This document contains the responses to the second referee, followed by a version 3 manuscript (starts in page 8). The reviewers’ comments and questions are in bold. For each comment / question, the authors’ reply / answer is in black, and the corresponding modifications in the manuscript version 3 are marked in blue colour.

(2) Author’s response to the Anonymous Referee #2

Thank you very much for your comments on our manuscripts. The following are the responses to your comments.

1. On page 6 authors write: “the fine and coarse mode are derived separately from AERONET”. This is not true. AERONET inversion algorithm primarily retrieves aerosol size distribution (ASD) in 22 discrete radius points. The separation in two modes is done after the inversion by finding inflection point in between two ASD peaks and then approximation each part of ASD by log-normal distribution. The parameters of these approximations are provided as ASD parameters for fine and coarse modes. The detailed description of this procedure can be find at https://aeronet.gsfc.nasa.gov/new_web/Documents/Inversion_products_V2.pdf. Therefore the averaging of SSA of two modes is not needed. The total SSA for the initially retrieved ASD (at 22 points) can be used instead. I am wondering how close averaged SSA to the total SSA is provided by AERONET. In addition, SSA for fine and coarse modes are not advised to use because retrieval in implemented under assumption that complex index of refraction is the same for all the sizes.

Sorry for the confusion. We are not indicating that the AERONET derives fine and coarse mode separately, but indicating that we obtained the two modes by finding the peaks in the size distribution function provided by AERONET.

The radiative transfer model DISAMAR currently cannot directly apply bi-modal distribution function. Instead, we built two modes individually, corresponding to the two modes taken from AERONET. For each mode, we assigned the optical properties (refractive index) provided by AERONET. Then DISAMAR calculates the phase function and SSA for each mode. Finally, we combined two modes into one weighted by number density fraction and extinction cross section.

We have rephrased the sentence into The fine and coarse mode particle size are derived by finding the two peaks of the log-normal distribution function provided by AERONET. The complex refractive index is assumed the same for both modes. Since bi-modal aerosol is not applicable in DISAMAR yet, we first calculate optical properties of two modes individually, then we externally combine the optical properties of two modes into a bi-modal aerosol with a fraction (line 210-213).

2. On page 1 authors mention that retrieved SSA (0.84) is slightly lower that AERONET value. I encourage authors to replace or remove word slightly because the absolute difference 0.06 is significant in terms of radiative forcing estimation.

Thank you for your suggestion. We admit that 0.06 difference for SSA retrieval is not minor, and ‘slightly’ is not properly used.

We have deleted ‘slightly’ accordingly, and rephrased into The retrieved mean \(\omega_0 \) at 550 nm for the entire plume over the period from 26-30 January 2017 varies from 0.81 to 0.87, whereas the nearest AERONET station reported values in the range from 0.89 to 0.92 (line 21-23).
3. Page 2. “The foremost advantage of the AAI is its independence from assumptions on aerosol types, which significantly reduce the retrieval uncertainty”. This statement is confusing because the simulation of AAI is still dependent on aerosol type.

Sorry for the confusion. Indeed, AAI forward simulation (like what we do in this study) needs aerosol information, including aerosol loading, profile, micro-physics, etc. But AAI retrieval from satellite is independent of pre-assumed aerosol types. It is calculated directly from the measured radiance (Eq.(1)). Here we want to stress that the AAI retrieval is independent of aerosol information itself, thus there is fewer uncertainties in the retrieved AAI.

We have rephrased this sentence into The most important advantage of the satellite retrieved AAI is that it does not dependent on assumptions on aerosol types, while a-prior aerosol types are major uncertainties in aerosol parameter retrievals, such as τ (line 48-49).

4. Page 3. What wavelength interpolation is used for? Index of retraction or aerosol optical parameters?

To your question, we used linear interpolation to interpolate the AERONET refractive index from 440 to 1080 nm, and used the same technique to extrapolate the spectrum to 340 nm. With wavelength dependent size distribution function and refractive index, the radiative transfer model (DISAMAR) calculates the phase function and SSA for the full spectrum we specified (340 to 675 nm, with resolution of 2 nm) (those are intermediate outputs). With those intermediate outputs (that carry information on aerosol types), DISAMAR can execute the forward simulation of AAI.

We have rephrased this part into We obtain the size distribution function and complex refractive index at 440, 675, 880 and 1018 nm from AERONET, and apply the linear interpolation / extrapolation to derive the complex refractive index over the spectrum from 340 to 675 nm, with spectral resolutions of 2 nm (line 103-105).

This is also mentioned in line 223-225 where we applied the same method for the case study: To constrain the spectral dependency of optical properties in the near-UV band, complex refractive index n_r and n_i in the UV band are linearly extrapolated using available data between 440 and 675 nm as mentioned in Section 2.2.

In line 225-226 we mentioned the treatment for AERONET AOD and SSA (we use them for evaluating our results):

Finally, the AERONET retrieved τ and ω is also linearly interpolated to 550 nm.
Quantifying the single scattering albedo for the January 2017 Chile wildfires from simulations of the OMI absorbing aerosol index

Jiyunting Sun1,2, J. Pepijn Veenkind1,2, Peter van Velthoven1, Pieterel F. Levelt1,2
1Royal Netherlands Meteorological Institute, De Bilt, 3731 GA, the Netherlands
2Department of Geoscience and Remote Sensing (GRS), Civil Engineering and Geosciences, Delft University of Technology, Delft, 2628 CD, the Netherlands
Correspondence to: Jiyunting Sun (jiyunting.sun@knmi.nl)

Abstract. The absorbing aerosol index (AAI) is a qualitative parameter directly calculated from satellite measured reflectances. Its sensitivity to absorption by aerosol particles in combination with a long data record start in the late 1970’s makes it an important parameter for climate research. In the first part of this study, a series of AAI sensitivity analyses is presented exclusively on biomass burning aerosols. Later on, this study applies a radiative transfer model (DISAMAR) to simulate the AAI measured by the Ozone Monitoring Instrument (OMI) in order to derive the aerosol single scattering albedo (\(\omega_0\)). The inputs for the radiative transfer calculations are satellite measurement geometry and surface conditions from OMI, aerosol optical thickness (\(\tau\)) from the MODerate-resolution Imaging Spectroradiometer (MODIS), and aerosol microphysical parameters from the AErosol RObotic NETwork (AERONET), respectively. This approach is applied to the Chile wildfires for the period from 26 to 30 January 2017, when the OMI observed AAI of this event reached its peak. The Cloud and Aerosol Lidar with Orthogonal Polarization (CALIOP) failed to capture the complete evolution of the smoke plume, therefore the aerosol profile is parameterized. The simulated plume ascends to an altitude of 4.5-4.9 km, which is in good agreement with available CALIOP backscatter coefficient measurements. Due to the heterogeneity of the data that may contain the pixels outside the plume, an outlier detection criterion has to be applied. The results show that the AAI simulated by DISAMAR is consistent with observations. The correlation coefficients fall into the range between 0.85 and 0.95. The retrieved mean \(\omega_0\) at 550 nm for the entire plume over the period from 26-30 January 2017 varies from 0.81 to 0.87, whereas the nearest AERONET station reported values in the range from 0.89 to 0.92. The difference in geolocation of the AERONET site and the plume, the assumption of homogeneous and static plume properties, the lack of the aerosol profile information, and the uncertainties in observations are primarily responsible for this discrepancy.

1 Introduction

Biomass burning aerosols are generated from combustion of carbon-containing fuels, either by natural or anthropogenic processes (Bond et al., 2004; IPCC, 2014). They are of great concern from the perspective of climate (Kaufman and Boucher, 2002; IPCC, 2007; Koch and Del Genio, 2010; Huang et al., 2013; IPCC, 2014). The reported radiative forcing of black carbon (BC) produced by fossil fuel and biofuel is around 0.4 Wm\(^{-2}\) (0.05 – 0.80 Wm\(^{-2}\)) (Ramanathan and Carmichael, 2008; Bond et al., 2013; Huang et al., 2013), but this estimate is highly uncertain. Accurate measurements of the aerosol single scattering albedo (\(\omega_0\)) on a global scale can reduce the uncertainty in radiative forcing assessments (Hu et al., 2007). \(\omega_0\) is defined as the ratio of the aerosol scattering over the extinction. Currently \(\omega_0\) is mainly measured by ground-based instruments (Dubovik et al., 1998; Eck et al., 2003; Petters et al., 2003; Kassianov et al., 2005; Corr et al., 2009; Yin et al., 2015). Satellite derived \(\omega_0\) is usually retrieved simultaneously with the aerosol optical thickness (\(\tau\)) based on the pre-defined aerosol properties (Torres et al., 2005; Torres et al., 2007). More advanced sensors, such as the POLarization and Directionality of the Earth’s Reflectances (POLDER), can retrieve \(\omega_0\) from a combination of multi-angular, multi-spectral observations of the polarized radiation. By measuring the anisotropy of the reflected radiance for each ground pixel, POLDER is expected to determine the reflected solar flux more accurately (Leroy et al., 1997). Unfortunately, there is no
continuous temporal coverage because the first two POLDER missions ended prematurely due to technical problems on the satellite level. The third POLDER mission only covered the period 2004-2014. Herman et al. (1997) first defined the near Ultra-Violet (UV) absorbing aerosol index (AAI), which provides an alternative methodology to retrieve ω_0 from satellite observations. The near-UV AAI, usually derived from the spectral range between 340 and 390 nm, is a qualitative measure of absorbing aerosols that was first provided by the Total Ozone Mapping Spectrometer (TOMS) on-board Nimbus-7 in 1979. Since then several instruments have contributed to the AAI data record, that now spans nearly four decades. This long data record is an important motivation for us to improve methods to derive quantitative aerosol information from the near-UV. The most important advantage of the satellite retrieved AAI is that it does not dependent on assumptions on aerosol types, while a-prior aerosol types are major uncertainties in aerosol parameter retrievals, such as τ. Ginoux et al. (2004) suggested that comparing model simulations with AAI from TOMS allows a better control of discrepancies because the only error source is the model. Further advantages of AAI are the low reflectivity of the Earth’s surface and the absence of significant molecular absorption over the near-UV range. Using this band can ensure the aerosol absorption is one of the major contributors to the total signal. Moreover, the near-UV AAI is by definition highly sensitive to ω_0. Previous studies have proven the potential of the near-UV AAI from TOMS in aerosol properties retrieval. Torres et al. (1998) provided the theoretical basis of an inversion method to derive τ and ω_0 from backscattered radiation. This method was validated by ground-based observations during the Southern African Regional Science Initiative (SAFARI) 2000 measurement campaign. The agreement of τ and ω_0 reaches \pm30% and \pm0.03, respectively (Torres et al., 2005). Hu et al. (2007) retrieved global columnar ω_0 based on the AAI from TOMS with an average uncertainty of 15%. This study is inspired by previous research to quantify the aerosol absorption from AAI. We use the near-UV AAI provided by the Ozone Monitoring Instrument (OMI) on-board Aura, the successor of TOMS, to derive the aerosol properties of the Chile wildfires in January 2017. Triggered by a combination of long-term drought and high temperature, this series of fires occurring in central Chile (Pichilemu 34.39°S 72.00°W and Constitucion 35.33°S, 72.42°W) was regarded as the worst wildfire season in the national history (The Guardian, 2017). The fires led to evacuations of the affected areas and caused massive losses of the local forestry industry (pine and eucalyptus forests) (NASA.gov, 2017). The smoke plume was transported away from the source regions towards the tropical area in the Pacific Ocean by north-westward winds (Fig.1). In this study, we quantitatively retrieve the ω_0 of this smoke by simulating the near-UV AAI from OMI with the radiative transfer model Determining Instrument Specifications and Analysing Methods for Atmospheric Retrieval (DISAMAR). The aerosol inputs of DISAMAR includes the τ retrieved from the MODerate-resolution Imaging Spectroradiometer (MODIS) on-board the NASA EOS Aqua satellite, and information on aerosol micro-physical parameters provided by AERONET. In the next section, we provide a brief introduction on the near-UV AAI and its sensitivity to various parameters. The retrieval methodology is described in section 3. In section 4, retrieved results and uncertainty analysis of Chile 2017 wildfires are discussed, followed by main conclusions in section 5.

2 AAI sensitivity studies based on DISAMAR

In this section, we first introduce the near-UV AAI. In the sensitivity analysis, we show that the AAI depends not only on aerosol parameters, but also on the surface conditions and the observation geometry. The sensitivity analysis in this study is only designed for biomass burning aerosols.

2.1 Near-UV AAI definition

The concept of the near-UV AAI was first conceived to detect UV-absorbing aerosols from the spectral contrast provided by TOMS observations, known as the residue method (Herman et al., 1997). The basic idea of the residue method is that in a pure Rayleigh atmosphere, the reflectance (or equivalently the radiance (I_0)) decreases strongly with the wavelength. The
presence of absorbing aerosols will reduce this spectral dependency of I_λ. The change in this wavelength dependency is summarized as the AAI, which is calculated from the I_λ at the wavelength pair λ_1 and λ_2 ($\lambda_1 < \lambda_2$):

\[
AAI = -100 \left(\log_{10} \left(\frac{I_{\lambda_1}^{\text{obs}}}{I_{\lambda_2}^{\text{obs}}} \right) - \log_{10} \left(\frac{I_{\lambda_1}^{\text{Ray}}}{I_{\lambda_2}^{\text{Ray}}} \right) \right),
\]

(1)

The obs and Ray denote the I_λ from the satellite measurement and calculated using a Rayleigh atmosphere, respectively. The longer wavelength λ_2 is treated as reference wavelength where the surface albedo (a_λ) is determined by fitting the observed radiance, i.e. $I_{\lambda_2}^{\text{Ray}}(a_\lambda) = I_{\lambda_2}^{\text{obs}}$. This is done using an atmosphere containing only molecular scattering bounded by a Lambertian surface. The spectral dependence of the surface albedo is neglected thus $I_{\lambda_1}^{\text{Ray}}$ is calculated using the same value for a_λ. Defining $\Delta I_{\lambda_2} = I_{\lambda_1}^{\text{Ray}} - I_{\lambda_1}^{\text{obs}}$, Eq.(1) can be rewritten as:

\[
AAI = 100 \log_{10} \left(\frac{\Delta I_{\lambda_2}}{I_{\lambda_1}^{\text{obs}}} + 1 \right)
\]

(2)

It is advantageous to use Eq.(2) because the AAI can be simply interpreted as the ratio between the simulated and observed radiance at λ_1.

2.2 Near-UV AAI sensitivity studies

In this section, we present results from sensitivity studies performed with the radiative transfer model DISAMAR. DISAMAR can perform simulations of the forward I_λ spectrum in a wide spectral coverage (270 nm to 2.4 µm) and models scattering and absorption by gases, aerosols and clouds, as well as reflection by the surface (De Haan, 2011). It uses either the Doubling-Adding method or the Layer Based Orders of Scattering (LABOS) for the radiative transfer calculations. In this study the latter one is used, because it is less computationally intensive (De Haan et al., 1987; De Haan, 2011).

DISAMAR allows to apply several aerosol scattering approximations. Here we assume Mie scattering aerosols. The parameters to describe Mie particles and their corresponding values are listed in Table 1. Considering the Chile wildfires plumes, which were dominated by biomass burning aerosols, these sensitivity studies are specifically performed for parameterized smoke aerosols, with only fine mode particles and weak linearly wavelength dependency of the complex refractive index (n_r and n_i). The default values refer to observations of the daily average on January 27 of the AERONET station Santiago Beauchef (33.46°S, 70.66°W). We obtain the size distribution function and complex refractive index at 440, 675, 880 and 1018 nm from AERONET, and apply the linear interpolation / extrapolation to derive the complex refractive index over the spectrum from 340 to 675 nm, with spectral resolutions of 2 nm. Then DISAMAR uses above information to calculate the aerosol phase function $P(\Theta)$ and ω_0 over the full spectrum. The corresponding $P(\Theta)$ at 354 nm is presented in Fig.2. DISAMAR requires τ to be defined at reference wavelength 550 nm. Surface parameters include a spectrally flat a_λ and the surface pressure P_s. The aerosol profile is parameterized as a single layer box shape, with its bottom at $z_{\text{aer}} + \Delta z/2$ and top at $z_{\text{aer}} + \Delta z/2$, where z_{aer} and Δz are the geometric central height and the geometric thickness of the aerosol layer, respectively. The whole sensitivity analysis is performed for cloud-free conditions. The wavelength pair of OMI (354 and 388 nm) is applied to compute the AAI. To make different sensitivities studies comparable, the AAI calculated in this section is normalized by the maximum value among each sensitivity study. Note that each sensitivity study always uses the default settings listed in Table 1, unless different values are explicitly mentioned.

Aerosol optical properties are determined by micro-physics, such as the real and imaginary part of the complex refractive index (n_r and n_i), and the particle size (r_p). Fig. 3 shows the variation of the AAI, ΔI_{λ_2}, $I_{\lambda_1}^{\text{obs}}$ as well as of the optical properties ω_0 and the asymmetry factor g, as a function of the complex refractive and the particle size. The asymmetry factor g is the averaged cosine of the scattering angle Θ, weighted by $P(\Theta)$. Fig. 3 shows that the effect of the complex refractive index is dual. As shown in Fig.3 (a), an increase in the real part of refractive index n_r directly enhances the magnitude of $I_{\lambda_1}^{\text{obs}}$, whereas ΔI_{λ_1} reduces. This results in low values of the AAI, which correspond to a large ω_0 (Fig.3 (b)). Under the
condition that measurement angle is $\Theta=150^\circ$, the declining g implies that more light is scattered in the line-of-sight of the detector, thus the higher $I_{\Delta A1}^{obs}$. Conversely, the imaginary part of refractive index n_i is directly associated with ω_0, has an opposite influence, see Fig.3 (c) and (d). The particle size distribution has a more complicated influence on the AAI. As shown in Fig.3 (e), the AAI first decreases and then increases, when r_z is varied from 0.1 to 0.4 μm. The AAI primarily follows the behaviour of ΔI_{A1}, whereas ω_0 is continuously decreasing and g is continuously increasing.

In addition to the micro-physics, the concentration and vertical distribution of aerosols also have a strong influence on the wavelength dependency of the radiance ΔI_{A1}. As shown in Fig.4 (a), the AAI is positively correlated with τ. The AAI is highly sensitive to the aerosol vertical distribution (Herman et al., 1997; Torres et al., 1998; de Graaf et al., 2005). As the aerosol layer ascends (Fig.4 (b)), more molecular scattering beneath the aerosol layer is shielded, which reduces $I_{\Delta A1}^{obs}$ while increases ΔI_{A1}. The relation between the AAI and z_{aer} is almost linear. Fig.4 (c) shows that at the same altitude, the AAI slightly increases with the geometrical thickness of the aerosol layer. The reason could be that a larger Δz indicates the coming sunlight has a higher possibility to be absorbed by aerosols, amplifying the absorption of the aerosol layer.

The calculated AAI does not only depend on the aerosols themselves, but also on ambient parameters such as surface and clouds. Although the near-UV AAI is capable to distinguish absorbing and non-absorbing agents (Herman et al., 1997) and even to retrieve aerosol information over clouds (Torres et al., 2012), the uncertainty triggered by clouds is relatively high and therefore cloudy conditions are excluded in this study. Surface conditions are parameterized by P_s and a_s. It can be seen in Fig.5 (a) that a decrease in P_s, or equivalently an elevated terrain height, leads to less Rayleigh scattering shielded between the surface and the aerosol layer. As a result, the AAI decreases significantly due to smaller ΔI_{A1}, in agreement with a previous study (de Graaf et al., 2005). According to de Graaf et al. (2005), increasing a_s has two counteracting effects. On the one hand, it increases the amount of directly reflected radiation at the top of the atmosphere, namely a larger $I_{\Delta A1}^{obs}$, on the other hand it enhances the role of absorption by the aerosol layer rather than the surface, namely a larger ΔI_{A1}. Which effect of a_s is decisive depends on P_s (Fig.5 (b)). When the aerosol layer is relative to the sea level ($P_s = 1013$ hPa), the first effect dominates. However, a brighter surface compensates the loss of molecular scattering shielded by the aerosols when the terrain height rises ($P_s = 813$ hPa), which makes the absorbing layer more detectable.

The AAI depends also on the Sun-satellite geometry. Here we provide the AAI as a function of the measurement geometries for the default case with the relative azimuth angle $\Delta \phi = 180^\circ$. As presented in Fig.6 (a), the AAI becomes very sensitive to the geometries for zenith angles larger than 60°, which confirms previous research (Herman et al., 1997; Torres et al., 1998; de Graaf et al., 2005). This is mainly due to the significant growth of $P(\Theta)$ when Θ becomes smaller (Fig.2). It is thus suggested that the OMI measurement with θ_0 larger than this value should be removed due to large variations in the AAI. To analyse the radiance behaviour as previously, we plotted the $I_{\Delta A1}^{obs}$ and ΔI_{A1} as a function of Θ along the cross section, respectively (Fig.6 (b)). It is noted that $I_{\Delta A1}^{obs}$ increases when Θ is larger than 90°, whereas the $P(\Theta)$ decreases at this range (Fig.2). The reason could be that the Rayleigh scattering has an increasing contribution to the radiance at those measurement angles (backscattering).

3 Methodology and datasets

In this section, we first present the datasets used and their pre-processing, followed by the strategy to retrieve the aerosol ω_0 while constraining the simulated near UV AAI to correspond to the observed one.
3.1 Datasets

3.1.1 OMI and GOME-2 absorbing aerosol index

The TOMS near-UV AAI retrieval has been proven a robust algorithm and applied to successive sensors, such as OMI on-board Aura and GOME-2 on-board MetOp-A/B. GOME-2 has higher spectral resolution (0.2-0.4 nm) than TOMS, but the spatial resolution is rather coarse (80×40 km²). In this study, GOME-2 measured AAI at wavelength pair 340 and 380 nm (http://archive.eumetsat.int) is only used as an independent dataset to assess the potential bias of the OMI measurements. OMI combines advantages of both TOMS and GOME-2. It covers wavelengths from 264 to 504 nm with a spectral resolution of approximately 0.5 nm and has a much higher spatial resolution than GOME-2 of 13×24 km² (Levelt et al., 2006). Since OMI was launched in 2004, the AAI retrieved from this instrument has been widely used in various applications. Kaskaoutis et al. (2010) employed the OMI measured AAI for regional research of the aerosol temporal and spatial distribution in Greece. Torres et al. (2012) utilized the advantage of near-UV AAI to detect aerosols over clouds. The OMI observed AAI was even used to evaluate the impact of surface dust loading on human health (Deroubaix et al., 2013).

In this study, the OMI level 2 product OMAERO (https://disc.gsfc.nasa.gov) is used to provide AAI retrieved at the wavelength pair of 354 and 388 nm, and the corresponding viewing geometry and the surface condition when the measurements took place. The samples are included in the radiative transfer simulation only if \(\theta_g \) is smaller than 60°, and if ground pixels are not contaminated by sun-glint, clouds, row anomalies of the instrument, etc. The simulation is only applied to ground pixels inside the biomass burning plume, which as AAI values larger than 1, for both OMI and GOME-2.

3.1.2 MODIS and OMI aerosol optical thickness

MODIS on-board Aqua/Terra is a sensor that was specifically designed for atmosphere and climate research. The combination of two satellites ensures daily global coverage. The spatial resolution ranges from 250 m to 1 km and it has 36 spectral bands in the wavelength range between 400 nm and 14.4 µm (Remer et al., 2005). MODIS employs separated algorithms for aerosol retrieval over oceans and land, respectively (Tanré et al., 1997; Kaufman and Tanré, 1998; Hsu et al., 2004; Remer et al., 2005). Currently the \(\tau \) provided by MODIS is one of the most reliable datasets (Lee et al., 2009), with an estimated uncertainty of only 3-5% over ocean and 5-15% over land (Remer et al., 2005). As mentioned before, DISAMAR requires \(\tau \) at 550 nm. This study uses cloud-filtered \(\tau \) at 550 nm from the Collection 6 level 2 product MYD04 as the input for radiative transfer calculation (https://disc.gsfc.nasa.gov).

In addition, the \(\tau \) measured by OMI and AERONET are treated as a reference dataset to evaluate potential biases in MODIS. The OMAERO retrieval uses multi-spectral fitting techniques. The retrieved \(\tau \) is in good accordance with AERONET and is highly correlated with MODIS (Torres et al., 2007), with a correlation of 0.66 over land and 0.79 over the oceans (Curier et al., 2008), although it suffers from cloud contamination due to the relatively coarse spatial resolution of OMI. Due to the wavelength difference, the \(\tau \) measured by OMI at 442 nm has to be transferred to 550 nm using the Ångström exponent (ÅE) for 440 – 675 nm) taken from AERONET at the time when OMI flies over the selected site. The AERONET dataset used in this study is introduced in the next section.

3.1.3 AERONET aerosol properties

AERONET is an aerosol monitoring network of ground-based sun photometers. With standardized instruments, calibration, processing and distribution, AERONET provides a long-term global database for aerosol research and air-borne and space-borne measurement validation. The system takes two basic measurements. The \(\tau \) and ÅE are retrieved from the direct solar irradiance measurements; the \(r_p, P(\Theta) \) (Nakajima et al., 1983; Nakajima et al., 1996), \(\omega_0 \) (Dubovik et al., 1998), \(n_t \) and \(n_i \) (Dubovik and King, 2000) are derived from multiple-angular measurements of sky radiance.
The AERONET site nearest to the fire sources of 2017 Chile wildfires is the Santiago Beauchef (33.46°S, 70.66°W) (https://aeronet.gsfc.nasa.gov). The dataset in use is version 2 level 1.5 product. To minimize the influence of temporal difference, the parameters of AERONET measured near the time of the OMI overpass of the site are used to simulate the optical properties of Mie scattering aerosols in DISAMAR. Note that the level 1.5 dataset is not quality-assured, and the location of this site is in downtown of Santiago City and close to major roads. The presence of scattering aerosols may bias the measurements of the plume.

The AERONET measurements need to be processed into the inputs required by DISAMAR. Firstly, a conversion from the volume size distribution \(V(r_o, \sigma_o) \) provided by AERONET to the number size distribution \(N(r_g, \sigma_g) \) used in DISAMAR is required:

\[
N(r_g, \sigma_g) = V(r_o, \sigma_o) \frac{3}{4 \pi r_g^2} e^{-4.5 r_g^2},
\]

(4)

The following relation between the geometric and volumetric mean radii \((r_g \text{ and } r_o) \) and standard deviations \((\sigma_g \text{ and } \sigma_o) \) is assumed:

\[
r_g = r_o e^{-3 \sigma_g^2},
\]

(5)

\[
\sigma_g = \sigma_o.
\]

(6)

The fine and coarse mode particle size are derived by finding the two peaks of the log-normal distribution function provided by AERONET. The complex refractive index is assumed the same for both modes. Since bi-modal aerosol is not applicable in DISAMAR yet, we first calculate optical properties of two modes individually, then we externally combine the optical properties of two modes into a bi-modal aerosol with a fraction:

\[
w_f = \frac{N_f(r_g, \sigma_g, \sigma_f)}{N_f(r_g, \sigma_g, \sigma_f) + N_c(r_g, \sigma_g, \sigma_c)},
\]

(7)

\[
w_c = 1 - w_f,
\]

(8)

Then the weights for calculating the total \(\omega_o \) of the mixed aerosol are:

\[
w_{\omega_f} = \frac{w_f \omega_f}{w_f \omega_f + w_c \omega_c},
\]

(9)

\[
w_{\omega_c} = 1 - w_{\omega_f},
\]

(10)

Where the \(\sigma_f \) and \(\sigma_c \) are the extinction cross section of the fine and coarse aerosols. The expansion coefficients of the mixed aerosol is weighed by the \(\omega_o \) of the fine and coarse aerosols (\(\omega_{o,f} \) and \(\omega_{o,c} \)), respectively:

\[
w_{\omega_{o,f}} = \frac{w_f \omega_f \omega_{o,f}}{w_f \omega_f \omega_{o,f} + w_c \omega_c \omega_{o,c}},
\]

(11)

\[
w_{\omega_{o,c}} = 1 - w_{\omega_{o,f}},
\]

(12)

The spectral bands of the AERONET instrument at this site only covers the visible band. To constrain the spectral dependency of optical properties in the near-UV band, complex refractive index \(n_o \) and \(n_i \) in the UV band are linearly extrapolated using available data between 440 and 675 nm as mentioned in Section 2.2. Finally, the AERONET retrieved \(\tau \) and \(\omega_o \) is also linearly interpolated to 550 nm.
3.1.4 CALIOP backscattering coefficient

The CALIOP on-board CALIPSO, which was launched in 2006, provides high-resolution profiles of aerosols and clouds. It has three channels with one measuring the backscattering intensity at 1064 nm and the rest measuring orthogonally polarized components at 532 nm backscattering intensity (Winker and Omar, 2006). Due to the limited spatial coverage, CALIOP did not observe the Chile plume for all the cases for which we have OMI observations. We only use the total attenuated backscatter at 532 nm from level 1B Version 4.10 Standard data to evaluate the parameterized aerosol profiles (https://eosweb.larc.nasa.gov/project/calipso).

3.2 Methodology

In this study, we employ the radiative transfer model DISAMAR to simulate the near-UV AAI from OMI and to derive the ω_0 for a specific case, i.e. the Chile wildfires in January 2017. We select the period from 26 to 30 January 2017 (28 January is excluded due to lack of data) when the AAI value reached its peak. The aerosol information consists of the cloud free column τ retrieved from MODIS, and the aerosol micro-physical parameters (r_g, n_r and n_i) retrieved from AERONET. The real part of the refractive index n_r in the UV band has a fixed value which is obtained by linearly extrapolating that from the AERONET observations at 440 to 675 nm assuming a small wavelength dependency of n_r. We set the imaginary part n_i as a free parameter to vary ω_0, with an initial guess value obtained by extrapolation from AERONET like n_r.

The amount of observed aerosol vertical profiles is limited for the Chile wildfires. Instead, we implement the same parameterization as in the sensitivity study to obtain the aerosol profile. Since the AAI dependency on Δz is minor (Fig.4 (c)), and to reduce the computational cost, Δz is set constant of 2 km based on the information from the CALIOP measurements of backscattering coefficient (b) at 532 nm (Fig.7). The z_{ac}, to which the AAI is highly sensitive, is treated as an unknown variable to be retrieved together with ω_0.

With various combinations of z_{ac} and n_i, a lookup table (LUT) of the calculated AAI is constructed with DISAMAR. It should be noted that for all ground pixels in the plume we assume the same aerosol microphysical properties as well as the same vertical profile. Pixels outside the plume may have had significantly different properties and this will affect the results. But as shown in Fig.8, the distribution of OMI measurements is sparse in space, which implies that the dataset is quite sensitive to geographical outliers that may cause the heterogeneous properties of the plume. Consequently, we apply a data quality control procedure before retrieving ω_0. First, we manually remove the pixels that are geographically isolated from the main plume. Furthermore, we remove the potential outliers based on statistical tool. We filter the dataset using an outlier detection based on the interquartile range (IQR) of the AAI difference between DISAMAR simulations and OMI measurements. According to Tukey’s fences (Tukey, 1977), an AAI difference falling outside range between Q1-1.5 IQR and Q3+1.5 IQR may be regarded as an outlier and removed, where Q1 and Q3 are the first and third quartiles of the AAI difference, and the IQR is the range between Q1 and Q3. Only the data passing the outlier detection criterion is used to calculate the cost function (Eq.(3)):

$$\text{RMSE} = \sqrt{\frac{\sum_{i=1}^{n}(\text{AAI}_{\text{DISM}} - \text{AAI}_{\text{OMI}})^2}{n}}.$$

Here AAI$_i$ indicates the AAI for ith ground pixel of the selected OMI data; subscripts DSM and OMI indicate DISAMAR simulation and OMI observation, respectively. The combination of z_{ac} and ω_0 that leads to the minimum residue is used to simulate the AAI.

Finally, the simulated AAI is compared with OMI observations. We also employ the independent data from GOME-2 on MetOp-A/B as a reference to identify the potential bias of OMI. Similarly, the τ retrieved from OMI and AERONET serves as a reference to that of MODIS. The estimated aerosol profile and ω_0 at 550 nm are evaluated with independent observations from CALIOP and AERONET, respectively.
4 Results and discussion

By applying the methodology described in the previous section, we quantitatively retrieved the aerosol profile and \(\omega_\theta \) of the Chile 2017 wildfires by AAI simulation. The OMI measurements of the plume are displayed in Fig.8 (a) – (d). The presented ground pixels are with AAI value larger than 1, and are free of cloud contamination, sun-glint and row anomaly of the instrument. Fortunately, the remaining data is still able to capture the main plume features. It can be clearly seen that from 26 to 30 January, the plume produced by wildfires in the central Chile was transported by the south-easterly trade wind from the continent towards the lower latitude region of the Pacific Ocean. The plume travelled over a distance of 3000 km during the period.

The vertical movement of the plume is given by CALIOP backscattering coefficient measurements (\(\beta \)) at 532 nm (Fig.7). The CALIOP paths closest to the plume are marked by a black dashed line in Fig.7. It is noted that CALIOP probably did not always measure the plume and may even fail to capture the elevated plume, e.g. on 26 January. The aerosol layer captured by CALIOP is distributed from 2 km to 6 km, with an average height at approximately 4-5 km. The ascent of the plume was driven by the heat generated by the fires and sunlight absorption, as well as the atmospheric vertical motions.

Fig.8 (e) – (h) show the AAI simulation selected by the data quality control mentioned in Section 3.2. The spatial distribution of the simulated AAI shows similar patterns as the OMI observations. Some data points that are geographically isolated from the plume, e.g. in case 26 and 30 January, differ strongly from what are observed inside the plume. Including these outliers in the optimization could bias the retrieved aerosol properties. This can also be seen in Fig.8 (i) – (l), where the points passing the data quality control described in Section 3.2 are highlighted in red colour. By removing the outliers, the average spatial correlation coefficient reaches 0.90.

Table 2 lists the statistics of the qualified AAI data, in terms of the median, relative difference and RMSE. The median of measured AAI ranges from 2 to 4 during the research period. Except for 26 January, the median of simulated AAI is in good agreement with the measurements, with relative differences within \(\pm 6\% \). The low RMSE confirms the high spatial consistency between the simulations and the observations. The majority of the simulated AAI of 26 January is negatively biased, which is reflected by the small slope without an intercept correction in Fig.8 (i). A systematic bias in the inputs might cause this result.

In terms of \(\omega_\theta \), both the AERONET measured and the AAI retrieved aerosol absorption become weaker with time (Table 2). The mean of the retrieved \(\omega_\theta \) at 550 nm is 0.84, while the AERONET measurements provide a mean value of 0.90. This difference might be due to the fact that the selected AERONET site is not exactly at the primary biomass burning regions as mentioned in section 3.1.3. Specifically, the location of the AERONET site is downtown, where the more reflective urban or industrial aerosols may be mixed with the smoke and enhance the measured \(\omega_\theta \). Besides, it is also reported that AERONET tends to underestimate the absorption of biomass burning aerosols compared with in situ measurements (Dubovik et al., 2002; Reid et al., 2004). Also, the micro-physics parameters retrieved from AERONET are not error-free. The uncertainty of size distribution retrieval is minor for biomass burning aerosols (Dubovik et al., 2000). Under optically thick circumstances, when retrievals are quality-assured, the reported accuracy of complex refractive index is 0.04 for \(n_r \) and 30%-50% for \(n_i \), respectively (Dubovik et al., 2002). For biomass burning aerosols particularly, the uncertainty of \(\omega_\theta \) is 0.03 under high aerosol loading (\(\tau_{440} > 0.5 \)) and 0.05-0.07 under low aerosol loading (Dubovik et al., 2002; Holben et al., 2006).

Although AERONET could overestimate the \(\omega_\theta \) for this case, information from other datasets could also bias our estimate of aerosol absorption. Among all the inputs, the parameterization of a one-layer box-shape aerosol profile could be the largest error source. Although the influence of \(\Delta \omega \) on the AAI is small (Fig.4 (c)), the AAI calculation highly depends on \(\delta_{AAI} \) (Fig.4 (b)). As shown in Table 2, the estimated plume altitude varies from 4.5 to 4.9 km. As the black solid line indicated in Fig.7, the retrieved \(\delta_{AAI} \) can accurately capture the measured geometric vertical location of the plume. The \(\delta_{AAI} \) on 26 January seems overestimated because of the temporal and spatial difference. Concretely, CALIOP sampled the plume near the sources and close to the surface, while the plume observed by OMI had been already elevated and transported to the open ocean. The
lack of information on the real plume height makes it challenging to determine the main reason responsible for the systematic bias in Fig.8 (i). Except for 26 January, Z_{aer} is in good agreement with what CALIOP observed. However, although the retrieved aerosol profiles are convincing to some extent, CALIOP and OMI observations are not exactly co-located. Besides, the estimated aerosol profile may fail to represent the spatial variation of the plume. Therefore, the uncertainty cannot be directly determined due to the lack of validation observations.

Among the four days for which we retrieved ω_0, the value for 27 January is significantly lower than others. For this day the agreement with CALIOP is reasonable and also the CALIOP track is not far away from the OMI measurement. We therefore explore the effect of measurement biases in AAI and τ on the retrieved ω_0. We investigate the potential bias of these two datasets by plotting the histogram of the AAI measurement difference between GOME-2 and OMI (Fig.9 (a)), against the τ measurement difference between MODIS and OMI (Fig.9 (b)). It is clear that on 27 January, the AAI from OMI seems to be overestimated compared to GOME-2. Although the difference in wavelength pair choice for AAI retrieval, measurement time and condition, etc., could be responsible for the AAI discrepancy between GOME-2 and OMI, exploring the difference between the two datasets is beyond the scope of this study. On the other hand, the τ from MODIS could be potentially underestimated. This can be explained by the fact that the τ measured in the MODIS visible band is more sensitive to aerosol scattering rather than aerosol absorption, thus may underestimate the absorbing part of the total τ. Fitting a higher AAI with a lower input τ leads to an overestimation in aerosol absorption. Here, we quantify the impact of τ for this specific case by systematically enhancing the τ of MODIS with a constant variation ($\Delta \tau$) added to all sample points, with the AAI level and the aerosol profile remain unchanged. Fig.9 (c) presents how the AAI RMSE and the estimated ω_0 respond to the enhanced τ. It can be clearly seen that an increase in overall τ level by 0.07 raises ω_0 to 0.84 and optimizes the AAI simulation to a RMSE less than 0.45. If we apply this τ adaption, the retrieved ω_0 of 27 January becomes more consistent with the other days.

Apart from the observational errors in AERONET, OMI and MODIS data, the assumption that the plume features are homogeneous could also result in the discrepancy between AAI retrieved and AERONET measured ω_0. In reality, the plume altitude, the optical properties and even the chemical compositions could vary in space and time, while our simulations cannot take into account those effects.

5 Conclusions

Biomass burning is a major source of absorbing aerosols making a significant contribution to climate warming. Quantitatively characterizing the absorption by biomass burning aerosols is therefore important to reduce the uncertainty in assessments of global radiative forcing. Facing the lack of long-term ω_0 records, this study explores an approach to retrieve ω_0 based on reflectivity in the near-UV channel measured by OMI. Although AAI is not a geophysical parameter and depends on many parameters, its independence from pre-defined aerosol types, its high sensitivity to aerosol absorption as well as its long data record, makes it an attractive parameter to aerosol research.

We test the retrieval of ω_0 for the wildfires happening in central Chile in January 2017. After filtering the data from outliers, the high spatial correlation coefficients (0.85 to 0.95) between the simulated and observed AAI proves its necessity and effectiveness. The retrieved aerosol profiles indicate the plume was elevated to height of 4.5-4.9 km during the research period. These results are in agreement with CALIOP measurements. This average of the retrieved ω_0 at 550 nm is approximately 0.84, which is 0.06 lower than that of AERONET retrieval. The retrieved ω_0 is reasonable if one takes into account the typical uncertainty in the ω_0 retrieved from AERONET (± 0.03). The remaining discrepancy is probably caused by the location of the AERONET site; the assumption of homogeneous and static plume properties, which ignores the plume evolution over space and time; the simplified parameterization of the aerosol profile; and the observational errors in the input
aerosol micro-physics, τ, as well as AAI. We quantitatively analyse the uncertainty of τ for a specific case (27 January) when the estimated aerosol profile is in good agreement with the CALIOP measurements.

This study proves the potential of utilizing OMI measured AAI to quantitatively characterize aerosol optical properties like ω_0. Even though without direct observation of aerosol profiles, this parameter can be retrieved with quite confidence. However, apart from the observational uncertainties, the current study is probably limited by the necessary assumptions of homogeneous and static plume properties to some extent, whose impact on retrieved ω_0 is difficult to quantify. In the future planned work, climatological data is expected to describe the evolution of the plume properties in space and time.

435 Acknowledgements

This work was performed in the framework of the KNMI Multi-Annual Strategic Research (MSO). The authors thank NASA’s GES-DISC, LAADS DAAC and ASDC for free online access of OMI, MODIS and CALIOP data. The authors also thank to the Centre for Climate Resilience Research (CR2) at University of Chile (CONICYT/FONDAP/15110009) providing the data of the Santiago Beauchef AERONET station.

440 References

Dubovik, O., Holben, B., Eck, T. F., Smirnov, A., Kaufman, Y. J., King, M. D., Tanré, D., Slutsker, I., Sciences, G. E. and

Figure 1: Chile wildfires detected by Terra/MODIS on 20 January 2017 (Image source: NASA’s Earth Observatory https://earthobservatory.nasa.gov/IOTD/view.php?id=89496).
Figure 2: Phase function $p(\Theta)$ at 354 nm of the parameterized Mie scattering aerosols in sensitivity analysis. The markers in the plot correspond to the value when $\Theta=60^\circ$, 90°, 120°, 150°, 180°.
Figure 3: AAI sensitivity to micro-physical parameters: n_i (a, b), n_r (c, d), and r_g (e, f). The left panels (a, c and e) show the sensitivity of the normalized AAI (black), the normalized ΔI_{λ_1} (blue) and the normalized $I_{\lambda_1}^{\text{obs}}$ (red). The right panels (b, d and f) show ω_0 (blue) and g (red) at wavelength 354 (solid line) and 388 (dashed line) nm, respectively.
Figure 4: AAI sensitivity to macro-physical parameters: (a) τ at 550 nm, (b) z_{aer} and (c) Δz.

(a) $z_{aer} = 4.5$ [km] $\Delta z = 1.0$ [km]

(b) $\tau = 1.0$ $\Delta z = 1.0$ [km]

(c) $\tau = 1.0$ $z_{aer} = 4.5$ [km]
Figure 5: AAI sensitivity to surface parameters. (a) and (b). The solid line and dashed line in (b) indicates terrain height at sea level ($P_s = 1013$ hPa) and elevated terrain height ($P_s = 813$ hPa), respectively.
Figure 6. AAI sensitivity to θ and θ_0 at $\phi=180^\circ$. The black dashed contour in (a) indicates $\Theta=60^\circ, 90^\circ, 120^\circ, 150^\circ$. The white dashed line in (a) indicates the cross section.
Figure 7: CALIOP backscatter coefficient β at 532 nm. The solid and dashed line indicate the retrieved z_{aer} and Δz, respectively.
Figure 8. OMI observations (a–d) and DISAMAR simulations (e–h) of the Chile wildfires on 26, 27, 29 and 30 January 2017. The black and red cross symbols are the AERONET station and the main fire sources (Pichilemu W34.39° S72.00° and Constitución S35.33°, W72.42°), respectively. The grey dashed line indicates the CALIOP paths in the region of interest, where the paths used to validate the plume height are marked by black dashed line. The scatter plots (i–l) present the OMI observations against DISAMAR simulations for only qualified data (red dot) and all data (blue dot), respectively.
Figure 9 Histogram of (a) the AAI difference between GOME-2 and OMI, against (b) the τ difference at 550 nm between MODIS and OMI for 27 January. Contour of (c) the AAI RMSE as a function of variation in τ and ω_0 for 27 January. The dashed line is the best estimation for each pair of $\Delta\tau$ and ω_0.
<table>
<thead>
<tr>
<th>Parameters</th>
<th>Default value</th>
<th>Sensitivity range</th>
<th>Unit</th>
</tr>
</thead>
<tbody>
<tr>
<td>Geometric mean radius (r_g)</td>
<td>0.15</td>
<td>0.1, 0.15, 0.2, 0.25, 0.3, 0.35, 0.4</td>
<td>µm</td>
</tr>
<tr>
<td>Geometric standard deviation (σ_g)</td>
<td>1.5</td>
<td>-</td>
<td>µm</td>
</tr>
<tr>
<td>Real refractive index (n_r) at 354 nm</td>
<td>1.5</td>
<td>1.3, 1.35, 1.4, 1.45, 1.5</td>
<td>-</td>
</tr>
<tr>
<td>Imaginary refractive index (n_i) at 354 nm</td>
<td>0.06</td>
<td>0.04, 0.06, 0.08, 0.1</td>
<td>-</td>
</tr>
<tr>
<td>Aerosol layer geometric central height ($z_{a,c}$)</td>
<td>4.5</td>
<td>2.5, 4.5, 6.5, 8.5</td>
<td>km</td>
</tr>
<tr>
<td>Aerosol optical thickness (τ) at 550 nm</td>
<td>1</td>
<td>0.5, 1, 1.5, 2</td>
<td>km</td>
</tr>
<tr>
<td>Aerosol layer geometric thickness (Δz)</td>
<td>1</td>
<td>0.5, 1, 1.5, 2</td>
<td>km</td>
</tr>
<tr>
<td>Surface albedo (a_s)</td>
<td>0.05</td>
<td>0.05, 0.1, 0.5, 1.0</td>
<td>-</td>
</tr>
<tr>
<td>Surface pressure (P_s)</td>
<td>1013</td>
<td>1013, 963, 913, 863, 813</td>
<td>hPa</td>
</tr>
<tr>
<td>Solar zenith angle (θ_0)</td>
<td>30</td>
<td>0, 15, 30, 45, 60, 75</td>
<td>°</td>
</tr>
<tr>
<td>Viewing zenith angle (θ)</td>
<td>0</td>
<td>0, 15, 30, 45, 60, 75</td>
<td>°</td>
</tr>
<tr>
<td>Relative azimuth angle ($\Delta \varphi = \varphi - \varphi_0 + 180^\circ$)</td>
<td>0</td>
<td>$0, \pm 45, \pm 90, \pm 135, \pm 180$</td>
<td>°</td>
</tr>
</tbody>
</table>
Table 2: Summary of simulation results (applying IQR outlier detection).

<table>
<thead>
<tr>
<th></th>
<th>Date</th>
<th>2017-01-26</th>
<th>2017-01-27</th>
<th>2017-01-29</th>
<th>2017-01-30</th>
</tr>
</thead>
<tbody>
<tr>
<td>AAI</td>
<td>AAI median (OMAERO)</td>
<td>2.52</td>
<td>2.38</td>
<td>4.05</td>
<td>2.61</td>
</tr>
<tr>
<td></td>
<td>AAI median (DISAMAR)</td>
<td>2.17</td>
<td>2.48</td>
<td>3.81</td>
<td>2.49</td>
</tr>
<tr>
<td></td>
<td>Relative difference (%)</td>
<td>-13.88</td>
<td>4.20</td>
<td>-5.93</td>
<td>-4.60</td>
</tr>
<tr>
<td></td>
<td>RMSE</td>
<td>0.67</td>
<td>0.51</td>
<td>0.60</td>
<td>0.41</td>
</tr>
<tr>
<td>Aerosol</td>
<td>z_{ao} [km]</td>
<td>4.9</td>
<td>4.5</td>
<td>4.7</td>
<td>4.7</td>
</tr>
<tr>
<td>profile</td>
<td>Δz [km]</td>
<td>2</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>ω at 550 nm</td>
<td>ω_0 (AERONET)</td>
<td>0.89</td>
<td>0.89</td>
<td>0.92</td>
<td>0.91</td>
</tr>
<tr>
<td></td>
<td>ω_0 (DISAMAR)</td>
<td>0.83</td>
<td>0.81</td>
<td>0.87</td>
<td>0.85</td>
</tr>
<tr>
<td></td>
<td>Relative difference (%)</td>
<td>-6.74</td>
<td>-8.99</td>
<td>-5.43</td>
<td>-6.59</td>
</tr>
</tbody>
</table>