We would like to thank the referee for the thorough review of our paper and the useful comments. In the following, we have provided an item-by-item reply to the comments.

Major Comments:

1) The manuscript presents a validation of the DPR rain rate products by using as a reference the rain gauge data collected by the WegenerNet network in the South-East Austria. Four years of data have been considered, but due to the small spatial extension of the network only 22 case studies have been selected. Both dichotomous (i.e. POD, FAR) and continuous (i.e. Bias, Correlation coefficient) scores have been calculate in order to quantify the agreement between satellite and ground-based data. The GPM community encourages validation studies and in this sense the paper is of absolute interest. However, in the current shape it presents some confusing parts and, even if it is easy to read and to be followed, the English can be improved. As a general comment, the paper presents a lack of the GPM validation works which have already been carried out (i.e. Watters et al., 2018, D’Adderio et al., 2018., Biswas and Chandrasekar, 2018 among the other). Some of them are reported in the references list but are never cited within the text (Petracca et al., Speirs et al. – also other papers are not cited within the text). The review of the works on the same topic is useful to understand the novelty of the present work. In this regard, in my opinion, the authors do not take advantage of a such dense gauges network. There is not any analysis relating the agreement between DPR products and the rain gauges measurements to the intra-footprint variability. This would considerably increase the quality of the paper. Following these general comments and the more specific ones reported below, the manuscript has to be deeply revised before to be considered suitable for publication on the Atmospheric Measurement Technique journal.

Thank you for the suggestions on validation works using GPM. We are going to incorporate them to our work. Concerning the lack of citations in the text, we revise the manuscript for this deficiency.

As the rainfall variability is not sufficiently addressed, we will discuss the intra-footprint variability based on a scatter plot of |WegenerNet – DPR| and std(WegenerNet). The inter-footprint variability will be approached by avg(|WegenerNet – DPR|) in one event and std(WegenerNet) in one event.

Terminology and English will be checked and improved.

Specific Comments:

1) Page 2, lines 13-15 and lines 22-23: these information should be moved in the Section 2.

Thank you for this hint, we will do so.

2) Page 4, line 30: “The DPR radar instrument. . .” should be “The DPR instrument. . .”

Yes, thanks for the remark.
3) Page 4, lines 30-32: the heavy and light precipitation can occur also at mid- and tropical latitudes.

 Indeed, this was not well phrased. We will omit the geographical information.

4) Page 5, lines 7-10: I see what the authors mean saying that the KaPR has 49 bins (25 of MS + 24 of HS), but I think this is misleading for a user which does not have a deep knowledge of DPR data structure. I suggest to rewrite the period also considering that the Ka HS data are not used in this study.

 We will rewrite that for more clarity, including the 25 MS bins of KaPR and stating that the HS exists but is not used in his study.

5) Page 7, lines 1-3: I do not agree with the choice of the authors to include the three events where the DPR products did not reported rain. This is in contrast with what they state at lines 25-27 pf Page 5.

 We will exclude those events, as they affect the correct negative events and might result in misleading statistics.

6) Page 7, lines 3-6: what is the reason to report an event in Table 1 and then state that the same event had to be omitted?

 The original intention was to show all events that were detected, but we understand the point and we will only list the selected events in Table 1 and state the number of detected events in the text.

7) Page 7, lines 13-14: not all the plots of Figure 2 report the WegenerNet rain rate map, so you should specify which panels you refer. In general, it would be very useful to label each panel with a), b), c) and so on. Furthermore, the bottom panels of Figure 2 are useless, the panel titles “WegenerNet grid” is enough.

 Thank you for that hint, it is the bottom left panel. We will clarify the specification of the panels in the text. We understand that the bottom panels of Fig. 2 could be regarded as redundant, on the other hand, we believe that they give a nice visual representation of intra-pixel variability, and of what is actually missed by the footprints. That is why we would like to keep them.

8) Page 9, line 2: has the event N. 21 of Table 1 been omitted or not?

 It has been omitted; the whole table will be restructured as stated in specific comment (6).

9) Page 9, lines 12-17: all the data available are included in the calculation of both correlation coefficient and bias. This means to include also the DPR-gauge couple both reporting no rain.
Consequently, this has an effect (as also the authors state) on the scores. You should consider only the data where the truth (gauges) reports rain rate above the minimum detectable threshold (1 mmh-1) for the calculation of correlation coefficient and bias.

We will do so, thank you for the clarification in your comment.

10) Page 10, line 25 to Page 11, line 2 and Figure 3 and Figure A3: this is totally confusing to me. What is the difference between the blue line of Figure 3 and Figure A3? If the Figure A3 reports the range it should have a minimum and a maximum value for each footprint, but I see only one value. Furthermore, the standard deviation reported as it is in Figure A3 is completely useless. You should plot the average value plus/minus one standard deviation represented by a shadowed area.

The range plotted is the value of the range (blue), same for the standard deviation. As the red/green/black line denotes the difference between the WegenerNet and the DPR one can see whether the absolute deviation of the DPR to the WegenerNet is within the standard deviation or at least within the range. The standard deviation and the range provide information on the variability within the pixel.

11) Table 3 should be placed before than Table 4.

Thank you for the remark, it seems that Latex had its own mind when placing the tables.

12) Discussion about contingency table (Table 3) and derived statistics (Table 4): in my opinion, it is hard to say that KaPR provides the best results since it reports a lot of misses (the double of KuPR and DPR) which are not taken into account considering only POD, FAR and POFD. Consequently, I suggest to include additional statistical scores (as for example, the Critical Success Index – CSI) to evaluate the impact of the misses.

We will cancel the PC and the POFD to avoid the usage of correct negatives and move to ETS and CSI as well as HSS as additional scores.

13) Figure 5: the top panel is repeating the information given in Figure 3. It could substitute the Figure 3 or it should be deleted. Where is the CC for the event N. 8, 10 and 13? Furthermore, some events do not show the CC for all three DPR products. Can you explain the reason?

The repeated information was meant as “help” for the reader. We will remove it. Events 8,10,13 (and 22) have 0.0 mm/h rain in the WegenerNet, therefore, a CC cannot be calculated (division by 0). However, we remove these events anyway, thus, this is not an issue in the revised version. If not all CCs are shown it is due to overlapping lines.

14) Page 15, lines 9-10: instead of the mean of CC, you could consider to calculate the CC by combining all the data available.

We will recalculate the CC with the new data set.
15) Page 15, line 11: it does not make any sense to calculate the bias for the events without precipitation.

As we omit these events, this issue can be dropped.

16) Page 16, line 2: substitute “where” with “were”.

We are sorry for this typo, thank you for the hint.

17) Page 16, lines 18-20: which constraint?

The one of demanding +- the standard deviation. This analysis is dropped.

18) Within the text, the values of statistical scores are reported sometimes as absolute values and sometimes as percent values, while they are reported in absolute values in the corresponding tables. Please, uniform the text reporting either absolute or percent values.

We unified it. Thank you for that remark.

19) Page 18, line 8: I do think that rain rate lower than 7 mmh-1 can be considered heavy precipitation.

We understand this comment in a way that a rain rate of less than 7 mm/h cannot be considered as heavy precipitation. In line with the definition in (http://glossary.ametsoc.org/wiki/Rain) we changed the characterisation to “moderate”.

20) Page 19, line 1: substitute “events” with “event”.

Thank you for the remark.

21) Page 19, line 6-8: a time lag of ±30 minutes is too large. The DPR precipitation estimation at surface that you used is an extrapolation of the precipitation rate estimated at Near Surface level, which is the level closest to the surface where the data are available. Considering the distance between this level and the surface you can estimate the time needed to the precipitation to reach the ground and consider a reasonable time lag.

The large lag time was not only to show a potential time lag but also to have a look at the patterns that might arise (especially of interest in case of light rain). However, since this obviously causes confusion, we decided to restrict the lag-window to 15 minutes.