Journal metrics

Journal metrics

  • IF value: 3.248 IF 3.248
  • IF 5-year value: 3.650 IF 5-year 3.650
  • CiteScore value: 3.37 CiteScore 3.37
  • SNIP value: 1.253 SNIP 1.253
  • SJR value: 1.869 SJR 1.869
  • IPP value: 3.29 IPP 3.29
  • h5-index value: 47 h5-index 47
  • Scimago H index value: 60 Scimago H index 60
Discussion papers | Copyright
https://doi.org/10.5194/amt-2018-249
© Author(s) 2018. This work is distributed under
the Creative Commons Attribution 4.0 License.

Research article 20 Aug 2018

Research article | 20 Aug 2018

Review status
This discussion paper is a preprint. It is a manuscript under review for the journal Atmospheric Measurement Techniques (AMT).

A shape model of internally mixed soot particles derived from artificial surface tension

Hiroshi Ishimoto, Rei Kudo, and Kouji Adachi Hiroshi Ishimoto et al.
  • Meteorological Research Institute, Tsukuba, 305-0052, Japan

Abstract. To retrieve the physical properties of aerosols from multi-channel ground-based/satellite measurements, we developed a shape model of coated soot particles and created a dataset of their optical properties. Bare soot particles were assumed to have an aggregate shape, and two types of aggregates with different size–shape dependences were modeled using a polyhedral Voronoi structure. To simulate the detailed shape properties of mixtures of soot aggregates and adhered water-soluble substances, we propose a simple model of surface tension derived from the artificial surface potential. The light-scattering properties of the modeled particles with different volume fractions of water-soluble material were calculated using the finite-difference time-domain method and discrete-dipole approximation. The results of the single-scattering albedo and asymmetry factors were compared to those of conventional internally mixed spheres (i.e., effective medium spheres based on the Maxwell–Garnett approximation and simple core–shell spheres). In addition, the lidar backscattering properties (i.e., lidar ratios and linear depolarization ratios) of the modeled soot particles were investigated. For internally mixed soot particles, the lidar backscattering properties were sensitive to the shape of the soot particles and the volume mixing ratio of the assumed water-soluble components. However, the average optical properties of biomass burning smoke, which have been reported from in situ field and laboratory measurements, were difficult to explain based on the individually modeled particle. Nonetheless, our shape model and its calculated optical properties are expected to be useful as an alternative model for biomass burning smoke particles in advanced remote sensing via multi-channel radiometer and lidar measurements.

Download & links
Hiroshi Ishimoto et al.
Interactive discussion
Status: open (until 17 Oct 2018)
Status: open (until 17 Oct 2018)
AC: Author comment | RC: Referee comment | SC: Short comment | EC: Editor comment
[Subscribe to comment alert] Printer-friendly Version - Printer-friendly version Supplement - Supplement
Hiroshi Ishimoto et al.
Hiroshi Ishimoto et al.
Viewed
Total article views: 306 (including HTML, PDF, and XML)
HTML PDF XML Total BibTeX EndNote
254 48 4 306 7 7
  • HTML: 254
  • PDF: 48
  • XML: 4
  • Total: 306
  • BibTeX: 7
  • EndNote: 7
Views and downloads (calculated since 20 Aug 2018)
Cumulative views and downloads (calculated since 20 Aug 2018)
Viewed (geographical distribution)
Total article views: 306 (including HTML, PDF, and XML) Thereof 302 with geography defined and 4 with unknown origin.
Country # Views %
  • 1
1
 
 
 
 
Cited
Saved
No saved metrics found.
Discussed
No discussed metrics found.
Latest update: 18 Sep 2018
Publications Copernicus
Special issue
Download
Short summary
We developed a shape model of coated soot particles and created a dataset of their optical properties. To simulate the detailed shape properties of mixtures of soot aggregates and adhered water-soluble substances, we propose a simple model of surface tension derived from the artificial surface potential. The results of some single-scattering properties including lidar backscattering were discussed.
We developed a shape model of coated soot particles and created a dataset of their optical...
Citation
Share