Improved aerosol correction for OMI tropospheric NO₂ retrieval over East Asia: constraint from CALIOP aerosol vertical profile

Mengyao Liu¹,², Jintai Lin¹, K. Folkert Boersma²,³, Gaia Pinardi⁴, Yang Wang⁵, Julien Chimot⁶, Thomas Wagner⁵, Pinghua Xie⁷,⁸,⁹, Henk Eskes², Michel Van Roozendael⁴, François Hendrick⁴, Pucai Wang¹⁰, Ting Wang¹⁰, Yingying Yan¹, Lulu Chen¹, Ruijing Ni¹

¹, Laboratory for Climate and Ocean-Atmosphere Studies, Department of Atmospheric and Oceanic Sciences, School of Physics, Peking University, Beijing, China
², Royal Netherlands Meteorological Institute, De Bilt, the Netherlands
³, Meteorology and Air Quality department, Wageningen University, Wageningen, the Netherlands
⁴, Royal Belgian Institute for Space Aeronomy (BIRA-IASB), Brussels, Belgium
⁵, Max Planck Institute for Chemistry, Mainz, Germany
⁶, Department of Geoscience and Remote Sensing (GRS), Civil Engineering and Geosciences, TU Delft, the Netherlands
⁷, Anhui Institute of Optics and Fine Mechanics, Key laboratory of Environmental Optics and Technology, Chinese Academy of Sciences, Hefei, China
⁸, CAS Center for Excellence in Urban Atmospheric Environment, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen, China
⁹, School of Environmental Science and Optoelectronic Technology, University of Science and Technology of China, Hefei, China
Satellite retrieval of vertical column densities (VCDs) of tropospheric nitrogen dioxide (NO$_2$) is critical for NO$_x$ pollution and impact evaluation. For regions with high aerosol loadings, the retrieval accuracy is greatly affected by whether aerosol optical effects are treated implicitly (as additional “effective” clouds) or explicitly, among other factors. Our previous POMINO algorithm explicitly accounts for aerosol effects to improve the retrieval especially in polluted situations over China, by using aerosol information from GEOS-Chem simulations with further monthly constraints by MODIS/Aqua aerosol optical depth (AOD) data. Here we present a major algorithm update, POMINO v1.1, by constructing a monthly climatological data set of aerosol extinction profiles, based on Level-2 CALIOP/CALIPSO data over 2007–2015, to better constrain the modeled aerosol vertical profiles.

We find that GEOS-Chem captures the month-to-month variation of CALIOP aerosol layer height but with a systematic underestimate by about 300–600 m (season and location dependent), due to a too strong negative vertical gradient of extinction above 1 km. Correcting the model aerosol extinction profiles results in small changes in retrieved cloud fraction, increases in cloud top pressure (within 2–6% in most cases), and increases in tropospheric NO$_2$ VCD by 4–16% over China on a monthly basis in 2012. The improved NO$_2$ VCDs (in POMINO v1.1) are more consistent with independent ground-based MAX-DOAS observations ($R^2 = 0.80$, NMB = -3.4%, for 162 pixels in 49 days) than POMINO ($R^2 = 0.80$, NMB = -9.6%), DOMINO v2 ($R^2 = 0.80$, NMB = -9.6%), and POMINO v1.1 ($R^2 = 0.80$, NMB = -9.6%).
0.68, NMB = -2.1%), and QA4ECV (R² = 0.75, NMB = -22.0%) are. Especially on
haze days, R² reaches 0.76 for POMINO v1.1, much higher than that for POMINO
(0.68), DOMINO v2 (0.38), and QA4ECV (0.34). Furthermore, the increase in cloud
pressure likely reveals a more realistic vertical relationship between cloud and aerosol
layers, with aerosols situated above the clouds in certain months instead of always
below the clouds. The POMINO v1.1 algorithm is a core step towards our next public
release of data product (POMINO v2), and it will also be applied to the recently
launched S5P-TropOMI sensor.

1. Introduction

Air pollution is a major environmental problem in China. In particular, China has
become the world’s largest emitting country of nitrogen oxides (NOₓ=NO+NO₂) due
to its rapid economic growth, heavy industries, coal-dominated energy sources, and
relatively weak emission control (Cui et al., 2016; Lin et al., 2014a; Stavrakou et al.,
2016; Zhang et al., 2009). Tropospheric vertical column densities (VCDs) of nitrogen
dioxide (NO₂) retrieved from the Ozone Monitoring Instrument (OMI) onboard the
Earth Observing System (EOS) Aura satellite have been widely used to monitor and
analyze NOₓ pollution over China because of its high spatiotemporal coverage (e.g.
(Lin et al., 2010; Miyazaki and Eskes, 2013; Verstraeten et al., 2015; Zhao and Wang,
2009). However, NO₂ retrieved from OMI and other space-borne instruments are
subject to errors in the conversion process from radiance to VCD, particularly with
respect to the calculation of tropospheric air mass factor (AMF) that is used to convert
tropospheric slant column density to VCD (e.g. Boersma et al., 2011; Bucsela et al.,
2013; Lin et al., 2015; Lorente et al., 2017).

Most current-generation NO₂ algorithms do not explicitly account for the effects of
aerosols on NO₂ AMFs and on prerequisite cloud parameter retrievals. These retrievals
often adopt an implicit approach wherein cloud algorithms retrieve “effective cloud”
parameters that include the optical effects of aerosols. This implicit method is based on aerosols exerting an effect on the top-of-atmosphere radiance level, whereas the assumed cloud model does not account for the presence of aerosols in the atmosphere (Stammes et al., 2008; Veefkind et al., 2016; Wang et al., 2008b; Wang and Stammes, 2014). In the absence of clouds, an aerosol optical thickness of 1 is then interpreted as an effective cloud fraction of ±0.10, and the value also depends on the aerosol properties (scattering or absorbing), true surface albedo and geometry angles (Chimot et al., 2016) with an effective cloud pressure closely related to the aerosol layer, at least for aerosols of predominantly scattering nature (e.g. Boersma et al., 2004, 2011, Castellanos et al., 2014, 2015). However, in polluted situations with high aerosol loadings and more absorbing aerosol types, which often occur over China and many other developing regions, the implicit method can result in considerable biases (Castellanos et al., 2014, 2015; Chimot et al., 2016; Kanaya et al., 2014; Lin et al., 2014b).

Lin et al. (2014b, 2015) established the POMINO NO₂ algorithm, which builds on the DOMINO v2 algorithm (for OMI NO₂ slant columns and stratospheric correction), but improves upon it through a more sophisticated AMF calculation over China. In POMINO, the effects of aerosols on cloud retrievals and NO₂ AMFs are explicitly accounted for. In particular, daily information on aerosol optical properties such as aerosol optical depth (AOD), single scattering albedo (SSA), phase function and vertical extinction profiles are taken from nested Asian GEOS-Chem v9-02 simulations. The modeled AOD at 550 nm is further constrained by MODIS/Aqua monthly AOD, with the correction applied to other wavelengths based on modeled aerosol refractive indices (Lin et al., 2014b). However, the POMINO algorithm does not include an observation-based constraint on the vertical profile of aerosols, whose altitude relative to NO₂ has strong and complex influences on NO₂ retrieval (Castellanos et al., 2015; Leitão et al., 2010; Lin et al., 2014b). This study improves upon the POMINO algorithm...
by incorporating CALIOP monthly climatology of aerosol vertical extinction profiles
to correct for model biases.

The CALIOP lidar, carried on the sun-synchronous CALIPSO satellite, has been
acquiring global aerosol extinction profiles since June 2006 (Winker et al., 2010).
CALIPSO and Aura are both parts of the National Aeronautics and Space
Administration (NASA) A-train constellation of satellites. The overpass time of
CALIOP/CALIPSO is only 15 minutes later than OMI/Aura. In spite of issues with the
detection limit, radar ratio selection and cloud contamination that cause some biases in
CALIOP aerosol extinction vertical profiles (Amiridis et al., 2015; Koffi et al., 2012;
Winker et al., 2013), comparisons of aerosol extinction profiles between ground-based
lidar and CALIOP show good agreements (Kacenelenbogen et al., 2014; Kim et al.,
2009; Misra et al., 2012). However, CALIOP is a nadir-viewing instrument that
measures the atmosphere along the satellite ground-track with a narrow field-of-view.
This means that the daily geographical coverage of CALIOP is much smaller than that
of OMI. Thus previous studies often used monthly/seasonal regional mean CALIOP
data to study aerosol vertical distributions or to evaluate model simulations (Chazette
et al., 2010; Johnson et al., 2012; Koffi et al., 2012; Ma and Yu, 2014; Sareen et al.,
2010).

There exist a few CALIOP Level-3 gridded datasets, such as LIVAS (Amiridis et al.
2015) and NASA official Level-3 monthly dataset (Winker et al., 2013). However,
LIVAS is an annual average day-night combined product, not suitable to be applied to
OMI NO₂ retrievals (around early afternoon, and in need of a higher temporal resolution
than annual). The horizontal resolution (2° long. × 5° lat.) of NASA official product
is much coarser than OMI footprints and the GEOS-Chem model resolution.

Here we construct a custom monthly climatology of aerosol vertical extinction profiles
based on 9-years (2007–2015) worth of CALIOP Version 3 Level-2 532 nm data. On a
climatological basis, we use the CALIOP monthly data to adjust GEOS-Chem profiles in each grid cell for each day of the same month in any year. We then use the corrected GEOS-Chem vertical extinction profiles in the retrievals of cloud parameters and NO2. Finally, we evaluate our updated POMINO retrieval (hereafter referred to as POMINO v1.1), our previous POMINO product, DOMINO v2, and the newly released Quality Assurance for Essential Climate Variables product (QA4ECV, see Appendix A), using ground-based MAX-DOAS NO2 column measurements at three urban/suburban sites in East China for the year of 2012 and several months in 2008/2009.

Section 2 describes the construction of CALIOP aerosol extinction vertical profile monthly climatology, the POMINO v1.1 retrieval approach, and the MAX-DOAS data. It also presents the criteria for comparing different NO2 retrieval products and for selecting coincident OMI and MAX-DOAS data. Section 3 compares our CALIOP climatology with NASA’s official Level-3 CALIOP dataset and GEOS-Chem simulation results. Sections 4 and 5 compare POMINO v1.1 to POMINO to analyze the influence of improved aerosol vertical profiles on retrievals of cloud parameters and NO2 VCDs, respectively. Section 6 evaluates POMINO, POMINO v1.1, DOMINO v2, and QA4ECV NO2 VCD products using the MAX-DOAS data. Section 7 concludes our study.

2. Data and methods

2.1 CALIOP monthly mean extinction profile climatology

CALIOP is a dual-wavelength polarization lidar measuring attenuated backscatter radiation at 532 and 1064 nm since June 2006. The vertical resolution of aerosol extinction profiles is 30 m below 8.2 km and 60 m up to 20.2 km (Winker et al., 2013), with a total of 399 sampled altitudes. The horizontal resolution of CALIOP scenes is
335 m along the orbital track and is given over a 5 km horizontal resolution in Level-2 data.

As detailed in Appendix B, we use the daily all-sky Version 3 CALIOP Level-2 aerosol profile product at 532 nm from 2007 to 2015 to construct a monthly Level-3 climatological dataset of aerosol extinction profiles over China and nearby regions. This dataset is constructed on the GEOS-Chem model grid (0.667° long. x 0.5° lat.) and vertical resolution (47 layers, with 36 layers or so in the troposphere). The ratio of climatological monthly CALIOP to monthly GEOS-Chem profiles represents the scaling profile to adjust the daily GEOS-Chem profiles in the same month (see Sect. 2.2)

2.2 POMINO v1.1 retrieval approach

The NO\textsubscript{2} retrieval consists of three steps. First, the total NO\textsubscript{2} slant columns density (SCD) is retrieved using the Differential Optical Absorption Spectroscopy (DOAS) technique (for the 405-465 nm spectral window in the case of OMI). The uncertainty of the SCD is determined by the appropriateness of the fitting technique, the instrument noise, the choice of fitting window, and the orthogonality of the absorbers’ cross sections (Bucsela et al., 2006; van Geffen et al., 2015; Lerot et al., 2010; Richter et al., 2011; Zara et al., 2018). The NO\textsubscript{2} SCD in DOMINO v2 has a bias at about 0.5~1.3 × 1015 molec. cm-2 (Belmonte Rivas et al., 2014; Dirksen et al., 2011; van Geffen et al., 2015; Marchenko et al., 2015; Zara et al., 2018), which can be reduced by improving wavelength calibration and including O\textsubscript{2}-O\textsubscript{2} and liquid water absorption in the fitting model (van Geffen et al., 2015; Zara et al., 2018). The tropospheric SCD is then obtained by subtracting the stratospheric SCD from the total SCD. The bias in the total SCD is mostly absorbed by this stratospheric separation step, which may not propagate into the tropospheric SCD (van Geffen et al., 2015). The last step converts the tropospheric SCD to VCD by using the tropospheric AMF (VCD = SCD / AMF). The
tropospheric AMF is calculated at 438 nm by using look-up tables (in most retrieval algorithms) or online radiative transfer modeling (in POMINO) driven by ancillary parameters, which act as the dominant source of errors in retrieved NO$_2$ VCD data over polluted areas (Boersma et al., 2007; Lin et al., 2014b, 2015; Lorente et al., 2017).

Our POMINO algorithm focuses on the tropospheric AMF calculation over China and nearby regions, taking the tropospheric SCD (Dirksen et al., 2011) from DOMINO v2 (Boersma et al., 2011). POMINO improves upon the DOMINO v2 algorithm in the treatment of aerosols, surface reflectance, online radiative transfer calculations, spatial resolution of NO$_2$, temperature and pressure vertical profiles, and consistency between cloud and NO$_2$ retrievals (Lin et al., 2014b, 2015). In brief, we use the parallelized LIDORT-driven AMFv6 package to derive both cloud parameters and tropospheric NO$_2$ AMFs for individual OMI pixels online (rather than using a look-up table). NO$_2$ vertical profiles, aerosol optical properties and aerosol vertical profiles are taken from the nested GEOS-Chem model over Asia (0.667° long.× 0.5° lat. before May 2013 and 0.3125°long.× 0.25° lat. afterwards), and pressure and temperature profiles are taken from the GEOS-5 and GEOS-FP assimilated meteorological fields that drive GEOS-Chem simulations. Model aerosols are further adjusted by satellite data (see below). We adjust the pressure profiles based on the difference in elevation between the pixel center and the matching model grid cell (Zhou et al., 2010). We also account for the effects of surface bidirectional reflectance distribution function (BRDF) (Lin et al., 2014b; Zhou et al., 2010) by taking three kernel parameters (isotropic, volumetric and geometric) from the MODIS MCD43C2 data set at 440 nm (Lucht et al., 2000).

As a prerequisite to the POMINO NO$_2$ retrieval, clouds are retrieved through the O$_2$-O$_2$ algorithm (Acarreta et al., 2004; Stammes et al., 2008) with O$_2$-O$_2$ SCDs from OMCLDO2, and with pressure, temperature, surface reflectance, aerosols and other ancillary information consistent with the NO$_2$ retrieval. Note that the treatment of cloud
scattering (as “effective” Lambertian reflector, as in other NO$_2$ algorithms) is different from the treatment of aerosol scattering/absorption (vertically resolved based on the Mie scheme).

POMINO uses the temporally and spatially varying aerosol information, including AOD, single scattering albedo (SSA), phase function and vertical profiles from GEOS-Chem simulations. POMINO v1.1 (this work) further uses CALIOP data to constrain the shape of aerosol vertical extinction profile. We run the model at a resolution of 0.3125° long. \times 0.25° lat. before May 2013 and 0.667° long. \times 0.5° lat. afterwards, as determined by the resolution of the driving meteorological fields. We then regrid the finer resolution model results to 0.667° long. \times 0.5° lat., to be consistent with the CALIOP data grid. We then sample the model data at times and locations with valid CALIOP data at 532 nm to establish the model monthly climatology.

For any month in a grid cell, we divide the CALIOP monthly climatology of aerosol extinction profile shape by model climatological profile shape to obtain a unitless scaling profile (Eq. 1), and apply this scaling profile to all days of that month in all years (Eq. 2). Such a climatological adjustment is based on the assumption that systematic model limitations are month-dependent and persist over the years and days (e.g., a too strong vertical gradient, see Sect. 3.3). Although this monthly adjustment means discontinuity on the day-to-day basis (e.g., from the last day of a month to the first day of the next month), such discontinuity does not significantly affect the NO$_2$ retrieval, based on our sensitivity test.

In Eqs. 1 and 2, E^C represents the CALIOP climatological aerosol extinction coefficient, E^G the GEOS-Chem extinction, E^{Gr} the post-scaling model extinction, and R the scaling profile. The subscript i denotes a grid cell, k a vertical layer, d a day, m a month, and y a year. Note that in Eq. 1, the extinction coefficient at each layer is normalized relative to the maximum value of that profile. This procedure ensures that
the scaling is based on the relative shape of the extinction profile and is thus
independent of the accuracies of CALIOP and GEOS-Chem AOD. We keep the
absolute AOD value of GEOS-Chem unchanged in this step.

\[R_{i,k,m} = \frac{E_{i,k,m}^G}{\max_i (E_{i,k,m}^G)} \quad (1) \]

\[E_{i,k,d,m,y}^{Gr} = E_{i,k,d,m,y}^G \times R_{i,k,m} \quad (2) \]

In POMINO, the GEOS-Chem AOD are further constrained by a MODIS/Aqua
Collection 5.1 monthly AOD dataset compiled on the model grid (Lin et al., 2014b,
2015). POMINO v1.1 uses the Collection 5.1 AOD data before May 2013 and
Collection 6 data afterwards. For adjustment, model AOD are projected to a
0.667° long. × 0.5° lat. grid and then sampled at times and locations with valid MODIS
data (Lin et al., 2015). As shown in Eq. 3, \(\tau^M \) denotes MODIS AOD, \(\tau^G \) GEOS-
Chem AOD, and \(\tau^{Mr} \) post-adjustment model AOD. The subscript \(i \) denotes a grid
cell, \(d \) a day, \(m \) a month, and \(y \) a year. This AOD adjustment ensures that in any month,
monthly mean GEOS-Chem AOD is the same as MODIS AOD while the modeled day-
to-day variability is kept.

\[\tau_{i,d,m,y}^{Gr} = \frac{\tau_{i,d,m,y}^M}{\tau_{i,d,m,y}^L} \times \tau_{i,d,m,y}^G \quad (3) \]

Equations 4–5 show the complex effects of aerosols in calculating the AMF for any
pixel. The AMF is the linear sum of tropospheric layer contributions to the slant column
weighted by the vertical sub columns (Eq. 4). The box AMF, \(amf_k \), describes the
sensitivity of NO2 SCD to layer \(k \), and \(x_{a,k} \) represent the subcolumn of layer \(k \) from
a priori NO2 profile. The \(l \) represent the first integrated layer, which is the layer above
the ground for clear sky, or the layer above cloud top for cloudy sky. The \(t \) represent
the tropopause layer. POMINO assumes the independent pixel approximation (IPA)
(Martin et al., 2002; Boersma et al., 2002). This means that the calculated AMF for any pixel consists of a fully cloudy-sky portion (\(\text{AMF}_{\text{cltr}}\)) and a fully clear-sky portion (\(\text{AMF}_{\text{cld}}\)), with weights based on the cloud radiance fraction (\(\text{CRF} = \frac{\text{CF}_{\text{cld}}}{1 - \text{CF}}\)), where \(I_{\text{cltr}}\) and \(I_{\text{cld}}\) are radiance from the clear-sky part and fully cloudy part of the pixel, respectively.) (Eq. 5). \(\text{AMF}_{\text{cld}}\) is affected by above-cloud aerosols, and \(\text{AMF}_{\text{cltr}}\) is affected by aerosols in the entire column. Also, aerosols affect the retrieval of CRF. Thus, the improvement of aerosol vertical profile in POMINO v1.1 affects all the three quantities in Eq. 5 and thus leads to complex impacts on retrieved NO\(_2\) VCD.

\[
\text{AMF} = \frac{\sum I_{\text{amf}, k, a, k}}{\sum I_{k, a, k}} \quad (4)
\]

\[
\text{AMF} = \text{AMF}_{\text{cld}} \cdot \text{CRF} + \text{AMF}_{\text{cltr}} \cdot (1 - \text{CRF}) \quad (5)
\]

2.3 OMI pixel selection to evaluate POMINO v1.1, POMINO, DOMINO v2, and QA4ECV

We exclude OMI pixels affected by row anomaly (Schenkeveld et al., 2017) or with high albedo caused by icy/snowy ground. To screen out cloudy scenes, we choose pixels with CRF below 50% (effective cloud fraction is typically below 20%) in POMINO.

The selection of CRF threshold influences the validity of pixels. The “effective” CRF in DOMINO implicitly includes the influence of aerosols. In POMINO, the aerosol contribution is separated from that of the clouds, resulting in a lower CRF than for DOMINO. The CRF differs insignificantly between POMINO and POMINO v1.1, because the same AOD and other non-aerosol ancillary parameters are used in the retrieval process. Using the CRF from POMINO instead of DOMINO or QA4ECV for cloud screening means that the number of “valid” pixels in DOMINO increases by about 25%, particularly because much more pixels with high pollutant (aerosol and NO\(_2\))
loadings are now included. This potentially reduces the sampling bias (Lin et al., 2014b, 2015), and the ensemble of pixels now includes scenes with high “aerosol radiative fractions”. Further research is needed to fully understand how much these high-aerosol scenes may be subject to the same screening issues as the cloudy scenes. Nevertheless, the limited evidence here and in Lin et al. (2014b, 2015) suggests that including these high-aerosol scenes does not affect the accuracy of NO₂ retrieval.

2.4 MAX-DOAS data

We use MAX-DOAS measurements at three suburban or urban sites in East China, including one urban site at the Institute of Atmospheric Physics (IAP) in Beijing (116.38° E, 39.38° N), one suburban site in Xianghe County (116.96° E, 39.75° N) to the south of Beijing, and one urban site in the Wuxi City (120.31° E, 31.57° N) in the Yangzi River delta (YRD). Figure 1 shows the locations of these sites overlaid with POMINO v1.1 NO₂ VCDs in August 2012. Table 1 summarizes the information of MAX-DOAS measurements.

The instruments in IAP and in Xianghe were designed at BIRA-IASB (Clémer et al., 2010). Such an instrument is a dual-channel system composed of two thermally regulated grating spectrometers, covering the ultraviolet (300–390 nm) and visible (400–720 nm) wavelengths. It measures scattered sunlight every 15 minutes at nine elevation angles: 2°, 4°, 6°, 8°, 10°, 12°, 15°, 30°, and 90°. The telescope of the instrument is pointed to the north. The data are analyzed following Hendrick et al. (2014). The Xianghe suburban site is influenced by pollution from the surrounding major cities like Beijing and Tianjin. At Xianghe, MAX-DOAS data are data are continuously available since early 2011, and data in 2012 are used here for comparison with OMI products. At IAP, MAX-DOAS data are available in 2008 and 2009 (Table 1), thus for comparison purposes we process OMI products to match the MAX-DOAS times.
Located on the roof of an 11-story building, the instrument at Wuxi was developed by Anhui Institute of Optics and Fine Mechanics (AIOFM) (Wang et al., 2015, 2017a). Its telescope is pointed to the north and records at five elevation angles (5°, 10°, 20°, 30°, and 90°). Wuxi is a typical urban site affected by heavy NOx and aerosol pollution. The measurements used here are analyzed in Wang et al. (2017a). Data are available in 2012 for comparison with OMI products.

When comparing the four OMI products against MAX-DOAS observations, temporal and spatial inconsistency in sampling is inevitable. The spatial inconsistency, together with the substantial horizontal inhomogeneity in NO2, might be more important than the influence of temporal inconsistency (Wang et al., 2017b). The influence of the horizontal inhomogeneity was suggested to be about 10–30% for MAX-DOAS measurements in Beijing (Lin et al., 2014b; Ma et al., 2013) and 10–15% for less polluted locations like Tai’an, Mangshan and Rudong (Irie et al., 2012). Following previous studies, we average MAX-DOAS data within 1 h of the OMI overpass time, and we select OMI pixels within 25 km of a MAX-DOAS site whose viewing zenith angle is below 30°. To exclude local pollution events near the MAX-DOAS site (such as the abrupt increase of NO2 caused by the pass of consequent vehicles during a very short period), the standard deviation of MAX-DOAS data within 1 h should not exceed 20% of their mean value (Lin et al., 2014b). We elect not to spatially average the OMI pixels because they can reflect the spatial variability in NO2 and aerosols.

We further exclude MAX-DOAS data in cloudy conditions, as clouds can cause large uncertainties in MAX-DOAS and OMI data. To find the actual cloudy days, we use MODIS/Aqua cloud fraction data, MODIS/Aqua Level-3 corrected reflectance (true color) data at the 1° × 1° resolution, and current weather data observed from the nearest ground meteorological station (indicated by the black triangles in Fig. 1b). Since there is only one meteorological station available near the Beijing area, it is used...
for both IAP and Xianghe MAX-DOAS sites. We first use MODIS/Aqua corrected reflectance (true color) to distinguish clouds from haze. For cloudy days determined by the reflectance checking, we examine both the MODIS/Aqua cloud fraction data and the meteorological station cloud records, considering that MODIS/Aqua cloud fraction data may be missing or have a too coarse horizontal resolution to accurately interpret the cloud conditions at the MAX-DOAS site. We exclude MAX-DOAS NO2 data if the MODIS/Aqua cloud fraction is larger than 60% and the meteorological station reports a “BROKEN” (cloud fraction ranges from 5/8 to 7/8) or “OVERCAST” (full cloud cover) sky. For the three MAX-DOAS sites together, this leads to 49 days with valid data out of 64 days with pre-screening data.

We note here that using cloud fraction data from MODIS/Aqua or MAX-DOAS (for Xianghe only, see Gielen et al., 2014) alone to screen cloudy scenes may not be appropriate on heavy-haze days. For example, on 8th January, 2012, MODIS/Aqua cloud fraction is about 70–80% over the North China Plain and MAX-DOAS at Xianghe suggests the presence of “thick clouds”. However, both the meteorological station and MODIS/Aqua corrected reflectance (true color) product suggest that the North China Plain was covered by a thick layer of haze. Consequently, this day was excluded from the analysis.

3. Monthly climatology of aerosol extinction profiles from CALIOP and GEOS-Chem

3.1 CALIOP monthly climatology

The aerosol layer height (ALH) is a good indicator to what extent aerosols are mixed vertically (Castellanos et al., 2015). As defined in Eq. A1 in Appendix B, the ALH is the average height of aerosols weighted by vertically resolved aerosol extinction. Figure 2a shows the spatial distribution of our CALIOP ALH climatology in each season. At
most places, the ALH reaches a maximum in spring or summer and a minimum in fall or winter. The lowest ALH in fall and winter can be attributed to heavy near-surface pollution and weak vertical transport. The high values in summer are related to strong convective activities. Over the north, the high values in spring are partly associated with Asian dust events, due to high surface winds and dry soil in this season (Huang et al., 2010; Proestakis et al., 2017; Wang et al., 2010), which also affects the oceanic regions via atmospheric transport. The springtime high ALH over the south may be related to the transport of carbonaceous aerosols from Southeast Asian biomass burning (Jethva et al., 2016). Averaged over the domain, the seasonal mean ALHs are 1.48 km, 1.43 km, 1.27 km, 1.18 km in spring, summer, fall and winter.

Figure 3a,b further shows the climatological monthly variations of ALH averaged over Northern East China (the anthropogenic source region shown in orange in Fig. 1a) and Northwest China (the dust source region shown in yellow in Fig. 1a). The two regions exhibit distinctive temporal variations. Over Northern East China, the ALH reaches a maximum in April (~1.53 km) and a minimum in December (~1.14 km). Over Northwest China, the ALH peaks in August (~1.59 km) because of strongest convection (Zhu et al., 2013), although the springtime ALH is also high.

Figure 4a shows the climatological seasonal regional average vertical profiles of aerosol extinction over Northern East China. Here, the aerosol extinction increases from the ground level to a peak at about 300–600 m (season dependent), above which it decreases gradually. The height of peak extinction is lowest in winter, consistent with a stagnant atmosphere, thin mixing layer, and increased emissions (from residential and industrial sectors). The large error bars (horizontal lines in different layers, standing for 1 standard deviation) indicate strong spatiotemporal variability of aerosol extinction.

Over Northwest China (Fig. 5a), the column total aerosol extinction is much smaller than that over Northern East China (Fig. 4a), due to lower anthropogenic sources and
dominant natural dust emissions. Vertically, the decline of extinction from the peak-extinction height to 2 km is also much more gradual than the decline over Northern East China, indicating stronger lifting of surface emitted aerosols. In winter, the column total aerosol extinction is close to the high value in dusty spring, whereas the vertical gradient of extinction is strongest among the seasons. This reflects the high anthropogenic emissions in parts of Northwest China, which have been rapidly increasing in the 2000s due to relatively weak emission control supplemented by growing activities of relocation of polluted industries from the eastern coastal regions (Cui et al., 2016; Zhao et al., 2015).

Overall, the spatial and seasonal variations of CALIOP aerosol vertical profiles are consistent with changes in meteorological conditions, anthropogenic sources, and natural emissions. The data will be used to evaluate and adjust GEOS-Chem simulation results in Sect. 3.2. A comparison of our CALIOP dataset with NASA’s official Level-3 data is presented in Appendix C.

3.2 Evaluation of GEOS-Chem aerosol extinction profiles

Figure 2b shows the spatial distribution of seasonal ALHs simulated by GEOS-Chem. The model captures the spatial and seasonal variations of CALIOP ALH (Fig. 2a) to some degree, with an underestimate by about 0.3 km on average. The spatial correlation between CALIOP (Fig. 2a) and GEOS-Chem (Fig. 2b) ALH is 0.37 in spring, 0.57 in summer, 0.40 in fall, and 0.44 in winter. The spatiotemporal consistency and underestimate is also clear from the regional mean monthly ALH data in Fig. 3 – the temporal correlation between GEOS-Chem and CALIOP ALH is 0.90 in Northern East China and 0.97 in Northwest China.

Figures 4a and 5a show the GEOS-Chem simulated 2007–2015 monthly climatological vertical profiles of aerosol extinction coefficient over Northern East China and
Northwest China, respectively. Over Northern East China (Fig. 4a), the model (red line) captures the vertical distribution of CALIOP extinction (black line) below the height of 1 km, despite a slight underestimate in the magnitude of extinction and an overestimate in the peak-extinction height. From 1 to 5 km above the ground, the model substantially overestimates the rate of decline in extinction coefficient with increasing altitude. Across the seasons, GEOS-Chem underestimates the magnitude of aerosol extinction by up to 37% (depending on the height). Over Northwest China (Fig. 5a), GEOS-Chem has an underestimate in all seasons, with the largest bias by about 80% in winter likely due to underestimated water-soluble aerosols and dust emissions (Li et al., 2016; Wang et al., 2008a).

Since the POMINO v1.1 algorithm uses MODIS AOD to adjust model AOD, it only uses the CALIOP aerosol extinction profile shape to adjust the modeled shape (Eqs. 1 and 2). Figures 4b and 4b show the vertical shapes of aerosol extinction, averaged across all profiles in each season over Northern East China and Northwest China, respectively. Over Northern East China (Fig. 4b), GEOS-Chem underestimates the CALIOP values above 1 km by 52–71%. This underestimate leads to a lower ALH, consistent with the finding by van Donkelaar et al. (2013) and Lin et al. (2014b). Over Northwest China (Fig. 5b), the model also underestimates the CALIOP values above 1 km by 50–62%. These results imply the importance of correcting the modeled aerosol vertical shape prior to cloud and NO2 retrievals.

4. Effects of aerosol vertical profile improvement on cloud retrieval in 2012

Figure 6a, b shows the monthly average ALH and cloud top height (CTH, corresponding to cloud pressure, CP) over Northern East China and Northwest China in 2012. In order to discuss the CTH, only cloudy days are analyzed here, by excluding days with zero cloud fraction (CF = 0, clear-sky cases) in POMINO. Although “clear sky” is used sometimes in the literature to represent low cloud coverage (e.g., CF < 0.2
or CRF < 0.5, Boersma et al., 2011; Chimot et al., 2016), here it strictly means CF = 0
while “cloudy sky” means CF > 0. About 62.7% of days contain non-zero fractions of
clouds over Northern East China, and the number is 59.1% for Northwest China. The
CF changes from POMINO to POMINO v1.1 (i.e., after aerosol vertical profile
adjustment) are negligible (within ±0.5%, not shown) due to the same values of AOD
and SSA used in both products. This is because overall CF is mostly driven by the
continuum reflectance at 475 nm (mainly determined by AOD and surface reflectance,
which remain unchanged), which is insensitive of aerosol profile but CTH is driven by
the O$_2$-O$_2$ SCD, which is itself impacted by ALH.

Figure 6a, b shows that over the two regions, the CTH varies notably from one month
to another, whereas the ALH is much more stable across the months. Over Northern
East China, the ALH increases by 0.52 km from POMINO (orange dashed line) to
POMINO v1.1 (orange solid line) due to the CALIOP-based monthly climatological
adjustment. The increase in ALH means a stronger “shielding” effect of aerosols on the
O$_2$-O$_2$ absorbing dimer, which, in turn, results in a reduced CTH by 0.69 km on average.
For POMINO over Northern East China (Fig. 6a), the retrieved clouds usually extend
above the aerosol layer, i.e., the CTH (grey dashed line) is much larger than the ALH
(orange dashed line). Using the CALIOP climatology in POMINO v1.1 results in the
ALH higher than the CTH in fall and winter. The more elevated ALH is consistent with
the finding of Jethva et al. (2016) that a significant amount of absorbing aerosols resides
above clouds over Northern East China based on 11-year (2004–2015) OMI near-UV
observations.

The CTH in Northwest China is much lower than in Northern East China (Fig. 6a versus
7b). This is because the dominant type of actual clouds is (optically thin) cirrus over
western China (Wang et al., 2014), which is interpreted by the O$_2$-O$_2$ cloud retrieval
algorithm as reduced CTH (with cloud base from the ground). The reduction in CTH
from POMINO to POMINO v1.1 over Northwest China is also smaller than the reduction over Northern East China, albeit with a similar enhancement in ALH, due to lower aerosol loadings (Fig. 6c versus 6d).

Figure 7g,h presents the relative change in CP from POMINO to POMINO v1.1 as a function of AOD (binned at an interval of 0.1) and changes in ALH from POMINO to POMINO v1.1 (ΔALH, binned every 0.2 km) across all pixels in 2012 over Northern East China. Results are separated for low cloud fraction (CF < 0.05 in POMINO, Fig. 7g) and modest cloud fraction (0.2 < CF < 0.3, Fig. 7h). The median of the CP changes for pixels within each AOD and ΔALH bin is shown. Figure 7e,f presents the corresponding numbers of occurrence under the two cloud conditions.

Figure 7 shows that over Northern East China, the increase in ALH is typically within 0.6 km for the case of CF < 0.05 (Fig. 7e), and the corresponding increase in CP is within 6% (Fig. 7g). In this case, the average CTH (2.95 km in POMINO versus 1.58 km in POMINO v1.1) becomes much lower than the average ALH (1.06 km in POMINO versus 1.98 km in POMINO v1.1). For the case with CF between 0.2 and 0.3, the increase in ALH is within 1.2 km for most scenes (Fig. 7f), which leads to a CP change of 2% (Fig. 7h), much smaller than the CP change for CF < 0.05 (Fig. 7g). This is partly because the larger the CF is, the smaller a change in CF is required to compensate for the ΔALH in the O₂-O₂ cloud retrieval algorithm. Furthermore, with 0.2 < CF < 0.3, the mean value of CTH is much higher than ALH in both POMINO (2.76 km for CTH versus 1.13 km for ALH) and POMINO v1.1 (2.60 km for CTH versus 2.09 km for ALH), thus a large portion of clouds are above aerosols so that the change in CP is less sensitive to ΔALH. We find that the summertime data contribute the highest portion (36.5%) to the occurrences for 0.2 < CF < 0.3.
For Northwest China (not shown), the dependence of CP changes to AOD and ∆ALH is similar to that for Northern East China. In particular, the CP change is within 10% on average for the case of CF < 0.05 and 1.5% for the case of 0.2 < CF < 0.3.

5. Effects of aerosol vertical profile improvement on NO$_2$ retrieval in 2012

Figure 7a presents the percentage changes in clear-sky NO$_2$ VCD from POMINO to POMINO v1.1 as a function of binned AOD and ∆ALH over Northern East China. Here, clear-sky pixels are chosen based on CF = 0 in POMINO. In any AOD bin, an increase in ∆ALH leads to an enhancement in NO$_2$. And for any ∆ALH, the change in VCD is greater (smaller) when AOD becomes larger (smaller), which indicates that the NO$_2$ retrieval is more sensitive to ALH in high aerosol loading cases. Clearly, the change in NO$_2$ is not a linear function of AOD and ∆ALH.

For cloudy scenes (Fig. 7b,c, cloud data are based on POMINO), the change in NO$_2$ VCD is less sensitive to AOD and ∆ALH. This is because the existence of clouds limits the optical effect of aerosols on tropospheric NO$_2$. Figure 6a presents the nitrogen layer height (NLH, defined as the average height of model simulated NO$_2$ weighted by its volume mixing ratio in each layer) in comparison to the ALH and CLH over Northern East China. The figure shows that the POMINO v1.1 CTH is higher than the NLH in all months and higher than the ALH in warm months, which means a “shielding” effect on both NO$_2$ and aerosols.

Over Northwest China (not shown), the changes in clear-sky NO$_2$ VCD are within 9% for most cases, which are much smaller than over Eastern China (within 18%). This is because the NLH is much higher than the CLH and ALH (Fig. 6b) in absence of surface anthropogenic emissions.
We convert the valid pixels into monthly mean Level-3 values datasets on a 0.25° long. $503 \times 0.25^\circ$ lat. grid. Figure 8a,b compares the seasonal spatial variations of NO\textsubscript{2} VCD in POMINO v1.1 and POMINO in 2012. In both products, NO\textsubscript{2} peaks in winter due to the longest lifetime and highest anthropogenic emissions (Lin, 2012). NO\textsubscript{2} also reaches a maximum over Northern East China as a result of substantial anthropogenic sources. From POMINO to POMINO v1.1, the NO\textsubscript{2} VCD increases by 3.4% (-67.5–41.7%) in spring for the domain average (range), 3.0% (-59.5–34.4%) in summer, 4.6% (-15.3–39.6%) in fall and 5.3% (-68.4–49.3%) in winter. The NO\textsubscript{2} change is highly dependent on the location and season. The increase over Northern East China is largest in winter, wherein the positive value for ΔALH implies that elevated aerosol layers “shield” the NO\textsubscript{2} absorption.

6. Evaluating satellite products using MAX-DOAS data

We use MAX-DOAS data, after cloud screening (Sect. 2.4), to evaluate DOMNO v2, QA4ECV, POMINO and POMINO v1.1. The scatterplots in Fig. 9a-d compare the NO\textsubscript{2} VCDs from 162 OMI pixels on 49 days with their MAX-DOAS counterparts. The statistical results are shown in Table 2 as well. Different colors differentiate the seasons. The high values of NO\textsubscript{2} VCD ($> 30 \times 10^{15}$ molec. cm$^{-2}$) occur mainly in fall (blue) and winter (black). POMINO v1.1 and POMINO capture the day-to-day variability of MAX-DOAS data, i.e., $R^2 = 0.80$ for both products. The normalized mean bias (NMB) of POMINO v1.1 relative to MAX-DOAS data (-3.4%) is smaller than the NMB of POMINO (-9.6%). Also, the reduced major axis (RMA) regression shows that the slope for POMINO v1.1 (0.95) is closer to unity than the slope for POMINO (0.78). When all OMI pixels in a day are averaged (Fig. 9e,f), the correlation across the total of 49 days further increase for both POMINO v1.1 ($R^2 = 0.89$) and POMINO ($R^2 = 0.86$), whereas POMINO v1.1 still has a lower NMB (-3.7%) and better slope (0.96) than POMINO (-10.4% and 0.82, respectively). These results suggest that correcting aerosol
vertical profiles, at least on a climatology basis, already leads to a significant improved NO$_2$ retrieval from OMI.

Figure 9 show that DOMINO v2 is correlated with MAX-DOAS ($R^2 = 0.68$ in Fig. 9c and 0.75 in Fig. 9g) but not as strong as POMINO and POMINO v1.1 for all days. The discrepancy between DOMINO v2 and MAX-DOAS is particularly large for very high NO$_2$ values ($> 70 \times 10^{15}$ molec. cm$^{-2}$). The R^2 for QA4ECV (0.75 in Fig. 9d and 0.82 in Fig. 9h) is slightly better than DOMINO, but the NMB is higher (-22.0% and -22.7%) and the slope drops to 0.66. These results are consistent with the finding of Lin et al. (2014b, 2015) that explicitly including aerosol optical effects improves the NO$_2$ retrieval.

Table 3 further shows the comparison statistics for 11 haze days. The haze days are determined when both the ground meteorological station data and MODIS/Aqua corrected reflectance (true color) data indicate a haze day. The table also lists AOD, SSA, CF and MAX-DOAS NO$_2$ VCD, as averaged over all haze days. A large amount of absorbing aerosols occurs on these haze days (AOD = 1.13, SSA = 0.90). The average MAX-DOAS NO$_2$ VCD reaches 51.9×10^{15} molec. cm$^{-2}$. Among the four satellite products, POMINO v1.1 has the highest R^2 (0.76) and the lowest bias (4.4%) with respect to MAX-DOAS, whereas DOMINO v2 and QA4ECV reproduce the variability to a limited extent ($R^2 = 0.38$ and 0.34, respectively). This is consistent with the previous finding that the accuracy of DOMINO v2 is reduced for polluted, aerosol-loaded scenes (Boersma et al., 2011; Chimot et al., 2016; Kanaya et al., 2014; Lin et al., 2014b).

Table 4 shows the comparison statistics for 18 cloud-free days (CF = 0 in POMINO, and AOD = 0.60 on average). Here, POMINO v1.1, POMINO and DOMINO v2 do not show large differences in R^2 (0.53–0.56) and NMB (20.8–29.4%) with respect to MAX-DOAS. QA4ECV has a higher R^2 (0.63) and a lower NMB (-5.8%), presumably
reflecting the improvements in this (EU-) consortium approach, at least in mostly cloud-
free situations. However, the R^2 values for POMINO and POMINO v1.1 are much
smaller than the R^2 values in haze days, whereas the opposite changes are true for
DOMINO v2 and QA4ECV. Thus, for this limited set of data, the changes from
DOMINO v2 and QA4ECV to POMINO and POMINO v1.1 mainly reflect the
improved aerosol treatment in hazy scenes. Further research may use additional MAX-
DOAS datasets to evaluate the satellite products more systematically.

7. Conclusions

This paper improves upon our previous POMINO algorithm (Lin et al., 2015) to retrieve
the tropospheric NO$_2$ VCDs from OMI, by compiling a 9-year (2007–2015) CALIOP
monthly climatology of aerosol vertical extinction profiles to adjust GEOS-Chem
aerosol profiles used in the NO$_2$ retrieval process. The improved algorithm is referred
to as POMINO v1.1. Compared to monthly climatological CALIOP data over China,
GEOS-Chem simulations tend to underestimate the aerosol extinction above 1 km, as
characterized by an underestimate in ALH by 300–600 m (seasonal and location
dependent). Such a bias is corrected in POMINO v1.1 by dividing, for any month and
grid cell, the CALIOP monthly climatological profile by the model climatological
profile to obtain a scaling profile and then applying the scaling profile to model data in
all days of that month in all years.

The aerosol extinction profile correction leads to an insignificant change in CF from
POMINO to POMINO v1.1, since the AOD and surface reflectance are unchanged. In
contrast, the correction results in a notably increase in CP (i.e., a decrease in CTH), due
to lifting of aerosol layers. The CP changes are generally within 6% for scenes with low
cloud fraction (CF < 0.05 in POMINO), and within 2% for scenes with modest cloud
fraction (0.2 < CF < 0.3 in POMINO).
The NO$_2$ VCDs increase from POMINO to POMINO v1.1 in most cases due to lifting of aerosol layers that enhances the “shielding” of NO$_2$ absorption. The NO$_2$ VCD increases by 3.4% (-67.5–41.7%) in spring for the domain average (range), 3.0% (-59.5–34.4%) in summer, 4.6% (-15.3–39.6%) in fall and 5.3% (-68.4–49.3%) in winter. The NO$_2$ changes highly season and location dependent, and are most significant for wintertime Northern East China.

Further comparisons with independent MAX-DOAS NO$_2$ VCD data for 162 OMI pixels in 49 days show good performance of both POMINO v1.1 and POMINO in capturing the day-to-day variation of NO$_2$ ($R^2=0.80$, $n=162$), compared to DOMINO v2 ($R^2=0.67$) and the new QA4ECV product ($R^2=0.75$). The NMB is smaller in POMINO v1.1 (-3.4%) than in POMINO (-9.6%), with a slightly better slope (0.804 versus 0.784). On hazy days with high aerosol loadings (AOD = 1.13 on average), POMINO v1.1 has the highest R^2 (0.76) and the lowest bias (4.4%) whereas DOMINO and QA4ECV have difficulty in reproducing the day-to-day variability in MAX-DOAS NO$_2$ measurements ($R^2 = 0.38$ and 0.34, respectively). The four products show small differences in R^2 on clear-sky days (CF = 0 in POMINO, AOD = 0.60 on average), among which QA4ECV shows a highest R^2 (0.63) and lowest NMB (-5.8%), presumably reflecting the improvements in less polluted place such as Europe and the US. Thus the explicit aerosol treatment (in POMINO and POMINO v1.1) and the aerosol vertical profile correction (in POMINO v1.1) improves the NO$_2$ retrieval especially in hazy cases.

The POMINO v1.1 algorithm is a core step towards our next public release of data product, POMINO v2. The v2 product will contain a few additional updates, including but not limited to using MODIS Collection 6 Merged 10-km Level-2 AOD data that combine the Dark Target (Levy et al., 2013) and Deep Blue (Sayer et al., 2014) products, as well as MODIS MCD43C2 Collection 6 daily BRDF data. Meanwhile, the POMINO
algorithm framework is being applied to the recently launched TropOMI instrument that provides NO$_2$ information at a much higher spatial resolution (3.5 x 7 km2). A modified algorithm can also be used to retrieve sulfur dioxide, formaldehyde and other trace gases from TropOMI, for which purposes our algorithm will be available to the community on a collaborative basis. Future research can correct the SSA and NO$_2$ vertical profile to further improve the retrieval algorithm, and can use more comprehensive independent data to evaluate the resulting satellite products.

Acknowledgements

This research is supported by the National Natural Science Foundation of China (41775115), the 973 program (2014CB441303), the Chinese Scholarship Council, and the EU FP7 QA4ECV project (grant no. 607405).

Appendix A: Introduction to the QA4ECV product

The QA4ECV NO$_2$ product (http://www.qa4ecv.eu/) builds on a (EU-) consortium approach to retrieve NO$_2$ from GOME, SCIAMACHY, GOME-2, and OMI. The main contributions are provided by BIRA-IASB, the University of Bremen (IUP), MPIC, KNMI, and Wageningen University. Uncertainties in spectral fitting for NO$_2$ SCDs and in AMF calculations were evaluated by Zara et al. (2018) and Lorente et al. (2017), respectively. QA4ECV contains improved SCD NO$_2$ data (Zara et al., 2018). Our test suggests that using the QA4ECV SCD data instead of DOMINO SCD data would reduce the underestimate against MAX-DOAS VCD data from 3.7% to 0.2%, a relative minor improvement. Lorente et al., (2017) showed that across the above algorithms, there a structural uncertainty by 42% in the NO$_2$ AMF calculation over polluted areas.

By comparing to our POMINO product, Lorente et al. also showed that the choice of aerosol correction may introduce an additional uncertainty by up to 50% for situations with high polluted cases, consistent with Lin et al. (2014b, 2015) and the findings here.
For a complete description of the QA4ECV algorithm improvements, and quality assurance, please see Boersma et al. (2018).

Appendix B: Constructing the CALIOP monthly climatology of aerosol extinction vertical profile

Our use the all-sky Level-2 CALIOP data to construct the Level-3 monthly climatology. We choose the all-sky product instead of clear-sky data, since previous studies indicate that the climatological aerosol extinction profiles are affected insignificantly by the presence of clouds (Koffi et al., 2012; Winker et al., 2013). As we use this climatological data to adjust GEOS-Chem results, choosing all-sky data improves consistency with the model simulation when doing the daily correction.

To select valid pixels, we follow the data quality criteria by Winker et al., (2013) and Amiridis et al., (2015). Only the pixels with Cloud Aerosol Discrimination (CAD) scores between -20 and -100 with extinction Quality Control (QC) flag valued at 0, 1, 18, and 16 are selected. We further discard samples with an extinction uncertainty of 99.9 km$^{-1}$, which is indicative of unreliable retrieval. We only accept extinction values falling in the range from 0.0 to 1.25, according to CALIOP observation thresholds.

Previous studies showed that weakly scattering edges of icy clouds are sometimes misclassified as aerosols (Winker et al., 2013). To eliminate contamination from icy clouds we exclude the aerosol layers above the cloud layer (with layer-top temperature below 0 °C) when both of them are above 4km (Winker et al., 2013).

After the pixel-based screening, we aggregate the CALIOP data at the model grid (0.667° long. x 0.5° lat.) and vertical resolution (47 layers, with 36 layers or so in the troposphere). For each grid cell, we choose the CALIOP pixels within 1.5° of the grid cell center. CALIOP Level-2 data are always presented at the fixed 399 altitudes above sea level. To account for the difference in surface elevation between a CALIOP pixel
and the respective model grid cell, we convert the altitude of the pixel to a height above
the ground, by using the surface elevation data provided in CALIOP. We then average
horizontally and vertically the profiles of all pixels within one model grid cell and layer.
We do the regridding day-by-day for all grid cells to ensure that GEOS-Chem and
CALIOP extinction profiles are coincident spatially and temporally. Finally, we
compile a monthly climatological dataset by averaging over 2007–2015.

Figure A1 shows the number of aerosol extinction profiles in each grid cell and 12 x 9
= 108 months that are used to compile the CALIOP climatology, both before and after
data screening. Table A1 presents additional information on monthly and yearly bases.
On average, there are 165 and 47 aerosol extinction profiles per month per grid cell
before and after screening, respectively. In the final 9-year monthly climatology, each
grid cell has about 420 aerosol extinction profiles on average, about 28% of the prior-
screening profiles. Figure A1 shows that the number of valid profiles decreases sharply
over the Tibet Plateau and at higher latitudes (> 43 ° N) due to complex terrain and
icy/snowy ground.

As discussed above, we choose the CALIOP pixels within 1.5° of a grid cell center.
We test this choice by examining the aerosol layer height (ALH) produced for that grid
cell. The ALH is defined as the extinction-weighted height of aerosols (see Eq. A1,
where \(n \) denotes the number of tropospheric layers, \(\varepsilon_i \) the aerosol extinction at layer
\(i \), and \(H_i \) the layer center height above the ground). We find that choosing pixels
within 1.0° of a grid cell center leads to a nosier horizontal distribution of ALH, owing
to the small footprint of CALIOP. On the other hand, choosing 2.0° leads to a too
smooth spatial gradient of ALH with local characteristics of aerosol vertical
distributions are largely lost. We thus decide that 1.5° is a good balance between noise
and smoothness.
\[\text{ALH} = \frac{\sum_{i=1}^{n} \varepsilon_i H_i}{\sum_{i=1}^{n} \varepsilon_i} \]

(A1)

Certain grid cells do not contain sufficient valid observations for some months of the climatological dataset. We fill in missing monthly values of a grid cell using valid data in the surrounding 5 x 5 = 25 grid cells (within \(\sim 100 \text{ km}\)). If the 25 grid cells do not have enough valid data, we use those in the surrounding 7 x 7 = 49 grid cells (within \(\sim 150 \text{ km}\)). A similar procedure is used by Lin et al. (2014b, 2015) to fill in missing values in the gridded MODIS AOD dataset.

For each grid cell in each month, we further correct singular values in the vertical profile. In a month, if a grid cell \(i\) has an ALH outside mean \(\pm 1 \sigma\) of its surrounding 25 or 49 grid cells, we select \(i\)'s surrounding grid cell \(j\) whose ALH is the median of \(i\)'s surrounding grid cells, and use \(j\)'s profile to replace \(i\)'s. Whether 25 or 49 surrounding grid cells are chosen depends on the number of valid pixels shown in Fig. A1b. If the number of valid pixels in \(i\) is below mean \(-1 \sigma\) of all grid cells in the whole domain, which is often the case for Tibetan grid cells, we use \(i\)'s surrounding 49 grid cells; otherwise we use \(i\)'s surrounding 25 grid cells.

Appendix C. Comparing our and NASA’s CALIOP monthly climatology

We compare our gridded climatological profiles to NASA CALIOP Version 3 Level-3 all-sky monthly profiles at 532 nm (Winker et al., 2013). The NASA Level-3 data has a horizontal resolution of 2° lat. \(\times\) 5° lon. and a vertical resolution of 60 m (from -0.5 to 12 km above sea level). We combine NASA monthly data over 2007–2015 to construct a monthly climatology for comparison with our own compilation. We only choose aerosol extinction data in the troposphere with error less than 0.15 (the valid range given in the CALIOP dataset). If the number of valid monthly profiles in a grid cell is less than five (i.e., for the same month in five out of the nine years), then we exclude data in that grid cell; see the dark gray grid cells in Fig. 2c.
Several methodological differences exist between generating our and NASA CALIOP datasets. First, the two datasets have different horizontal resolutions. Also, we sample all valid CALIOP pixels within 1.5° of a grid cell center, whereas the NASA dataset samples all valid pixels within a grid cell. Besides, our CALIOP dataset involves several steps of horizontal interpolation, for purposes of subsequent cloud and NO$_2$ retrievals, which is not done in the NASA dataset. In addition, we match CALIOP data vertically to the GEOS-Chem vertical resolution, whereas the NASA dataset maintains the original resolution.

Figure 2c shows the spatial distribution of ALH in all seasons based on NASA CALIOP Level-3 all-sky monthly climatology. The horizontal resolution of NASA data is much coarser than ours; and NASA data are largely missing over the southwest with complex terrains. We choose to focus on the comparison over East China (the black box in Fig. 1a). Over East China, the two climatology datasets generally exhibit similar spatial patterns of ALH in all seasons (Fig. 2a, c). The NASA dataset suggests higher ALHs than ours over Eastern China, especially in summer, due mainly to differences in the sampling and regridding processes. Figure 3c further compares the monthly variation of ALH between our (black line with error bars) and NASA (blue filled triangles) datasets averaged over East China. The two datasets are consistent in almost all months, indicating that their regional differences are largely smoothed out by spatial averaging.

References

Gerasopoulos, E., Proestakis, E., Kottas, M., Balis, D., Papayannis, A., Kontoes, C.,
Kourtidis, K., Papagiannopoulos, N., Mona, L., Pappalardo, G., Le Rille, O. and
Ansmann, A.: LIVAS: a 3-D multi-wavelength aerosol/cloud database based on
CALIPSO and EARLINET, Atmos. Chem. Phys., 15(13), 7127–7153,

Belmonte Rivas, M., Veefkind, P., Boersma, F., Levelt, P., Eskes, H. and Gille, J.:
Intercomparison of daytime stratospheric NO$_2$ satellite retrievals and model simulations,

Boersma, K. F., Eskes, H. J. and Brinksma, E. J.: Error analysis for tropospheric NO$_2$
retrieval from space, J. Geophys. Res. Atmos., 109(D4), n/a-n/a,

M., van den Oord, G. H. J., Levelt, P. F., Stammes, P., Gleason, J. F. and Bucsela, E.
J.: Near-real time retrieval of tropospheric NO$_2$ from OMI, Atmos. Chem. Phys., 7(8),

Boersma, K. F., Eskes, H. J., Dirksen, R. J., van der A, R. J., Veefkind, J. P., Stammes,
P., Huijnen, V., Kleipool, Q. L., Sneept, M., Claas, J., Leitão, J., Richter, A., Zhou, Y.
and Brunner, D.: An improved tropospheric NO$_2$ column retrieval algorithm for the
Ozone Monitoring Instrument, Atmos. Meas. Tech., 4(9), 1905–1928,

Geffen, J. H. G. M., Zara, M., Peters, E., Van Roozendael, M., Wagner, T., Maasakkers,
J. D., van der A, R. J., Nightingale, J., De Rudder, A., Irie, H., Pinardi, G., Lambert, J.-
C., and Compernolle, S.: Improving algorithms and uncertainty estimates for satellite
NO$_2$ retrievals: Results from the Quality Assurance for Essential Climate Variables

accurate is the aerosol correction of cloud-free scenes via a simple cloud model?,

Clémer, K., Van Roozendael, M., Fayt, C., Hendrick, F., Hermans, C., Pinardi, G.,
Spurr, R., Wang, P. and De Mazière, M.: Multiple wavelength retrieval of tropospheric
aerosol optical properties from MAX-DOAS measurements in Beijing, Atmos. Meas.

Cui, Y., Lin, J., Song, C., Liu, M., Yan, Y., Xu, Y. and Huang, B.: Rapid growth in
nitrogen dioxide pollution over Western China, 2005–2013, Atmos. Chem. Phys.,
16(10), 6207–6221, doi:10.5194/acp-16-6207-2016, 2016.

and Kelder, H. M.: Evaluation of stratospheric NO₂ retrieved from the Ozone

van Geffen, J. H. G. M., Boersma, K. F., Van Roozendael, M., Hendrick, F., Mahieu,
E., De Smedt, I., Sneep, M. and Veefkind, J. P.: Improved spectral fitting of nitrogen
dioxide from OMI in the 405–465 nm window, Atmos. Meas. Tech., 8(4), 1685–1699,

Gielen, C., Van Roozendael, M., Hendrick, F., Pinardi, G., Vlemmix, T., De Bock, V.,
cloud-screening method for MAX-DOAS retrievals, Atmos. Meas. Tech., 7(10), 3509–

Hendrick, F., Muller, J. F., Clemer, K., Wang, P., De Maziere, M., Fayt, C., Gielen, C.,
Hermans, C., Ma, J. Z., Pinardi, G., Stavrakou, T., Vlemmix, T., and Van Roozendael,
M.: Four years of ground-based MAX-DOAS observations of HONO and NO₂ in the
Beijing area, Atmospheric Chemistry and Physics, 14, 765-781, 10.5194/acp-14-765-

Lorente, A., Folkert Boersma, K., Yu, H., Dörner, S., Hilboll, A., Richter, A., Liu, M.,
Lamsal, L. N., Barkley, M., De Smedt, I., Van Roozendael, M., Wang, Y., Wagner, T.,
Structural uncertainty in air mass factor calculation for NO₂ and HCHO satellite
Lucht, W., Schaaf, C. B. and Strahler, A. H.: An algorithm for the retrieval of albedo
Ma, J. Z., Beirle, S., Jin, J. L., Shaiganfar, R., Yan, P. and Wagner, T.: Tropospheric
NO₂ vertical column densities over Beijing: results of the first three years of ground-
based MAX-DOAS measurements (2008-2011) and satellite validation, Atmos. Chem.
Ma, X. and Yu, F.: Seasonal variability of aerosol vertical profiles over east US and
west Europe: GEOS-Chem/APM simulation and comparison with CALIPSO
observations, Atmos. Res., 140–141, 28–37,
doi:https://doi.org/10.1016/j.atmosres.2014.01.001, 2014.
Martin, R. V.: An improved retrieval of tropospheric nitrogen dioxide from GOME, J.
Aerosol Climatology over Kanpur, India, and Validation of CALIPSO Level 2 Version
3 Backscatter and Extinction Products, J. Atmos. Ocean. Technol., 29(9), 1285–1294,
Miyazaki, K. and Eskes, H.: Constraints on surface NOₓ emissions by assimilating
satellite observations of multiple species, Geophys. Res. Lett., 40(17), 4745–4750,

36

Zhou, Y., Brunner, D., Spurr, R. J. D., Boersma, K. F., Sneep, M., Popp, C. and Buchmann, B.: Accounting for surface reflectance anisotropy in satellite retrievals of

<table>
<thead>
<tr>
<th></th>
<th>Before filtering</th>
<th></th>
<th>After filtering</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Mean</td>
<td>Median</td>
<td>Minima</td>
<td>Maximum</td>
</tr>
<tr>
<td>For a month</td>
<td>165</td>
<td>169</td>
<td>0</td>
<td>291</td>
</tr>
<tr>
<td>For the same month in nine years</td>
<td>1483</td>
<td>1513</td>
<td>192</td>
<td>1921</td>
</tr>
<tr>
<td>For all months in nine years</td>
<td>17794</td>
<td>18528</td>
<td>5608</td>
<td>20781</td>
</tr>
</tbody>
</table>
Table 1. MAX-DOAS measurement sites and corresponding meteorological stations.

<table>
<thead>
<tr>
<th>MAX-DOAS site name</th>
<th>Site information</th>
<th>Measurement times</th>
<th>Corresponding meteorological station name</th>
<th>Meteorological station information</th>
</tr>
</thead>
<tbody>
<tr>
<td>Xianghe</td>
<td>116.96°E, 39.75°N, 36 m, suburban</td>
<td>2012/01/01 - 2012/12/31</td>
<td>CAPITAL</td>
<td>116.89°E, 40.01°N, 35.4 m</td>
</tr>
<tr>
<td>IAP</td>
<td>116.38°E, 39.98°N, 92 m, urban</td>
<td>2008/06/22 - 2009/04/16</td>
<td>CAPITAL</td>
<td>116.89°E, 40.01°N, 35.4 m</td>
</tr>
<tr>
<td>Wuxi</td>
<td>120.31°E, 31.57°N, 20 m, urban</td>
<td>2012/01/01 - 2012/12/31</td>
<td>HONGQIAO INTL</td>
<td>121.34°E, 31.20°N, 3 m</td>
</tr>
</tbody>
</table>
Table 2. Pixel-based evaluation of OMI NO$_2$ products with respect to MAX-DOAS for 162 pixels on 49 days.

<table>
<thead>
<tr>
<th></th>
<th>POMINO v1.1</th>
<th>POMINO</th>
<th>DOMINO v2</th>
<th>QA4ECV</th>
</tr>
</thead>
<tbody>
<tr>
<td>Slope</td>
<td>0.95</td>
<td>0.78</td>
<td>1.06</td>
<td>0.66</td>
</tr>
<tr>
<td>Intercept (1015 molec. cm$^{-2}$)</td>
<td>-1.00</td>
<td>0.96</td>
<td>-3.86</td>
<td>1.09</td>
</tr>
<tr>
<td>R2</td>
<td>0.80</td>
<td>0.80</td>
<td>0.68</td>
<td>0.75</td>
</tr>
<tr>
<td>NMB (%)</td>
<td>-3.4</td>
<td>-9.6</td>
<td>-2.1</td>
<td>-22.0</td>
</tr>
</tbody>
</table>
Table 3. Pixel-based evaluation of OMI NO$_2$ products with respect to MAX-DOAS for 27 pixels on 11 haze days1.

<table>
<thead>
<tr>
<th></th>
<th>POMINO v1.1</th>
<th>POMINO</th>
<th>DOMINO v2</th>
<th>QA4ECV</th>
</tr>
</thead>
<tbody>
<tr>
<td>Slope</td>
<td>1.07</td>
<td>0.80</td>
<td>1.11</td>
<td>0.58</td>
</tr>
<tr>
<td>Intercept</td>
<td>-3.58</td>
<td>1.76</td>
<td>-11.79</td>
<td>3.20</td>
</tr>
<tr>
<td>(1015 molec. cm$^{-2}$)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>R^2</td>
<td>0.76</td>
<td>0.68</td>
<td>0.38</td>
<td>0.34</td>
</tr>
<tr>
<td>NMB (%)</td>
<td>4.4</td>
<td>-9.4</td>
<td>-5.0</td>
<td>-26.1</td>
</tr>
</tbody>
</table>

1. The haze days are determined when the ground meteorological station data and MODIS/Aqua corrected reflectance (true color) data both indicate a haze day.
2. Average across the pixels, AOD = 1.13 (median = 1.10), SSA = 0.90 (0.91), MAX-DOAS NO$_2$ = 51.92 x 1015 molec. cm$^{-2}$, and CF = 0.06 (0.03).
Table 4. Evaluation of OMI NO2 products with respect to MAX-DOAS of 36 pixels on 18 cloud-free days.

<table>
<thead>
<tr>
<th></th>
<th>POMINO v1.1</th>
<th>POMINO</th>
<th>DOMINO v2</th>
<th>QA4ECV</th>
</tr>
</thead>
<tbody>
<tr>
<td>Slope</td>
<td>1.30</td>
<td>1.13</td>
<td>0.92</td>
<td>0.79</td>
</tr>
<tr>
<td>Intercept (10^{15} molec. cm^{-2})</td>
<td>-0.61</td>
<td>0.31</td>
<td>2.32</td>
<td>1.05</td>
</tr>
<tr>
<td>R^2</td>
<td>0.55</td>
<td>0.56</td>
<td>0.53</td>
<td>0.63</td>
</tr>
<tr>
<td>NMB (%)</td>
<td>29.4</td>
<td>20.8</td>
<td>21.9</td>
<td>-5.8</td>
</tr>
</tbody>
</table>

1. CF=0 in POMINO product. Average across the pixels, AOD = 0.60 (median = 0.47), SSA = 0.90 (0.91), and MAX-DOAS NO2 = 26.82 x 10^{15} molec. cm^{-2}.
Figure A1. The total number of CALIOP Level-2 aerosol extinction profiles at 532 nm used to derive our climatological (2007–2015) dataset on a 0.667° long. x 0.5° lat. grid (a) before and (b) after filtering.
Figure 1. (a) Three study areas: Northern East China, Northwest China, and East China. (b) MAX-DOAS measurement sites (red dots) and corresponding meteorological stations (black triangle) overlaid on POMINO v1.1 NO$_2$ VCDs in August 2012.
Figure 2. Seasonal spatial patterns of ALH climatology at 532 nm on a 0.667° long. x 0.50° lat. grid based on (a) our complied all-sky Level-2 CALIOP data, (b) corresponding GEOS-Chem simulations, and (c) NASA all-sky monthly Level-3 CALIOP dataset.
Figure 3. Regional mean ALH monthly climatology over (a) Northern East China, (b) Northwest China, and (c) East China. The error bars stand for 1 standard deviation for spatial variability.
Figure 4. Seasonal climatological aerosol extinction profiles (first row) and corresponding relative extinction profiles (normalized to maximum extinction values, second row) in spring (MAM), summer (JJA), fall (SON) and winter (DJF) over Northern East China. Model results (in red) are prior to MODIS/Aqua based AOD adjustment. Error bars in (a) represent 1 standard deviation across all grid cells in each season.
Figure 5. Similar to Fig. 5 but for Northwest China.
Figure 6. Monthly variations of ALH, CTH and NLH over (a) Northern East China and (b) Northwest China in 2012. Data are averaged across all pixels in each month and region. The grey and orange solid lines denote POMINO v1.1 results, while the corresponding dashed lines denote POMINO. (c–d) Corresponding monthly AOD and SSA.
Figure 7. Percentage changes in VCD from POMINO to POMINO v1.1 ([POMINO v1.1 – POMINO] / POMINO) for each bin of ∆ALH (bin size = 0.2 km) and AOD (bin size = 0.1) across pixels in 2012 over Northern East China, for (a) cloud-free sky (CF = 0 in POMINO), (b) little-cloudy sky, and (c) modestly cloudy sky. (d-f) The number of occurrences corresponding to (a-c). (g, h) Similar to (b, c) but for the percentage changes in cloud top pressure (CP).
Figure 8. Seasonal spatial distribution of tropospheric NO$_2$ VCD in 2012 for (a) POMINO v1.1, (b) POMINO, and (c) their relative difference.
Figure 9. (a–d) Scatterplot for NO₂ VCDs (10¹⁵ molec. cm⁻²) between MAX-DOAS and each of the three OMI products. Each “+” corresponds to an OMI pixel, as several pixels may be available in a day. (e–h) Similar to (a–d) but after averaging over all OMI pixels in the same day, such that each “+” represents a day. Also shown are the statistic results from the RMA regression. The black solid line indicates the regression curve and the grey dotted line depict the 1:1 relationship.