dependence of aerosol properties to obtain their values in the near-UV band. The properties of biomass burning aerosol depend on the type of fuel, the procedure producing the smoke, the age of the smoke, and also the atmospheric conditions (Reid et al., 2005). Using measurements to constrain the input aerosol refractive index can reduce the uncertainties due to a priori knowledge. Our treatment on the complex refractive index is as following: (1) take the complex refractive index at visible band (440 to 675 nm) from AERONET measurements; (2) linearly extrapolate the complex refractive index to near-UV band. The real part \(n \) for radiative transfer calculation is obtained in this step. A slight wavelength dependence of \(n \) is found from the measurements; (3) for the imaginary part \(\omega \), we multiply it (for the entire wavelength from UV to visible) with a scaling factor as we set it as a free parameter. By varying the value of the scaling factor, both the magnitude and the wavelength dependence of \(n \) can change to meet the requirement of retrieval.

3.1.4 CALIOP backscattering coefficient

The CALIOP on-board CALIPSO, which was launched in 2006, provides high-resolution profiles of aerosols and clouds. It has three channels with one measuring the backscattering intensity at 1064 nm and the rest measuring orthogonally polarized components at 532 nm backscattering intensity (Winker and Omar, 2006). Due to the limited spatial coverage, CALIOP did not observe the Chile plume for all the cases for which we have OMI observations. We only use the total attenuated backscatter at 532 nm from level 1B Version 4.10 Standard data to evaluate the parameterized aerosol profiles (https://eosweb.larc.nasa.gov/project/calipso).

3.2 Methodology

In this study, we employ the radiative transfer model DISAMAR to simulate the near-UV AAI from OMI and to derive the \(\tau \) for a specific case, i.e. the Chile wildfires in January 2017. We select the period from 26 to 30 January 2017 (28 January is excluded due to lack of data) when the AAI value reached its peak.

The forward simulation consists of two major steps. First, DISAMAR calculates the Mie aerosol optical properties with aerosol micro-physical information taken from AERONET measurements (\(r_{\text{eff}}, n \) and \(\omega \)). As mentioned in Section 3.1.3, we set the spectral-dependent imaginary part \(n \), as a free parameter to vary \(w_{\text{om}} \). Then, DISAMAR operates radiative transfer calculation with the calculated aerosol optical properties for a specific aerosol and environmental conditions. It is noted that the observed aerosol profiles is limited for the Chile wildfires. Previous research suggested AAI cannot be quantitatively used without \(r_{\text{eff}} \) and \(w_{\text{om}} \) information (Gassó and Torres, 2016). Instead, we implement the same parameterization as in the sensitivity study to obtain the aerosol profile. Since the AAI dependency on \(\Delta z \) is minor (Fig.4 (c)), and to reduce the computational cost, \(\Delta z \) is set constant at 2 km based from the information from the CALIOP measurements of backscattering coefficient (\(\beta \)) at 532 nm (Fig.7). The \(w_{\text{om}} \), to which the AAI is highly sensitive, is treated as an unknown variable to be retrieved together with \(\tau \).

Consequently, with various combinations of \(w_{\text{om}} \) and \(\beta \), a lookup table (LUT) of the calculated AAI is constructed with DISAMAR. It should be noted that for all ground pixels in the plume we assume the same aerosol microphysical properties as well as the same vertical profile. Pixels outside the plume may have had significantly different properties and this will affect the results. But as shown in Fig.3, the distribution of OMI measurements is sparse in space, which implies that the dataset is quite sensitive to geographical outliers that may cause the heterogeneous properties of the plume. Consequently, we apply a data quality control procedure before retrieving \(\tau \). First, we manually remove the pixels that are geographically isolated from the main plume. Furthermore, we remove the potential outliers based on statistical tool. We filter the dataset using an outlier detection based on the interquartile range (IQR) of the AAI difference between DISAMAR simulations and OMI measurements. According to Tukey’s fences (Tukey, 1977), an AAI difference falling outside range between Q1-1.5 IQR and Q3+1.5 IQR may be regarded as an outlier and removed, where Q1 and Q3 are the first and third quartiles of the...
AAI difference, and the IQR is the range between Q1 and Q3. Only the data passing the outlier detection criterion is used to calculate the cost function (Eq. [3]):

$$\text{RMSE} = \sqrt{\frac{1}{N} \sum_{i=1}^{N} (\text{AAI}_i - \text{OMI}_i)^2}$$

Here AAI indicates the AAI for ith ground pixel of the selected OMI data; subscripts DSM and OMI indicate DISAMAR simulation and OMI observation, respectively. The combination of e_{MODIS} and ω_{OMI} that leads to the minimum residue is used to simulate the AAI.

Finally, the simulated AAI is compared with OMI observations. We also employ the independent data from GOME-2 on MetOp-A/B as a reference to identify the potential bias of OMI. Similarly, the ω retrieved from OMI and AERONET serves as a reference to that of MODIS. The estimated aerosol profile and ω at 550 nm are evaluated with independent observations from CALIOP and AERONET, respectively.

4 Results and discussion

By applying the methodology described in the previous section, we quantitatively retrieved the aerosol profile and ω_{OMI} of the Chile 2017 wildfires by AAI simulation. The OMI measurements of the plume are displayed in Fig. 8 (a) – (d). The presented ground pixels are with AAI value larger than 1, and are free of cloud contamination, sun-glint and row anomaly of the instrument. Fortunately, the remaining data is still able to capture the main plume features. It can be clearly seen that from 26 to 30 January, the plume produced by wildfires in the central Chile was transported by the south-easterly trade wind from the continent towards the lower latitude region of the Pacific Ocean. The plume travelled over a distance of 3000 km during the period.

The vertical movement of the plume is given by CALIOP backscattering coefficient measurements (j) at 532 nm (Fig. 7). The CALIOP paths closest to the plume are marked by a black dashed line in Fig. 7. It is noted that CALIOP did not always measure the plume and may even fail to capture the elevated plume, e.g., on 26 January. The aerosol layer captured by CALIOP is distributed from 2 km to 6 km, with an average height at approximately 4.5 km. The extent of the plume was driven by the heat generated by the fires and sunlight absorption, as well as the atmospheric vertical motions.

Fig. 8(e) – (h) show the AAI simulation selected by the data quality control mentioned in Section 3.2. The spatial distribution of the simulated AAI shows similar patterns as the OMI observations. Some data points that are geographically isolated from the plume, e.g., in case 26 and 30 January, differ strongly from what are observed inside the plume. Including these outliers in the optimization could bias the retrieved aerosol properties. This can also be seen in Fig. 8(i) – (l), where the points passing the data quality control described in Section 3.2 are highlighted in red color. By removing the outliers, the average spatial correlation coefficient reaches 0.90.

Table 2 lists the statistics of the qualified AAI data, in terms of the median, relative difference and RMSE. The median of measured AAI ranges from 2 to 4 during the research period. Except 26 January, the median of simulated AAI in other cases is in good agreement with the measurements, with relative differences within ±6%. The low RMSE confirms the high spatial consistency between the simulation and the observations. The majority of the simulated AAI of 26 January is negatively biased, which is reflected by the small slope without an intercept correction in Fig. 8(i). A systematic bias in the inputs might cause this result. In terms of e_{MODIS}, both the AERONET measured and the AAI retrieved aerosol absorption become weaker with time (Table 2). Although the simulated and observed AAI are in good agreement, the difference in ω_{OMI} is significant. The mean of the retrieved ω_{OMI} at 550 nm for the whole period is 0.84, contrast to the AERONET measurements with a mean value of 0.90.
There are many sources accounting for this discrepancy. First of all, the nearest site Santiago_Beauchef is not exactly in the primary biomass burning regions as mentioned in section 3.1.3. The AERONET site is located in downtown, where reflective urban or industrial aerosols may have been mixed with the smoke enhancing the \(\omega \). This would also affect the complex refractive index used in radiative transfer calculation, since we use the AERONET measured refractive index to constrain the forward simulations. According to Table 2, the retrieved \(n \) reveals that the difference between 354 and 388 nm is less than 5%. This small spectral dependence of \(n \), is mainly determined by AERONET measurements in the visible band (dashed lines), whereas the effect of the scaling factor is minor in this case (Fig.9). We thus find a much weaker wavelength dependence of the inputs, the retrieved aerosol profiles are not exactly co incorporated. The uncertainty cannot be systematically calculated.

The uncertainty of size distribution retrieval is minor for biomass burning aerosols (Dubovik et al., 2000), but under optically thick circumstances, the reported accuracy of complex spectral index is 0.04 for \(n \) and 30%-50% for \(\epsilon \), respectively (Dubovik et al., 2002). It is also reported that AERONET tends to underestimate the absorption of biomass burning aerosols compared with in situ measurements (Dubovik et al., 2002; Reid et al., 2004). The uncertainty of \(s_\text{AAI} \) is 0.03 under high aerosol loading (\(\epsilon > 0.5 \)) and 0.05-0.07 under low aerosol loading (Dubovik et al., 2002; Holben et al., 2006).

Apart from AERONET itself, information from other datasets could also bias our estimate of aerosol absorption. Among all the inputs, the parameterization of a one-layer box-shape aerosol profile could be the largest error source. Although the influence of \(\Delta z \) on the AAI is small (Fig.4 (c)), the AAI calculation highly depends on \(z_\text{AAI} \) (Fig.4 (b)). As shown in Table 2, the estimated plume altitude varies from 4.5 to 4.9 km. As the black solid line indicated in Fig.7, the retrieved \(z_\text{AAI} \) can capture the measured geometric vertical location of the plume. The \(z_\text{AAI} \) on 26 January seems overestimated because of the temporal and spatial difference. Concretely, CALIOP sampled the plume near the sources and close to the surface, while the plume observed by OMI had been already elevated and transported to the open ocean. There are many sources accounting for this discrepancy. First of all, the nearest site Santiago_Beauchef is not exactly in the primary biomass burning regions as mentioned in section 3.1.3. The AERONET site is located in downtown, where reflective urban or industrial aerosols may have been mixed with the smoke enhancing the \(\omega \). This would also affect the complex refractive index used in radiative transfer calculation, since we use the AERONET measured refractive index to constrain the forward simulations. According to Table 2, the retrieved \(n \) reveals that the difference between 354 and 388 nm is less than 5%. This small spectral dependence of \(n \), is mainly determined by AERONET measurements in the visible band (dashed lines), whereas the effect of the scaling factor is minor in this case (Fig.9). We thus find a much weaker wavelength dependence of the inputs, the retrieved aerosol profiles are not exactly co incorporated. The uncertainty cannot be systematically calculated.

The uncertainty of size distribution retrieval is minor for biomass burning aerosols (Dubovik et al., 2000), but under optically thick circumstances, the reported accuracy of complex spectral index is 0.04 for \(n \) and 30%-50% for \(\epsilon \), respectively (Dubovik et al., 2002). It is also reported that AERONET tends to underestimate the absorption of biomass burning aerosols compared with in situ measurements (Dubovik et al., 2002; Reid et al., 2004). The uncertainty of \(s_\text{AAI} \) is 0.03 under high aerosol loading (\(\epsilon > 0.5 \)) and 0.05-0.07 under low aerosol loading (Dubovik et al., 2002; Holben et al., 2006).

Except for 26 January, \(z_\text{AAI} \) is in good agreement with what CALIOP observed. Although the retrieved aerosol profiles are convecting to some extent, one should keep in mind that CALIOP and OMI observations are not exactly co-located. Besides, the parameterized aerosol profile may fail to represent the spatial variation of the plume. Therefore, the uncertainty cannot be directly determined due to the lack of validation observations.

Among the four days for which we retrieved \(n_\text{s} \), the value for 27 January is significantly lower than other. For this day the agreement with CALIOP is reasonable and also the CALIOP track is not far away from the OMI measurement. We therefore explore the effect of measurement biases in AAI and \(\tau \) on the retrieved \(n_\text{s} \). We investigate the potential bias of these two datasets by plotting the histogram of the AAI measurement difference between GOME-2 and OMI (Fig.10 (a)), against the \(\tau \) measurement difference between MODIS and OMI (Fig.10 (b)), both are converted into 550 nm). It is clear that on 27 January, the AAI from OMI seems to be underestimated compared to GOME-2. Although the difference in wavelength pair choice for AAI retrieval, measurement time and condition, etc. could contribute to the AAI discrepancy between GOME-2 and OMI, exploring the difference between the two datasets is beyond the scope of this study. To assess of input aerosol concentration, the \(\tau \) from MODIS could be potentially underestimated. Fitting a higher AAI with a lower input \(\tau \) leads to an overestimation in aerosol absorption. Here, we analytically quantify the impact of \(\tau \) for this specific case by systematically enhancing the \(\tau \) of MODIS with a constant variation (\(\Delta \tau \)) added to all pixels, with the AAI level and the aerosol profile

...
remain unchanged. Fig. 16(c) presents how the AAI RMSE and the estimated \(\tau \) respond to the enhanced \(\tau \). It can be clearly seen that an increase in overall \(\tau \) level by 0.07 raises \(\tau \) to 0.84 and optimizes the AAI simulation to a RMSE less than 0.45.

5 Conclusions

Biomass burning is a major source of absorbing aerosols, making a significant contribution to climate warming.

Quantitatively characterizing the absorption by biomass burning aerosols is therefore important to reduce the uncertainty in assessments of global radiative forcing. Facing the lack of long-term \(\tau \) records, this study explores an approach to retrieve \(\tau \) based on reflectivity in the near-UV channel measured by OMI. Although AAI is not a geophysical parameter and depends on many factors, its independence from pre-defined aerosol types, its high sensitivity to aerosol absorption as well as its long-term data record, makes it an attractive quantity to aerosol research.

We test the retrieval of \(\tau \) for the wildfires happening in central Chile in January 2017. After filtering the data from outliers, a high spatial correlation coefficient (0.85 to 0.95) reaches between the simulated and observed AAI. The retrieved aerosol profiles indicate the plume was elevated to height of 4.5-4.9 km during the research period. These results are in agreement with CALIOP measurements. The average of the retrieved \(\tau \) at 550 nm is approximately 0.84, which is 0.06 lower than that of AERONET retrieval. The retrieved \(\tau \) is out of the typical uncertainty in the \(\tau \) retrieved from AERONET (-0.05). The sources of discrepancy includes the location of the AERONET site that may bias the measured \(\tau \) and the spectral dependency of complex refractive index, the simplified parameterization of the aerosol profile, the observational errors in the input aerosol micro-physics \(\tau \) as well as AAI, and the assumption of homogeneous and static plume properties, which ignores the plume evolution over space and time. We quantitatively analyze the uncertainty of \(\tau \) for a specific case (27 January) when the estimated aerosol profile is in good agreement with the CALIOP measurements. An improvement in retrieved \(\tau \) can be seen by adopting the magnitude of aerosol concentration.

This study proves the potential of utilizing OMI measured AAI to quantitatively characterize aerosol optical properties like \(\tau \). Currently, it is challenging to retrieve and validate results without reliable aerosol profile information. In the future, the availability of daily global aerosol profile data, e.g. the L2 aerosol layer height product TROPOspheric Monitoring Instrument on-board Sentinel-5 Precursor (TROPOMI) that is underdevelopment (Sanders and de Haan, 2016), is expected to provide a stronger constraint on the forward calculation and to significantly reduce the uncertainty in the retrieved aerosol properties. Perhaps, more sophisticated assumptions on spectral-dependent aerosol absorption (e.g. steeper gradient of \(\tau \) in UV than visible band) have to be made and evaluated by other observational aerosol properties in UV spectral range, e.g. AERONET measured \(\tau \) in UV band, instead of only depending on measured refractive index in visible band.

Acknowledgements

This work was performed in the framework of the KNMI Multi-Annual Strategic Research (MSO). The authors thank to NASA’s GES-DISC, LAADS DAAC and ASDC for free online access of OMI, MODIS and CALIOP data. The authors also thank to the Centre for Climate Resilience Research (CRI) at University of Chile, CONICYT/FONDAP/15110009 providing the data of the Santiago, Bernoulli AERONET stations.
References

Figure 1: Chile wildfires detected by Terra/MODIS on 20 January 2017 (Image source: NASA’s Earth Observatory, https://earthobservatory.nasa.gov/IOTD/view.php?id=89496).
Figure 2: Phase function $p(\Theta)$ at 354 nm of the parameterized Mie scattering aerosols in sensitivity analysis. The markers in the plot correspond to the value when $\Theta = 60^\circ, 90^\circ, 120^\circ, 150^\circ, 180^\circ$.
Figure 3: AAI sensitivity to micro-physical parameters: \(n_i, n_r, r_g\). The left panels (a,c,e) show the sensitivity of the normalized AAI (black), the normalized \(\Delta I_0\) (blue) and the normalized \(I_0^{\text{obs}}\) (red). The right panels (b,d,f) show \(\omega_0\) (blue) and \(g\) (red) at wavelength 354 (solid line) and 388 (dashed line) nm, respectively.
Figure 4: AAI sensitivity to macro-physical parameters: (a) τ_{550} at 550 nm, (b) z_{av}, and (c) Δz.
Figure 5 AAI sensitivity to surface parameters: a_s(a) and P_s(b). The solid line and dashed line in (b) indicates terrain height at sea level ($P_s = 1013$ hPa) and elevated terrain height ($P_s = 813$ hPa), respectively.
Figure 6: AAI sensitivity to θ and θ_0 at $\phi=180^\circ$. The black dashed contour in (a) indicates the $\Theta=60^\circ, 90^\circ, 120^\circ, 150^\circ$. The white dashed line in (a) indicates the cross section.
Figure 7. CALIOP backscatter coefficient β at 532 nm. The solid and dashed line indicate the retrieved z_{aer} and Δz, respectively.
Figure 8: OMI observations (a–d) and DISAMAR simulations (e–h) of the Chile wildfires on 26, 27, 29 and 30 January 2017. The black and red cross symbols are the AERONET station and the main fire sources (Pichilemu W34.39° S72.00° and Constitución S35.33° W72.42°), respectively. The grey dashed line indicates the CALIOP paths in the region of interest, where the paths used to validate the plume height are marked by black dashed line. The scatter plots (i–l) present the OMI observations against DISAMAR simulations for only qualified data (red dot) and all data (blue dot), respectively.
Figure 9 Retrieved complex refractive index for each case. The dashed line in lower panel is the wavelength dependent imaginary refractive index (n$_i$) measured by AERONET.
Figure 10: Histogram of (a) the AAI difference between GOME-2 and OMI against (b) the τ difference at 550 nm between MODIS and OMI for 27 January. Contour of (c) the AAI RMSE as a function of variation in τ and ω0 for 27 January. The dashed line is the best estimation for each pair of Δτ and ω0.
<table>
<thead>
<tr>
<th>Parameter</th>
<th>Default value</th>
<th>Sensitivity range</th>
<th>Unit</th>
</tr>
</thead>
<tbody>
<tr>
<td>Geometric mean radius (r_g)</td>
<td>0.15</td>
<td>0.1, 0.15, 0.2, 0.25, 0.3, 0.35, 0.4</td>
<td>µm</td>
</tr>
<tr>
<td>Geometric standard deviation ($σ_g$)</td>
<td>1.5</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>Real refractive index (n_r) at 354 nm</td>
<td>1.5</td>
<td>1.3, 1.35, 1.4, 1.45, 1.5</td>
<td></td>
</tr>
<tr>
<td>Imaginary refractive index (n_i) at 354 nm</td>
<td>0.06</td>
<td>0.04, 0.06, 0.08, 0.1</td>
<td></td>
</tr>
<tr>
<td>Aerosol layer geometric central height (z_{aer})</td>
<td>4.5</td>
<td>2.5, 4.5, 6.5, 8.5</td>
<td>km</td>
</tr>
<tr>
<td>Aerosol layer geometric thickness ($Δz$)</td>
<td>1</td>
<td>0.5, 1, 1.5, 2</td>
<td>km</td>
</tr>
<tr>
<td>Aerosol optical thickness ($τ$)</td>
<td>1</td>
<td>0.5, 1, 1.5, 2</td>
<td></td>
</tr>
<tr>
<td>Surface albedo (a_s)</td>
<td>0.05</td>
<td>0.05, 0.1, 0.5, 1.0</td>
<td>-</td>
</tr>
<tr>
<td>Surface pressure (P_s)</td>
<td>1013</td>
<td>1013, 963, 913, 863, 813</td>
<td>hPa</td>
</tr>
<tr>
<td>Solar zenith angle ($θ_0$)</td>
<td>30</td>
<td>0, 15, 30, 45, 60, 75</td>
<td>°</td>
</tr>
<tr>
<td>Viewing zenith angle ($θ$)</td>
<td>0</td>
<td>0, 15, 30, 45, 60, 75</td>
<td>°</td>
</tr>
<tr>
<td>Relative azimuth angle ($∆φ = φ - φ_0$)</td>
<td>0</td>
<td>0, ±45, ±90, ±135, ±180</td>
<td>°</td>
</tr>
</tbody>
</table>
Table 2: Summary of retrieved results (applying IQR outlier detection).

<table>
<thead>
<tr>
<th>Date</th>
<th>2017-01-26</th>
<th>2017-01-27</th>
<th>2017-01-29</th>
<th>2017-01-30</th>
</tr>
</thead>
<tbody>
<tr>
<td>AAI</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>AAI median (OMAERO)</td>
<td>2.52</td>
<td>2.38</td>
<td>4.05</td>
<td>2.60</td>
</tr>
<tr>
<td>AAI median (DISAMAR)</td>
<td>2.17</td>
<td>2.65</td>
<td>3.80</td>
<td>2.49</td>
</tr>
<tr>
<td>Relative difference (%)</td>
<td>-13.88%</td>
<td>-4.20%</td>
<td>-5.93%</td>
<td>-4.60%</td>
</tr>
<tr>
<td>PMSE</td>
<td>0.67</td>
<td>0.51</td>
<td>0.60</td>
<td>0.41</td>
</tr>
<tr>
<td>Aerosol profile</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>zₐₑₐₙ [km]</td>
<td>4.9</td>
<td>4.5</td>
<td>4.7</td>
<td>4.7</td>
</tr>
</tbody>
</table>

Aerosol profile differences between 354 and 388 nm

<table>
<thead>
<tr>
<th>Date</th>
<th>2017-01-26</th>
<th>2017-01-27</th>
<th>2017-01-29</th>
<th>2017-01-30</th>
</tr>
</thead>
<tbody>
<tr>
<td>Δz [km]</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>nₑₐₐₙ at 354 nm</td>
<td>0.0395</td>
<td>0.0382</td>
<td>0.0388</td>
<td>0.0314</td>
</tr>
<tr>
<td>nₑₐₐₙ at 388 nm</td>
<td>0.0386</td>
<td>0.0366</td>
<td>0.0371</td>
<td>0.0306</td>
</tr>
<tr>
<td>nₑₐₐₙ difference between 354 and 388 nm</td>
<td>0.023%</td>
<td>0.022%</td>
<td>0.027%</td>
<td>0.021%</td>
</tr>
</tbody>
</table>

Nₑₐₐₙ at 550 nm

<table>
<thead>
<tr>
<th>Date</th>
<th>2017-01-26</th>
<th>2017-01-27</th>
<th>2017-01-29</th>
<th>2017-01-30</th>
</tr>
</thead>
<tbody>
<tr>
<td>ω₀ at 550 nm (AERONET)</td>
<td>0.89</td>
<td>0.85</td>
<td>0.95</td>
<td>0.91</td>
</tr>
<tr>
<td>ω₀ (DISAMAR)</td>
<td>0.83</td>
<td>0.81</td>
<td>0.87</td>
<td>0.85</td>
</tr>
<tr>
<td>Relative difference (%)</td>
<td>6.74%</td>
<td>8.99%</td>
<td>5.43%</td>
<td>5.99%</td>
</tr>
</tbody>
</table>
The absorbing aerosol index (AAI) based on the near Ultra-Violet (near-UV) remote sensing techniques is a qualitative parameter that allows to retrieve aerosol optical properties with confidence.

Because the data in this case is sensitive to outliers, we applied outlier detection to remove outlier first.
slightly smaller than the value of 0.90 measured independently by the AERONET instrument.

Except for the observational errors, the impact of remaining error sources on ω_0 retrieval is difficult to quantify.

They consist of fine particles (aerodynamic diameter smaller than 2.5 μm) that have adverse impacts on the environment and human health (Bäumer et al., 2008; Adler et al., 2011). Biomass burning aerosols...
one type of absorbing aerosol, black carbon (BC), can be considered as the second important warming agent after carbon dioxide. Absorbing aerosols heat the atmosphere primarily by interaction with solar radiation. They directly absorb the incoming or reflected sunlight. They are also able to reduce the reflectivity of the planet by depositing on bright surfaces

(Huang et al., 2013)
Quantifying the climate effect of absorbing aerosols is therefore important.

Quantifying the climate effect of absorbing aerosols is therefore important.
As a result, ω_0 is usually retrieved by forward simulations that are adapted to observational parameters. Many implementations have been done for ground-based network measurements (Dubovik et al., 1998; Eck et al., 2003; Petters et al., 2003; Kassianov et al., 2005; Corr et al., 2009; Yin et al., 2015), while relatively fewer applications to satellite instruments exist due to lack of validation (Lee et al., 2007; Ialongo et al., 2010; Eck et al., 2013).

Moreover, a majority of those methods heavily depend on the aerosol optical thickness (τ), either in forward model simulations or in validation procedures. This makes the derived ω_0 subject to large uncertainties. The reason is that τ retrieval requires assumptions on aerosol types, and the commonly used τ that is retrieved in the visible band where the signal of bright surfaces is strong. Besides, the aerosol effect on radiance is inversely proportional to wavelength.
Kaufman, 1993), and the sensitivity to \(\omega_0 \) is not significant for most \(\tau \) measurements in the visible and infrared band (Kaufman et al., 1997).
forward model simulations with the absorbing aerosol index (AAI) (Herman et al., 1997)
Page 13: [38] Deleted

Sun ji

5/8/18 12:16:00 PM

from

Page 13: [41] Deleted

Sun ji

4/23/18 6:58:00 PM

from

Page 13: [41] Deleted

Sun ji

4/23/18 6:58:00 PM

Page 13: [42] Formatted

Sun ji

6/11/18 1:55:00 PM

Page 13: [42] Formatted

Sun ji

6/11/18 1:55:00 PM

Page 13: [42] Formatted

Sun ji

6/11/18 1:55:00 PM

Page 13: [42] Formatted

Sun ji

6/11/18 1:55:00 PM

Page 13: [42] Formatted

Sun ji

6/11/18 1:55:00 PM

Page 13: [42] Formatted

Sun ji

6/11/18 1:55:00 PM
Empirical models were also developed to build connections between the AAI and parameters it depends on. Hsu et al. (1999) found a linear relation between the TOMS retrieved AAI and Sun-photometer measured τ over regions with biomass burning and regions covered by African dust. Ginoux and Torres (2003) implemented an empirical relation between the AAI retrieved from TOMS with τ, ω_0 and surface pressure (P_s) to characterize the dust aerosols. Although requiring less computational cost, applying these empirical models is either limited by specific conditions or subject to large errors. Thus, these methods have not been widely used.
the MODerate-resolution Imaging Spectroradiometer (MODIS).
observed

observed
observed
The aerosol effect is assumed at λ_2 is negligible, so that the assumption of a Rayleigh atmosphere at this wavelength is valid. This way the longer wavelength λ_2 is treated as reference wavelength where the surface albedo (a_s) is determined by fitting the observed radiance, i.e. $I_{\lambda_2}^{Ray}(a_s) = I_{\lambda_2}^{obs}$. This a_s is also assumed used at λ_1 to compute $I_{\lambda_1}^{Ray}$.
Consequently,
Consequently, the difference between I_{A1}^{obs} and I_{A1}^{Ray} normalized by the measured radiance I_{A1}^{obs}.
The sensitivity studies are
The sensitivity studies are

Given size distribution function (r_b), complex refractive index (n_r and n_i) at specific wavelengths and a certain wavelength interpolation method, DISAMAR calculates the spectrally dependent optical properties (e.g. ω_0 and phase function $P(\Theta)$) within the specified wavelength range. In this study, we use the linear interpolation and the spectrum coverage from 340 to 675 nm.

that
that
The asymmetry factor g is the averaged cosine of the scattering angle Θ, weighted by $P(\Theta)$.
As shown in Fig. 3 (e) and (f), even with a decreasing ω_0 and an increasing g, or alternatively a decreasing $I_{\text{obs}}^{0.1}$, the AAI primarily follows the behaviour of ΔI_{λ_1}. The significant reduction in the spectral dependency of I_λ overwhelms the high reflectivity for small particles ($r_g=0.1\mu$m).
possible
, where it was found that the retrieved AAI could be highly overestimated without correction for terrain height.
corresponding to the selected Θ does not strictly follow the changes in $P(\Theta)$

the reason that the length of the light path through the aerosol layer also varies with the measurement geometry.

Although the overall change in $P(\Theta)$ with an increasing Θ is negative, the light path within the aerosol layer also decreases. Less absorption occurring in the aerosol layer overwhelms the decrease in reflectivity for larger Θ, resulting in an increase in I_{A1}^{obs} with Θ. [Sj1]
I reconsider the reason, and also set up a simulation under the same condition but without aerosol (not included in the manuscript). It turns out the Rayleigh scattering at forward and backward direction is strong.
are

the spectrum ranges from

the spectrum ranges from

the spectrum ranges from

Font: 10 pt, English (US)
Font: 10 pt, English (US)

Page 17: [147] Formatted
Sun ji
6/11/18 1:55:00 PM

Font: 10 pt, English (US)

Page 17: [148] Formatted
Sun ji
6/11/18 1:55:00 PM

Font: 10 pt, English (US)

Page 17: [149] Formatted
Sun ji
6/11/18 1:55:00 PM

Font: 10 pt, English (US)

Page 17: [149] Formatted
Sun ji
6/11/18 1:55:00 PM

Font: 10 pt, English (US)

Page 17: [149] Formatted
Sun ji
6/11/18 1:55:00 PM

Font: 10 pt, English (US)

Page 17: [149] Formatted
Sun ji
6/11/18 1:55:00 PM

Font: 10 pt, English (US)

Page 17: [149] Formatted
Sun ji
6/11/18 1:55:00 PM

Font: 10 pt, English (US)

Page 17: [149] Formatted
Sun ji
6/11/18 1:55:00 PM

Font: 10 pt, English (US)

Page 17: [150] Deleted
Sun ji
5/16/18 11:16:00 AM

inversion

Page 17: [150] Deleted
Sun ji
5/16/18 11:16:00 AM

inversion

Page 17: [150] Deleted
Sun ji
5/16/18 11:16:00 AM
inversion

<table>
<thead>
<tr>
<th>Page 17: [150] Deleted</th>
<th>Sun ji</th>
<th>5/16/18 11:16:00 AM</th>
</tr>
</thead>
<tbody>
<tr>
<td>Font: 10 pt, English (US)</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Page 17: [151] Formatted</th>
<th>Sun ji</th>
<th>6/11/18 1:55:00 PM</th>
</tr>
</thead>
<tbody>
<tr>
<td>Font: 10 pt, English (US)</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Page 17: [152] Deleted</th>
<th>JP Veefkind</th>
<th>5/14/18 4:20:00 PM</th>
</tr>
</thead>
<tbody>
<tr>
<td>when</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Page 17: [153] Formatted</th>
<th>Sun ji</th>
<th>6/11/18 1:55:00 PM</th>
</tr>
</thead>
<tbody>
<tr>
<td>English (US)</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Page 17: [154] Formatted</th>
<th>Sun ji</th>
<th>6/11/18 1:55:00 PM</th>
</tr>
</thead>
<tbody>
<tr>
<td>English (US)</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Page 17: [155] Formatted</th>
<th>Sun ji</th>
<th>6/11/18 1:55:00 PM</th>
</tr>
</thead>
<tbody>
<tr>
<td>Font: 10 pt, English (US)</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Page 17: [156] Formatted</th>
<th>Sun ji</th>
<th>6/11/18 1:55:00 PM</th>
</tr>
</thead>
<tbody>
<tr>
<td>Font: 10 pt, English (US)</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
and the optical properties of
is relatively small and the sample distribution
<table>
<thead>
<tr>
<th>Page 19: [179] Formatted</th>
<th>Sun ji</th>
<th>6/11/18 1:55:00 PM</th>
</tr>
</thead>
<tbody>
<tr>
<td>Font: 10 pt, English (US)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Page 19: [179] Formatted</td>
<td>Sun ji</td>
<td>6/11/18 1:55:00 PM</td>
</tr>
<tr>
<td>Font: 10 pt, English (US)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Page 19: [179] Formatted</td>
<td>Sun ji</td>
<td>6/11/18 1:55:00 PM</td>
</tr>
<tr>
<td>Font: 10 pt, English (US)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Page 19: [180] Formatted</td>
<td>Sun ji</td>
<td>6/11/18 1:55:00 PM</td>
</tr>
<tr>
<td>Font: 10 pt, English (US)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Page 19: [180] Formatted</td>
<td>Sun ji</td>
<td>6/11/18 1:55:00 PM</td>
</tr>
<tr>
<td>Font: 10 pt, English (US)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Page 19: [181] Formatted</td>
<td>Sun ji</td>
<td>6/11/18 1:55:00 PM</td>
</tr>
<tr>
<td>Font: 10 pt, English (US)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Page 19: [181] Formatted</td>
<td>Sun ji</td>
<td>6/11/18 1:55:00 PM</td>
</tr>
<tr>
<td>Font: 10 pt, English (US)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Page 19: [182] Formatted</td>
<td>Sun ji</td>
<td>6/11/18 1:55:00 PM</td>
</tr>
<tr>
<td>Font: 10 pt, English (US)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Page 19: [182] Formatted</td>
<td>Sun ji</td>
<td>6/11/18 1:55:00 PM</td>
</tr>
<tr>
<td>Font: 10 pt, English (US)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Page 19: [182] Formatted</td>
<td>Sun ji</td>
<td>6/11/18 1:55:00 PM</td>
</tr>
<tr>
<td>Font: 10 pt, English (US)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Page 19: [183] Deleted</td>
<td>JP Veefkind</td>
<td>5/14/18 5:31:00 PM</td>
</tr>
<tr>
<td>from</td>
<td>JP Veefkind</td>
<td>5/14/18 5:31:00 PM</td>
</tr>
</tbody>
</table>
This difference might be due to the fact that the selected AERONET site is not exactly at the primary biomass burning regions as mentioned in section 3.1.3. The ω_0 measured by AERONET could increase as the result of aerosol ageing. Specifically, the location of the AERONET site is in the downtown, where the more reflective urban or industrial aerosols may mix with the smoke and enhance the measured ω_0. Besides
micro-physics parameters retrieved from

micro-physics parameters retrieved from

Font: 10 pt, English (US)

Font: 10 pt, English (US)

Should these be left in? The AERONET product is much better established…

Just mention that AERONET measurements is not perfect also. The input size distribution functions may not be the major error source in our case, but the refractive index is not, which may bias the forward simulation. The SSA, as the parameter to validate, is also with uncertainty of 0.03.
However, even with relative reasonable retrieval of Z_{aerr}, it is noted that the ω_0 retrieved on 27 January is significantly underestimated and biased from the mean level of other cases. This implies the existence of other error sources, such as the observational errors from the input τ of MODIS and the AAI of OMI to be fit.
the assumption of homogeneous and static plume properties, which ignores the plume evolution over space and time;

the assumption of homogeneous and static plume properties, which ignores the plume evolution over space and time;
This study proves the potential of utilizing OMI measured AAI to quantitatively characterize aerosol optical properties like ω_0. Even without direct observation of aerosol profiles, this parameter can also be retrieved with quite good confidence. However, apart from the observational uncertainties, the current study is probably somewhat limited by the necessary assumptions of homogeneous and static plume properties, whose impact on retrieved ω_0 is difficult to quantify. In the future planned
work, a chemistry transport model is needed to describe the evolution of the plume properties in space and time. Moreover, also clouds should be taken into consideration in order to use the AAI observations over clouds, thus making the maximum use of the near-UV observations.
<table>
<thead>
<tr>
<th>Page 37: [400] Formatted</th>
<th>6/11/18 1:55:00 PM</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sun ji</td>
<td>English (US)</td>
</tr>
<tr>
<td>Page 37: [401] Formatted</td>
<td>5/15/18 10:32:00 PM</td>
</tr>
<tr>
<td>Sun ji</td>
<td>Left</td>
</tr>
<tr>
<td>Page 37: [402] Formatted</td>
<td>6/11/18 1:50:00 PM</td>
</tr>
<tr>
<td>Sun ji</td>
<td>Justified</td>
</tr>
<tr>
<td>Page 37: [403] Formatted</td>
<td>6/11/18 1:55:00 PM</td>
</tr>
<tr>
<td>Sun ji</td>
<td>Font: 10 pt, English (US)</td>
</tr>
</tbody>
</table>