Interactive comment on “The Impact of MISR-derived Injection Height Initialization on Wildfire and Volcanic Plume Dispersion in the HYSPLIT Model” by Charles J. Vernon et al.

Anonymous Referee #2
Received and published: 21 June 2018

General Comments

This review pertains to the paper entitled ‘The Impact of MISR-derived Injection Height Initialization on Wildfire and Volcanic Plume Dispersion in the HYSPLIT Model’ submitted for publication in Atmospheric Measurement Techniques. This paper contained a detailed analysis, investigating the effects of initialization altitude on the accuracy of modeled plume dispersion. The results of both wildfire and volcanic case studies were subsequently compared to visual satellite imagery obtained up to 96 hours from the time of initialization. This paper was generally well constructed and contained a significant review of the techniques employed and results obtained. The manuscript does require some text revisions and further clarification in parts. Therefore, I recommend the publication of this paper following the completion of the below minor revisions.

We thank the reviewer for very detailed comments on the manuscript, and have made changes accordingly.

Specific Comments

The paper is generally well constructed although further referencing is required, particularly in Section 1. Specific cases are noted within the Technical Comments however a careful review by the authors is recommended. At times, within the text, the writing becomes extremely conversational. Some examples of these instances are noted in the Technical Comments with suggested alterations. However, a full review by the authors is recommended.

Data Sources – The methods section of this manuscript does not contain details of where the MISR data was obtained. This is also the case for the MINX and HYSPLIT analysis packages and the input source for fire radiant pixels. Please add these details to the text.

Done.

There are multiple instances of non-SI values and notations. Knots is used instead of m/s. Kilometers is typed in long form as opposed to km. These need to be addressed. I have noted those I identified but the authors should conduct a full review of the paper.
Done.

Please consider the addition of a brief summary sentence or two at the end of each case study. These sentences should sum up the importance of each analysis, reaffirming the key points stated within.

Done.

Technical comments

P2L12 – Specify the spatial extent of ‘near-source’
P3L2 – D cameras are at 70.5_
P3L9 – Add reference
P3L16 – Consider revising to ‘. . .one coincident instrument flies aboard the Terra satellite. . .’
P3L17 – Add the time (1330 local time) of the Aqua overpass
P4L4 – Add Nelson et al., 2008 to the reference
P4L13-16 – Consider rewording this sentence. It initially suggests that red band is the only one used then mentions blue band retrievals as if it is an afterthought.
P5L10 – You state ‘several factors’ but you only mention one example please add additional examples or alter phrasing.
P5L16 – Add reference
P5L16 – Start a new paragraph with ‘In this paper. . .’
P5L18 – Delete ‘can’
P6L4-6 – Consider revising this into 2 separate sentences for clarity.

We have addressed all the points above in the revised text.

P6L6 – Consider/address that high optical thickness plumes can also be featureless and difficult to analyze with MINX.

In our experience, aerosol plumes tend to have enough texture for stereo height retrievals, unless the AOD is too low. The one case where we have encountered the issue of smoothness is with an overshooting pyro-cumulonimbus, where the ice crystal “cap” region was too featureless for stereo-height retrieval.

P6L8 – Consider revising to ‘The six selected case studies are: (1). . .’
P6L12 – There is no mention in this section of where the MISR data was obtained/is available from.
P6L13 – Please clarify ‘. . .source elevation and precise location for each event. . .’. Is this based on the retrieval output and selected initiation point from MINX retrievals? Or do this details come from the inclusion of locations based on MODIS fire pixel or something similar?

We have addressed all the points above in the revised text.

P6L9 – Please add details related to the fact that wind correction are made based on
the user defined wind directions.

We have added this to Section 2.1, about MINX.

P6L20 – Consider revising ‘. . . Day 1 of each respective simulation.’
P7L16 – Define/explain where the ‘fire heat flux’ data is obtained.

We have addressed the points above in the revised text.

P9L1 – With respect to use of ‘maximum plume height’, how far from the source is this obtained? Is there a distance limit for defining the maximum, particularly if uplift occurred downwind from source? Or is it just the maximum across the entire retrieval? If it is the latter, then the ‘injection altitude’ used may be skewed by uplift resulting from local meteorological dynamics as opposed to representing the source driven injection altitude.

For the purposes of downwind modeling, as long as we input the correct peak elevation and its actual location, whether subsequent advection is involved does not matter. However, for the cases studied here, the peak was within 50 km of the source for wildfires and 150 km for volcanoes. We have added this note to the text.

P10L1 – Add reference
P10L9-14 – Consider putting this paragraph before P8L6, or somewhere toward the beginning of this section.
P11L9 – Consider revising ‘In summary, this work evaluates the inclusion of observed MINX plume heights in the initialization of HYSPLIT models and their influence on the downwind dispersion of modeled plumes.’ You may also consider including a sentence about the comparison of the output with MODIS observations here.
P11L14 – Consider revising ‘For wildfires, model configurations. . .’

We have addressed the points above in the revised text.

P13L2 – Line sources are indicated here. Please include details of the possible issues relating to line sources to the maximum level e.g. not accounting for bifurcation/multiple dispersion altitudes (driven by wind shear acting on the plume column) as plume rise occurred.

See response to P9L1 comment above.

P13L19 – Consider revising ‘. . . that our model runs are set to. . .’

Done.

P14L9 – Why were comparisons not also made with Aqua, in addition to Terra, for each day of the analyses?
Once per day seems reasonable, as the differences on shorter timescales are small.

P14L16 – Please specify that the contour maps display horizontal extent with no elements of vertical distribution.
P15L5 – Does ‘most mass’ refer to per individual scene or the single highest value from any retrieval? Please clarify.

Done.

P15L5-12 – This section needs reworking. All of the qualitative bin titles need to be detailed and a general description of each in practical terms that the reader can understand should also be included. This could either be in long form, or as a table if that is more appropriate.

We explain that this is a qualitative scale that can be associated with the visibility of the surface through the overlying plume. We include the actual imagery with each example, so the visibility can be compared with the contour plot, and we discuss the visibility scale in detail in the next paragraph. It is unclear to us what more might be said here.

P16L5 – Consider revision ‘…uses a uniform scale for all cases…’

“… the same scale …” is more accurate. The scale could be uniform, or logarithmic, or something else, but we are saying here that it is the same for all cases.

P16L13 – Consider revising ‘…slightly higher (2 or 3) or significantly higher (>4). . .’
P16L14-15 – Delete sentence ‘To be. . .or higher’
P17L4 – Consider moving the statement ‘. . .it does not assess vertical plume structure. . .’ and associated comments earlier in the section.
P18L2 – Please detail reasons why differences exist in dispersion dynamics between PBL and free troposphere e.g. turbulence driven friction generated by interaction of the atmosphere with the underlying terrain.
P18L14 – Consider revising ‘. . .heights were above the PBL. . .’
P18L21 – Consider revising ‘value, acquired on Day 1, and differences develop in the simulations.’ This entire containing sentence is a little long and could possibly be broken up further for clarity.
P19L12 – Consider redefining the titles of supplementary figures to prevent confusion with those figures included in the manuscript e.g. Fig. S1a

P20L4-8 – In this section you define the plume altitude differences but not the actual plume heights. This complicates the reader’s ability to understand how these relate to the ‘PBL level at 3.1 km’.
P20L10 – Define the ‘significant differences’ to which you are referring – e.g. spatial extent, dispersion direction, and longevity?
P20L12 – Convert knots to m/s

We have addressed the points above in the revised text.
P21L8 – Consider revising ‘. . .lacks the capabilities of the ECMWF and GFS models.’

This kind of model performance is usually characterized as “skill” rather than “capability.”

P21L10 – Consider revising ‘The overall plume extent and dimensions are . . .’

In this case, “extent” and “dimensions” would be redundant, whereas “dispersion” includes the temporal dimension, which is appropriate here.

P21L11-12 – This sentence, while pointing to the plots, does not state what the ‘apparent differences’ are.

Actually, the very next sentence mentions the differences.

P21L12-17 – This section needs reworking. There is confusion resulting from the inclusion of both MISR/nominal and NAM/GDAS within a single paragraph. I suggest the separation of the results here: the MISR/nominal section should be detailed first so comparisons can be made with the other case studies; then the NAM/GDAS comparison should be made after as a separate paragraph/sub-section of the case study for clarity.

P21L17 – Consider replacing ‘So’ with ‘Consequently’

P21L18-20 – Consider revising ‘. . .processes influencing simulations, plume dispersion is similar, indicating overall results are relatively independent. . .’ Also, you may need to reference that while this statement is true for this case it may not hold true for other events. This sort of generalization cannot be made based on a single observation or run.

P22L1 – Consider changing ‘vertical wind speed’ to ‘significant differences in wind speed (and direction) with altitude’. The original version suggests uplift; I assume that you actually mean the effects of wind shear causes variations in the dispersion direction.

P22L19 – Convert knots to m/s

P22L20 – Convert knots to m/s

We have addressed the points above in the revised text.

P23L1-7 – Consider moving this paragraph to the section introduction.

We agree that the first part of this paragraph applies generally to the volcano cases. However, having these few sentences here makes a nice transition from the wildfire to the volcano cases in general, so we elected to leave it in place.

P23L4 – Is your reference to the minimal difference between VAAC and MINX heights specific to your study? In a general sense the differences between these values can be up to _4 km (Flower & Kahn, JVGR 2017) depending on the techniques utilized by the relevant VAAC. If the comment relate to your study only please specify that.
We say “in many cases” the differences are not large. This seems fair; unlike the smoke cases, where the nominal injection heights are generated internally by HYSPLIT, the volcano cases use external data. But we have added a note on the existence of exceptions.

P23L11 – Convert knots to m/s
P23L11 – Please be more specific with respect to ‘nearly the same direction’
P24L3 – Delete ‘also’
P24L4 – Change kilometers to km
P24L4 – Consider revising ‘. . . sounding (Fig. 3e).’
P24L5 – Change kilometers to km
P24L7 – Consider revising ‘. . . simulations are minimal, detailed in a difference plot (Fig. 8c), and do not exceed “slight” variation showing good agreement.’
P24L17 – This volcano is actually in the Kuril island chain not on the Kamchatka Peninsular.
P24L19 – Change kilometers to km
P24L20 – Consider revising ‘. . . near the overpass time was _1.3 km. Therefore, both simulations were initiated in the free troposphere. However, significant differences were observed in vertical wind shear and meteorology between these altitudes.’
P25L1 – Delete ‘also’. Convert knots to m/s
P25L2 – Change kilometers to km
P25L2 – Consider revising ‘. . . than at 4 km. The wind direction differs by * with the higher altitude retrieval subjected to from a more ** dispersion direction.’ Where * is the directional degree difference between the wind fields and ** is the qualitative (e.g. easterly) direction change
P25L3 – Consider revising ‘Differences in wind speed suggest that the near source concentrations would be lower in the nominal. . .’
P25L5 – Consider revising ‘A more easterly wind trajectory, for the nominal simulation would alter dispersion direction accordingly.’
P25L6 – Consider revising ‘. . . prediction. The plume shape. . .’
P25L7 – Consider revising ‘When comparing the plume outlines in the visible imagery, the nominal. . .’

We have addressed the points above in the revised text.

P25L7 – Consider rearranging the section to make a comparison to the observed data (MODIS) initially and then go on to state that the MISR run more accurately represents observed characteristics.

We have taken most of the suggestions offered by this reviewer, but it is not clear to us that this change would improve the presentation.

P25L9 – Rearrange the last sentence as a definitive conclusion to this case study. Possibly along the lines of ‘These retrievals indicate that inaccuracies in initialization altitude can significantly hinder the accuracy of the corresponding model, even when both retrievals are in the free troposphere’
P25L17-19 – Consider revising ‘ However, when discrepancies exist between nominal and MISR injection altitude, significant differences in dispersion dynamics can occur.'
Differences are most significant when estimations cross the PBL/free troposphere boundary.

We have addressed the points above in the revised text.

P25L19 – Delete ‘Even. . .’

As we revised the previous sentence, “Even” now seems to fit here.

P26L1 – Consider revising ‘. . .the height. As wind shear can exist in the free troposphere, discrepancies subject the simulated. . .’
P26L2 – Consider revising ‘. . .conditions and cause divergence of retrievals. Bassed. . .’

We have reworded the sentence in question.

P26L9 – Consider revising ‘. . .are available particularly where plume heights are inaccurately derived.’
P27L14-15 – Delete ‘But even with the qualitative results presented here,’
P27L16 – Consider revising ‘. . .results. We highlighted the importance. . .’

We have addressed the points above in the revised text.

Figures
The line weight of the plume outlines on the model output figures has been increased for discernability.

Anonymous Referee #1
Received and published: 29 June 2018

Review of “The Impact of MISR-derived Injection Height Initialization on Wildfire and Volcanic Plume Dispersion in the HYSPLIT Model” by Vernon, Bolt, Canty, and Kahn for publication in Atmospheric Measurement Techniques.

The paper presents a series of case studies of simulated transport of plumes from three volcanic and three wildfire events. For each case the NOAA HYSPLIT trajectory model is used to simulate the plume dispersion. Two different configurations of the model are presented in each case, a “nominal” case in which plume injections are handled in a default prescriptive way similar to the HYSPLIT operational configurations, and a configuration in which the plume injection altitude is prescribed based on the satellite-derived plume height estimates from the MISR MINX product. For the cases of wildfires investigated the “nominal” case vertical profile of smoke injections is derived from an internal plume rise model that uses information of the observed fires. For the cases of volcanic eruptions the “nominal” case injection profiles are from
the surface to the VAAC reported plume top. For both fires and volcanoes the alternative MINX-based approach specifies injections from the surface to the maximal observed plume height from the stereo-imagery. The results of the pairs of simulations show that, to varying degrees, you get a different estimated plume transport depending on which of the injection parameters are used. A qualitative comparison is made to MODIS imagery which generally shows a reasonable plume transport in either case. The implication of the study is that, where available, satellite imagery of plume height may be a useful method to prescribe aerosol injection altitudes for transport studies.

The paper is straightforward enough but would benefit from some clarification (see suggestions below), and I recommend publication after revisions.

We thank the reviewer for helpful comments.

I do take issue with the conclusion that “MINX can help improve simulated plume dispersion.” This is pretty weakly stated, and so a relatively benign conclusion, but on the other hand I don’t find much convincing in what is actually presented that leads me to reach that conclusion. I don’t think the MINX product would be worse than the nominal assumptions, and I can understand in principle why it should be better (somewhat more definitive than the VAAC reports, observationally based versus parameterized in the case of fires). I’m just not convinced it was shown to be the case. The significant differences that I see are mainly in the wildfire cases, and I would speculate here that the plume rise model is the culprit here and is the strongest case to make that MINX makes a positive impact. But since you cannot really quantitatively compare the simulated trajectory clouds to, e.g., AOD products it is a tough sell to me that it is clearly better.

For the MINX-initialized smoke plumes, there are clear, qualitative differences that can matter, for example, in modeling downwind air quality effects. As we state in the paper, the data do not support a quantitative assessment because we cannot connect MODIS AOD with HYSPLIT aerosol mass quantitatively. For the volcanoes, many around the world are not well-monitored suborbitally at all – the cases we picked happen to be among the best-monitored volcanoes from the ground. We have modified the text to emphasize these points.

Some clarifications would be very useful. Regarding MINX, and mainly in Sections 1.2 and 2.1, it is not at all clear what the wind speeds being diagnosed in MINX means. Do you mean that the time to derive the full set of observations of the same point from all nine cameras allows enough of a time differential to determine the wind speed of the plume? Is this what is meant by “proper motion of plume elements?” What is that time difference? And how does the diagnosed wind relate to the zero-wind and wind-corrected plume heights shown? Are you bringing in wind from a meteorological analysis to make the wind-corrected plume height determination? Also, both red and blue bands are stated to be used in the height determination, but I have no idea how these are used together, or which one is definitive, or even how different they are.

1) It takes 7 minutes for all nine cameras of MISR to observe a scene. The user views the series of nine images in an animation to identify the wind direction, which is input to MINX; wind direction could be calculated directly from the apparent motion, but in
practice, user determination of the wind direction reduces uncertainty. With this input, the wind speed is calculated by MINX. This is what is meant by “the proper motion elements”.

2) The zero-wind plume heights are based solely on the parallax relationship between the plume and the ground, assuming no proper motion of the plume. The wind-corrected plume heights are calculated by MINX, taking into account the wind speed and direction to correct the zero-wind heights.

3) The red and blue bands are analyzed separately in the height determination. There are wind-corrected height results for both the blue and red band. The differences in results come from the differences in spatial resolution and in contrast with the surface. The blue band can be used to observe less optically thick plumes but has poorer resolution (~500 m), whereas the red band offers higher spatial resolution (~275 m), and is favored in the current study because the plumes were all optically thick enough to be observed by this band. This is all explained in detail in Nelson et al. (2013), and we have modified the current text to emphasize these points.

I’m also curious, and this is not clearly stated that I can see, but is the “maximum” height of the MINX observation of the plume truly representative of the injection altitude? In thick plumes I imagine there could be significant plume rise from radiative heating in the aerosol layer, and so the plume may continue to rise above the true injection altitude. On the other hand, diabatic heating the plume rise is probably not part of the HYSPLIT simulations, so maybe the intent is to capture as best as possible the short term plume rise and represent in the injection term. Please say something to explain this line of thought.

In this study and within HYSPLIT, injection height is treated as a source parameter. Using MINX, the injection height is derived in the immediate vicinity of the source, and is used to initialize the model. Once the particles are injected into the model, processes such as subsequent plume rise within the aerosol layer are handled by the model and meteorological data.

Related: page 6, line 3: it is probably fair to say that MINX retrievals are definitively *not* available for events where MISR has no coverage. Suggest you rephrase this sentence.

Done.

Regarding the HYSPLIT configuration, mainly sections 1.3 and 2.2, it is also not clear what configuration is used here, although I infer it is either the Eulerian or hybrid method as opposed to the Lagrangian configuration. It might just be better up front to also state the particular configuration, such as what the output grid spacing is (and why is it shown in hexagons?) and the relevant processes in *this* study. (I see later that the wildfire outputs are 0.25 degree grid, but have no idea why the output grid differs for each volcanic simulation. What does this have to do with WMO documentation?) It seems that at least particle settling is considered, given the information on particle size distributions, but are other dry and wet removal processes considered?

The Eulerian, hybrid, and Lagrangian configurations do not describe specific configurations within this study. They describe the model as a whole and the different methods HYSPLIT uses
at different points within a simulation. The hexagons are for clarity in the figures since hexagons could be more clearly meshed than squares in close proximity. The output grids for wildfires were determined based on the resolution of the meteorological data and the pros and cons of output resolution, simulation run time, and sufficient detail to accomplish the goals of this study. For volcanic eruptions, each VAAC has different model configurations and different output grids so we made the grids the same as the VAAC. Wet and dry deposition are both parameterized within the model.

I gather the wildfire emissions vary in time throughout the run based on the BlueSky model. Can you expand a bit more on the plume rise model mechanism? Suggest you strike reference to HYSPLIT “MESSAGE” file, which means nothing to me. It’s a model output.

In the text, we already explain how in the MINX run we account to a limited extent for emission variation (because the satellite data provides a snapshot only), and how the nominal run handles emission variation. We include the HYSPLIT Message because some readers are likely to be experienced HYSPLIT users, for whom the message files have meaning.

Are the volcanic emissions a single pulse, or distributed over some time?

They are distributed over time. This is covered in the text.

I think the clarity could be improved by consolidating the MINX descriptions (Section 1.2 and 2.1) and the HYSPLIT descriptions (1.3 and 2.2) into a single subsection for each. I would organize the paper this way: 1) Introduction - first paragraph that is there presently, and then a second paragraph that describes what the study is actually going to show 2) Methods section that describes the tools used 2.1) modeling tools that consolidates the HYSPLIT description 2.2) satellite tools that consolidates the MODIS/MISR/MINX stuff 2.3) Injection parameters that explains the two approaches used to specific injections 3) results (Section 2.3 in current probably belongs in here)

We agree that there are many possible ways to organize this paper. However, it is unclear to us that the suggested revision would satisfy all readers more than the current organization.

4) conclusions

Page 24, line 16: should reference Figure 9 Page 24, line 19: capitalize “Figure” Page 25, line 5: capitalize “Figure”

Done.

The figures are generally quite dense throughout the paper, although Figures 1 and 3 (and similar later) are relatively clear. Figure 4 is impossible to read even blown up on my monitor; I think the source figure is just of poor quality. The supplementary material is copious, but not clearly referenced in the main text. Supplemental Figure 1 is referenced a couple of times, and there is mention of the daily snapshots for the case studies, although the figures are not enumerated in
the supplemental section at all. I did not see where in the text the 15 pages of height/wind speed profile plots were referenced.

Journals currently favor including the underlying data in Supplemental Material, and we have followed this approach. The supplemental figures are now numbered, and the height/wind plots are provided as supplemental in this spirit, as they represent the exact figures used for the injection heights in the text.

Abstract. The dispersion of particles from wildfires, volcanic eruptions, dust storms, and other aerosol sources can affect air quality and other environmental factors downwind, including air quality. Aerosol injection height is one source attribute that mediates downwind dispersion, as wind speed and direction can vary dramatically with elevation. Using plume heights derived from space-based, multi-angle imaging, we examine the impact of initializing plumes in the NOAA Air Resources Laboratory’s Hybrid Single-Particle Lagrangian Integrated Trajectory (HYSPLIT) model with satellite-measured vs. nominal (model-calculated or VAAC observations-reported) injection height on the simulated dispersion of six large aerosol plumes. When there are significant differences in nominal vs. satellite-derived particle injection heights, especially if both heights are in the free troposphere or if one injection height is within the planetary boundary layer (PBL) and the other is above the PBL, differences in simulation results can arise. In the cases studied with significant nominal vs. satellite-derived injection height differences, the NOAA Air Resources Laboratory’s Hybrid Single-Particle Lagrangian Integrated Trajectory (HYSPLIT) model tends to
represent plume evolution better, relative to independent satellite observations, if the injection height in the model is constrained by hyper-stereo satellite retrievals.

1. Introduction

More than 5.5 million people worldwide die prematurely every year due to household and outdoor air pollution (Forouzanfar et al., 2015). Model forecasting of airborne particle dispersion is the essential tool used to alert citizens to possible poor air quality conditions, as well as to assess longer-term exposure. Aerosol plume height is a key input to these models (Walter et al., 2016). The height of aerosol plumes produced by wildfires, volcanic eruptions, and dust storms has a large impact on where the particles are transported, and their environmental impacts. If the aerosols are injected into the atmosphere above the planetary boundary layer (PBL) – or if they are entrained into the free troposphere after injection – they can be transported vast distances by free-tropospheric winds, causing aviation hazards, impacting regional-scale temperatures, cloud properties, and precipitation, and ultimately affecting ground-level air quality at great distances from the source (e.g., Colarco et al., 2004). To measure these plume heights near source with reasonable certainty, we use hyper-stereo imagery from the NASA Earth Observing System’s Multi-angle Imaging SpectroRadiometer (MISR) instrument to map aerosol plume heights. The stereo technique provides plume heights with reasonable certainty in near-source regions, where features in the plume can be identified in multiple, angular views (e.g., Nelson et al.,
Depending on plume properties, stereo plume-height retrieval can extend to tens or even hundreds of kilometers downwind from the source.

1.1. Multi-angle Imaging SpectroRadiometer (MISR) and MODerate resolution Imaging Spectroradiometer (MODIS)

The MISR instrument flies aboard the Terra satellite, in the AM constellation of the NASA Earth Observing System (EOS). Terra is in a near-polar orbit at an altitude of 705 km, descending on the dayside, with an equator crossing of at ~10:30 am AM local time, and completes an orbit in about 99 min. Each circuit of the Earth falls into one of 233 overlapping “paths” that repeat precisely every 16 days (Diner et al., 1998). The instrument acquires imagery at nine angles ranging from 0° (nadir) to 70.5° off-nadir in the forward and aft directions along-track, in each of four spectral bands centered at 446 (blue), 558 (green), 672 (red), and 866 nm (near infrared, NIR).

Data are acquired routinely at 275 m horizontal resolution in the nadir view and in the red band of the other eight cameras; all other channels are obtained at 1.1 km resolution. The MISR design allows it to image within seven minutes every scene at nine viewing zenith angles along the satellite ground track, in seven minutes. The width of the MISR swath common to all cameras is about 380 km, providing global coverage every nine days at the equator and every two days near the poles. The MISR plume-height products are derived from the hyper-stereo imagery geometrically, and take account of the proper motion of plume elements. (Muller et al., 2002; Nelson et al., 2013). This retrieval approach
requires contrast features in the plume to be visible in the multi-angle data. As such, MISR plume-height mapping complements aerosol height curtains obtained from space-based lidar; lidar offers sensitivity to thin aerosol layers downwind of sources, where plume features required for stereo image matching are lacking, but the active sensor offers vastly less spatial coverage, so the actual source regions are seldom observed (Kahn et al., 2008).

We also use context imagery from the two MODerate resolution Imaging Spectroradiometer (MODIS) instruments; one flies aboard the Terra satellite with MISR, providing coincident observations, and the other is aboard NASA’s Aqua satellite, which crosses the Equator at ~13:30 local time on the day side. MODIS is a wide-swath, multi-spectral, single-view imager that acquires data over the entire planet every day or two, depending on latitude. MODIS can track the development of aerosol plumes over several days, allowing us to compare plume evolution, as simulated by different model runs, with imagery and aerosol optical depth (AOD) retrievals from MODIS.

1.2. The MISR INteractive eXplorer (MINX)

To apply the multi-angle capabilities of MISR most effectively for mapping aerosol plume height, the MISR Interactive eXplorer (MINX) interactive visualization application was developed (Nelson et al., 2008; 2013), complementing the fully automatic but less accurate operational MISR stereo product (Moroney et al., 2002; Muller et al., 2002). MINX offers users a tool to retrieve height and wind information interactively at high spatial resolution and enhanced precision. Users operating the MINX interface must manually identify the horizontal extent of the plume in the imagery, the source point, and the wind direction.
MISR cameras takes 7 minutes, there is enough time to observe the motion of the plume. By viewing an animation of these images in sequence, a user can determine wind direction. This quantity can also be calculated directly by fitting the parallax and the apparent motion of the scene self-consistently, but, in practice, user determination of wind direction reduces uncertainty. Some user discretion is involved, and especially if significant wind runs along-track, as small differences in the choice of wind direction can affect the resulting wind speed, the associated wind correction, and the height retrieval (Nelson et al., 2013). Vertical resolution is between about 275 and 500 m, depending on observing conditions. This makes it possible to study the 3D context of a scene, and allows the user to detect scene content that would otherwise be difficult to discern in single-view imagery from more conventional satellite instruments such as MODIS. MINX retrievals were performed using MISR red band observations for this study, as it provides the highest spatial resolution at all MISR view angles, as well as the blue band imagery, which offers better contrast with the surface when the plume is optically thin. In practice, red and blue bands are used separately to determine both zero wind and wind corrected plume height. The choice of one band over another depends upon the differences in spatial resolution and contrast with the surface in each case. The blue band has poorer horizontal resolution (1.1 km), which results in poorer vertical resolution (~500 m) due to the geometric nature of the retrieval. However, aerosol plumes tend to be optically thicker at the blue than red wavelengths, so the blue band offers enhanced contrast with the surface. This can be important for optically thin plume retrievals. The red band provides higher horizontal (and therefore also vertical) resolution (~275 m). In the current study, red-band MINX retrievals
were generally favored, because the plumes selected are all optically thick enough to be observed well in this band. For further details, see Nelson et al. (2013).

1.3. The HYSPLIT Model

The National Oceanic and Atmospheric Administration (NOAA) Air Resources Laboratory’s (ARL) Hybrid Single-Particle Lagrangian Integrated Trajectory model (HYSPLIT) is a complete system for computing simple air parcel trajectories as well as complex transport, dispersion, chemical transformation, and deposition simulations. HYSPLIT continues to be one of the most extensively used atmospheric transport and dispersion models in the atmospheric sciences community (Stein et al., 2016). Some examples of previous work with In other studies, HYSPLIT include tracking has been used to track and forecasting the release of radioactive material, wildfire smoke, wind-blown dust, pollutants from various stationary and mobile emission sources, allergens, and volcanic ash (e.g., Stunder et al., 2007; Kahn and Limbacher, 2012; Crawford et al., 2016). The model calculation method can be Lagrangian, using a moving frame of reference for advection and diffusion calculations as the air parcels move from their initial location, Eulerian, which uses a fixed three-dimensional grid as a frame of reference to compute pollutant air concentrations, or a hybrid combination of the two approaches (Stein et al., 2016).

As with any such model, several factors can limit the accuracy of simulations, including uncertainty in the simulated wind structure, the location and strength of aerosol sources, and, most relevant for the current study, input pollutant injection height (Stein et al., 2009). Since the late 1990’s, “The IAVW (International Airways Volcano Watch) has recognized that more accurate source parameters are needed to improve model accuracy, especially in the first hours of an
eruption when few observations may be available” (Mastin et al., 2009). Although MISR data are acquired over a given location on Earth only about once per week on average, when available, we expect these observations can improve forecasted plume dispersion, at least in some cases. In this paper we explore the impact of using the unique data provided from MISR-MINX to obtain direct-source initial conditions into HYSPLIT. With the help of Using more accurate plume heights, we can run the HYSPLIT dispersion model and compare the results with those obtained using the model’s nominal injection height and with the actual dispersion of the plume as observed by MODIS.

2. Methods

We chose specific wildfire and volcanic eruption cases where the MINX retrievals are available and of high quality. MINX retrievals are not always available for specific events if MISR does not have coverage, or if there is significant cloud contamination of the scene. The quality of a case is determined by two factors: (1) a lack of cloud contamination and (2) sufficient aerosol optical thickness so plume contrast features in the aerosol plume are clearly visible in the imagery and distinct from the surface. The optical thickness criterion is assessed through visual inspection of each scene using the MINX camera animation function. The six cases selected for this study are (1) the Mount Etna eruption of July 2001, (2) the Chikurachki Volcano eruption of April 2003, (3) the Eyjafjallajökull eruption of May 2010, (4) the Fort McMurray fires of May 2016, (5) the Fraser Plateau fires of August 2017, and (6) the Thomas fires of December 2017.
2.1. MINX Data

The MISR imagery (Level 1B2 reflectance data) were obtained from the NASA Langley Atmospheric Sciences Data Center (ASDC; http://eosweb.larc.nasa.gov). The plume injection height, source elevation, and precise location for each event were extracted from MINX based on MODIS thermal anomaly pixels, plus visual inspection of the imagery, and used as initial conditions in HYSPLIT. Figure 1a shows an example of the MINX height retrievals from analysis performed on the Eyjafjallajokull case, and Figure 1b gives the corresponding MINX height profile for that scene. Figure 1c provides the distribution of height retrievals at different levels along with the wind speeds diagnosed in MINX. Note that the red and blue points in the profile plot show the heights assuming zero wind, and the wind-corrected heights, respectively. Zero-wind plume heights are determined directly from the parallax relationship between ground and plume features, assuming no proper motion of the plume. Wind-corrected data were used in all cases for the current study, are calculated by MINX self-consistently from the nine MISR images, accounting for both parallax and wind speed and direction to correct the zero wind plume heights.

The MISR overpass, and corresponding MINX injection height for each case, was acquired on Day 1 of each respective simulation. The MISR run of the dispersion model was then continued with the Day 1 MISR aerosol injection height for a total of four days (96 hours).

2.2. HYSPLIT Setup

We explore the effects of using multi-angle imaging via MISR to initialize HYSPLIT through qualitative analysis of the trajectory, dispersion, and indirect correlation between total
column AOD and plume column mass concentration. To compare absolute emission amounts, we would need to specify particle property details such as the mass extinction efficiencies, which efficiency that relates the optical constraint from MISR with the aerosol mass represented in the model. These quantities are very uncertain, and are not required to address the main goals of the current study. In addition, introducing emissions estimates, e.g., from BlueSky or the field-reported volcanic eruption rates, would introduce yet more uncertainty to the comparisons. (BlueSky is a fire and smoke prediction tool that uses the fire burn-scar size and location to estimate fire characteristics (https://www.arl.noaa.gov/hysplit/smoke-prescribed-burns/). Instead, we compare the relative simulation results using the same emissions, which entails fewer assumptions.

Volcano and wildfire plumes are initialized differently in the nominal HYSPLIT operation. Wildfire injection height is calculated dynamically throughout the simulation from an estimated fire heat flux with a fire heat flux derived from an analysis of output data from the United States Forest Service BlueSky fire emissions model (https://www.airfire.org/bluesky) and local meteorological conditions, whereas volcano injection height is generally input based on external observations.

Between four and six particle sizes can be assumed for each volcano case, based on reporting from the Volcanic Ash Advisory Center (VAAC) responsible for region in which the eruption occurred. Each particle size makes up a portion of the total plume mass as defined by the particle size distribution from the VAAC report. Volcanic ash particle size distribution options are discussed in more detail in Leadbetter et al. (2011), and the values for the cases considered in the current paper are listed in Table 1. Wildfire cases have only one assumed particle size in the nominal HYPLSITHYSPLIT process.
The following sections elaborate upon the nominal and MINX initialization procedures.

2.2.1. Volcano Plume Simulations

In order to create the nominal and MISR-initialized simulations, we followed the procedure specified for the VAAC Operational Dispersion Model Configuration (https://www.wmo.int/aemp/sites/default/files/VAAC_Modelling_OperationalModelConfiguration-March2016_v3.pdf). Unlike the operational HYSPLIT set up, our “nominal” runs used MINX-derived source locations and source elevations. Operationally, eruption information from the Smithsonian Global Volcanism program is used to determine source location and elevation. We chose instead to use the location and elevation from MINX, due to its high resolution and ability for the user to determine the exact location of the eruption. However, in practice there was little difference between the GVP-listed and MINX-derived source locations. Also, unlike the operational system, we used constant injection heights, determined by the MISR-estimated plume height at the specific time of the relevant satellite overpass for the MINX cases, and constant plume height as derived from the VAAC advisory nearest in time to the overpass for the nominal volcano cases. In the operational setting, injection height estimates are generally updated with each new forecast (e.g., every 6 hours), and the operational simulations are designed to take advantage of these updated heights. And for both the nominal and MINX simulations, each is set up as a line source from the vent to the maximum height of the plume, so it is assumed to have uniform mass distribution from the source to the injection peak. Injection peak was no further from the source than 50 km for wildfire plumes and 150 km for volcanic plumes. If observed further downwind, the
maximum heights showed little difference from the injection height reported closer to the source, so
subsequent advective plume-rise is unlikely to affect our interpretation of the results.

For the MISR-initialized simulations, the injection heights are determined as the maximum
heights obtained from the MINX histogram of plume contrast-element elevations at MISR overpass
time. The MINX injection heights, nominal injection heights, and boundary layer heights obtained
from near-coincident meteorological soundings, are given in Table 1. Unlike the VAAC injection-
height observations, the uncertainty in the MINX digitizations can be quantified, and for the red-
channel retrievals used in the current study, it is only around 250 m. Injection height, whether from
MINX or the nominal configuration, is used to initialize the HYSPLIT simulations, after which the
representation of dynamics and meteorological fields considered by the model account for
advection, convection, and dispersion of aerosols.

To better isolate the impact of injection height on downwind plume dispersion, the MINX-
constrained runs were configured exactly the same as the nominal runs, except for this variable. All
other aspects of the simulation are determined by the VAAC reports and are defined in the
operational configuration document cited above, including horizontal concentration-output grid
spacing, particle size distribution (PSD), particle density, number of particle types, deposition
settings, maximum altitude of the model, etc. As the values for these parameters reported by
different VAACs can vary, our simulations aimed to match the configuration of the VAAC region
in which the eruption occurred. The only exception is Chikurachki, which was set up with the
Washington/Anchorage rather than the Tokyo VAAC configuration, due to its proximity to the
Washington/Anchorage VAAC border and the fact that Washington/Anchorage uses HYSPLIT for their operational simulations.

As these simulations are meant to recreate short-to-medium range air quality forecasts for recent eruptions, we initialize the plume heights for the nominal cases based on VAAC advisories, if available, or the Global Volcanism Program (GVP), https://volcano.si.edu/ otherwise. The VAAC observations are likely to be released first and be the best initial estimates for operational simulations. VAAC advisories that occurred closest to the time of the MISR overpass were used. The VAAC plume-height estimates are derived from ground-based or aircraft-based visible observations, from radar measurements, or from thermal infrared satellite soundings. In addition to the observational techniques used, plume height estimation can be determined based on an empirical relationship between plume height and mass eruption rate, in the rare case that there are no direct observations available. (Mastin et al., 2009). All these methods, especially visible observations, come with notable uncertainties. A comparison between volcanic plume height from pilot reports, MINX heights, and ground-based plume-height assessments for volcanoes on the Kamchatka peninsula concluded that pilot reports were subject to the greatest uncertainties (Flower and Kahn, 2017). Radar-return heights generally skew toward the highest particle-rich part of the plume, satellite-based infrared retrievals sometimes must be corrected for thermal disequilibrium effects or sampling envelopes that include some signal from the surface below, and visual observations tend to encounter difficulties tracking the highest parts of plumes that are ash-poor (Mastin et al., 2009).
For the MISR-initialized simulations, the injection heights are determined as the maximum heights obtained from the MINX histogram of plume contrast element elevations at MISR overpass time. The MINX injection heights, nominal injection heights, and boundary layer heights obtained from near coincident meteorological soundings, are given in Table 1. Unlike the VAAC injection-height observations, the uncertainty in the MINX digitizations can be quantified, and for the red-channel retrievals used in the current study, it is only around 250 m.

As all three volcanic eruptions covered in this study occurred outside North America, the use of global meteorological data was required. Therefore, we were limited by the resolution at which global forecast models were archived during the time period of these eruptions. The coarseness of the meteorological data introduces some additional uncertainty into these simulations.

The Global Data Assimilation System (GDAS) 1.0° meteorological fields were chosen for the Eyjafjallajokull eruption case, and Final (FNL) Operational Global Analysis 1.0° meteorological data was used for eruptions that occurred before 2007. The data sets can be found in HYSPLIT-compatible formats on the NOAA Air Resources Laboratory (ARL) meteorological data archive website (ftp.hysplit.noaa.gov). The GDAS system is used by the National Center for Environmental Prediction (NCEP) Global Forecast System (GFS) model to place observations into a gridded model space for the purpose of starting, or initializing, weather forecasts with observed data (https://www.ncdc.noaa.gov/data-access/model-data/model-datasets/global-data-assimilation-system-gdas). The FNL product is made with the same model NCEP used in the GFS, but the FNLS are prepared about an hour after the GFS is initialized, so more observational data can be applied (NCEP, 2000).
In summary, we are evaluating only this work evaluates specifically the impact that more certain initializing the HYSPLIT model with observed MINX injection height observations have on HYSPLIT the downwind plume dispersion, and not the processes within the model of the modeled plumes.

2.2.2. Wildfire Plume Simulations

For wildfires, the model configurations are based on NOAA’s Smoke Forecasting System (SFS) operational HYSPLIT simulations defined in Rolph et al. (2009). The meteorological data fields used when that document was written was hourly, 12 km horizontal resolution North American Mesoscale – Weather Research and Forecasting (NAM-WRF) fields. More recently, special high-resolution nested grids were added to the weather forecasting models in regions with active major fires to further increase the resolution. However, the present study focuses on large-scale plume dispersion over longer simulation periods, 96 hours vs. the operational 72 hours. As such, we used more skillful but lower-resolution GDAS 0.5° meteorological data. In a comparison of major numerical weather prediction models, it was found that the NAM was consistently the least skillful in short range forecasts of mean sea level pressure, and was subject to more error on the US west coast, which is where all of our wildfire simulations take place (Wedam et al., 2009). Although higher resolution meteorological fields like the NAM12 are able to resolve smaller-scale features such as sea breezes and complex terrain, we found that the advantages of higher spatial resolution were compensated by lower model predictive skill, leaving the overall results of the study independent of the meteorological fields chosen. A comparison of simulations performed
with both the GDAS 0.5° and NAM12 km fields can be found in the Thomas Fire analysis in Section 3.3 below.

As in standard HYSPLIT operational runs, smoke plume-rise is calculated within the model based on the atmospheric stability, wind speed (both from the meteorological data), friction velocity, and a model-input heat flux derived from an analysis of output data from the United States Forest Service BlueSky fire emissions model (https://www.airfire.org/bluesky), as described in section 2.2 above. In addition to providing heat flux, the BlueSky model is used to estimate the emission rate of particulate matter less than 2.5 μm in diameter (PM2.5). The injection height calculated nominally by the model is given in the HYSPLIT “MESSAGE” file, which provides a diagnostic output of plume rise emission height and co-located mixed layer height above ground level (AGL) at every hour of the simulation. In the nominal case, the injection height is dynamically varied throughout the simulation based on variations in heat release and atmospheric conditions, and the emissions at any time during the simulation are released at the model-estimated final plume rise at that time and location in the model.

The plume height of the MISR-initialized cases is determined through the MINX digitization and as with the volcano cases, is defined as a line source from the fire elevation to maximum plume height. In the MISR-initialized simulations, this maximum plume height is kept constant throughout the simulation, at the value determined at the specific time of the MISR overpass, which occurs on Day 1 of the simulation. As it is unrealistic for the injection height to remain at the same height for the entirety of the simulation, a vertical line source from the ground to this constant maximum height is used in the MISR-initialized case. This creates mass release in the
MINX-initiated cases at levels between the surface and injection layer, accounting to some extent for lower-elevation injection with diurnal boundary layer expansion and contraction and other atmospheric profile changes. The particle properties assumed for both nominal and MINX simulations are the nominal HYSPLIT values: spherical particles with an average diameter of 0.8 μm and a density of 2 g cm⁻³, identical to the operational product (Rolph et al., 2009). Where the operational configuration and ours differ is in the source locations, as they are defined by MISR instead of MODIS/GOES, and the duration of the simulations, which are extended from 72 to 96 hours, to provide a more comprehensive view of the effects of a more accurate injection height. The fire simulations are typically set to output average concentrations in one layer from 0-5 km above ground level. Although smoke plumes rarely exceed the 5 km level, the cases in the present study include some extreme fires that regularly do. So an additional difference between our nominal simulations and the operational system is that our model runs are set to output average concentrations in one layer from 0-10 km above ground level.

2.2.3. General Configuration

In order to evaluate the atmospheric transport and dispersion predictions in the HYSPLIT simulations, we use the MODIS 3 km resolution level 2 AOD data set (MOD04_3K and MYD04_3K for Terra and Aqua MODIS, respectively; https://ladsweb.modaps.eosdis.nasa.gov) and accompanying MODIS visible imagery. To assess the ability of the model to simulate plume evolution, we output column mass concentration snapshots from HYSPLIT at the time of MODIS overpass for each day of the simulations, averaged from 0 to 10 km MSL to obtain a total column average concentration, and compare with the
MODIS total column optical depth. To create comparable products, each run is performed from the beginning of the event until 96 hours later, outputting a plot coincident with every MODIS Terra overpass, or MODIS Aqua if a Terra overpass is unavailable. We plot each nominal and MISR-initialized HYSPLIT column mass concentration in arbitrary mass concentration units, as discussed in the next section.

2.3. Evaluation

MODIS AOD is a column-integrated quantity, so evaluation of the plume dispersion simulations with these data is two-dimensional. To analyze the results of this study, we associate high-AOD regions from MODIS with areas where column mass integrated between 0 and 10 km elevation (i.e., the column mass concentration) is high, as determined by HYSPLIT. We test this assumption by comparing the spatial contours of HYSPLIT column mass concentration with the MODIS AOD maps (Supplemental Material Figure 4S1), by visual inspection. We then compare the conclusions drawn from the HYSPLIT concentration contour vs. MODIS AOD analysis with MODIS true color imagery, to identify any apparent spatial distribution differences and to associate smoke or volcanic aerosol opacity in the imagery with column concentration levels. The levels are represented by the colored hexagons in Figures 2a and 2b, where the color represents concentration level and the hexagon represents a HYSPLIT output grid cell. **Hexagons were used to better mesh adjoining grid points for the purposes of these plots.** The mass concentration in each output grid cell is summed and assigned to a bin corresponding to the concentration. The bin values indicate relative mass concentration, at intervals increasing by half an order of magnitude, based on the
simulations. The bin scale itself reports relative concentration values ranging from 0 (no mass) to 6 (most mass, assessed on an absolute scale of visibility), in intervals of 1. For example, a value that falls within the “Very High” range is placed into bin 6. A value corresponding to the “Haze” range is placed into bin 3. The same mass concentration scale is used for all cases in this study. We adopted this approach to avoid over-interpreting the data – mass concentration differences within a bin are unlikely to be significant, whereas we have much more confidence in the relative differences indicated by results falling into different bins. The HYSPLIT output grid cells are 0.25° latitude by 0.25° longitude for the wildfire cases and vary by VAAC for the volcanic cases. The horizontal resolution varies by VAAC, as reported in the WMO documentation. We adjust the HYSPLIT grid to match the VAAC resolution.

Figures 2a and b present a snapshot at hour ~42 of the 96-hour HYSPLIT simulations of 0 – 10 km, vertically integrated, qualitative smoke plume concentrations for the Fort McMurray wildfire, beginning 06 May 2016. All daily snapshot samplings of the model runs from each case are available in the supplemental material. The fuchsia and dark blue levels denote places where particles were present but where the AOD is expected to be too low for the smoke or ash to be visible in the MODIS imagery. The cyan level denotes smoke or ash that is either not visible or slightly visible (haze), but should still have moderate optical depth values. The green level indicates where smoke should be easily visible from the satellite imagery and should have moderately high optical depth values. The orange level is where aerosol column concentrations are high and corresponding optical depth values should be very high, with patches of missing data where the AOD is too high for MODIS to observe to the surface. The red level represents the highest column
concentrations of aerosols in the simulation, and should have no optical depth data because the
smoke or ash would be too thick for MODIS AOD retrievals.

The difference plot (Fig. 2c) uses the same scale for all cases and is based on the difference
between the mass concentration bins assigned to each output grid cell by the nominal- vs. MISR-
initialized simulations. The dark blue contour represents much higher column concentrations
predicted in the nominal than the MISR-initialized simulation, and has a value of -4 or lower. The
cyan contour represents slightly higher column concentrations forecasted for the nominal than the
MISR-initialized simulation, and has a value of -2 or -3. The white contour represents column
concentrations predicted to be very similar in both the two simulations, having values of -1, 0, or 1.
The orange and red contours represent output grid cells where the column mass concentration is
predicted to be slightly higher (2 or 3) or significantly higher, (4 or more), respectively, in the
MISR-initialized simulation than the nominal one. To be assigned to the orange bin, the difference
has the value 2 or 3. To be assigned to the red bin, the difference value must be 4 or higher. For
example, a grid cell in the nominal simulation assigned to the “Very High” bin will have a value of
6. That same grid cell in the MISR-initialized simulation might be assigned to the “Visible” bin
with a value of 4. Therefore the “MISR – Nominal Difference” value for that cell would be a -2
(“Nominal Slight”).

When assessing simulated atmospheric transport model performance, we compare the edges
of the visible plumes in the satellite imagery with the qualitative green, cyan, or higher column
mass concentration levels in the corresponding HYSPLIT images. In areas of cloud interference, as
observed in the visible imagery, it is not possible to verify whether the aerosol concentrations
determined by the model correspond to observation, unless the smoke or ash is above the cloud layer. Also, this verification method utilizes total column mass concentration average and total column AOD, so, as mentioned above, it does not assess vertical plume structure, which is beyond the scope of the current work.

3. Results

One factor that determines the impact of the injection height on plume dispersion is whether the injection height is above the planetary boundary layer (PBL). As wind speed and direction are generally different within vs. above the PBL, a model simulation is much more likely to approximate observations if the assumed injection height is on the correct side of this boundary.

Based on MISR stereo retrievals, Kahn et al. (2008) found that about 18% of wildfires in the boreal forest regions of Alaska and western Canada injected smoke above the PBL, and Val Martin et al. (2010), found that overall, approximately 4-12% of wildfire plumes in North America inject above the boundary layer into the free troposphere. Whether a plume is injected above the PBL depends primarily on the dynamical heat flux produced by the fire, the ambient atmospheric stability structure, and the amount of entrainment of ambient air into the rising plume that occurs (Kahn et al., 2007). The time-of-day is a related factor, due to diurnal boundary layer expansion and contraction. The PBL tends to be well mixed, and usually grows deeper with solar heating during the day. The inversion at the top of the PBL helps confine smoke and other pollutants within its boundary; late in the day, as solar heating diminishes, the PBL typically collapses toward the surface. Winds within the planetary boundary layer tend to show distinct differences from the more
predictable and often stronger winds aloft, due to interactions between the boundary layer winds and the surface. In many cases, low-altitude wildfire injection heights were represented well in the nominal model, and resulted in very similar simulations to the MISR-initialized simulations. For the purposes of this study, we have chosen some cases that are very similar and some that show larger differences, to indicate the scope of the impact of injection height on HYSPLIT. Snapshots taken of the model, on each of the four days of each four-day simulation, are available in supplemental material.

We now compare in detail the performance of HYSPLIT downwind, for three fire and three volcanic plume cases initialized using MISR-MINX plume injection height and with the nominal model value.

3.1. Fort McMurray Fire Plume, May 2016

Of the four days for the Fort McMurray wildfire simulation, May 7th, 2016 (Figure 2) best displays the differences between the nominal and MISR-initialized simulations. On the first simulated day of the event, MINX injection heights were higher than the PBL, based on both the atmospheric sounding from the nearby YSM airport and the GDAS meteorological fields included in Table 1. The nominal plume rise at the time of MISR overpass was also determined to be above the PBL based on the GDAS and the sounding as well. Of all of the wildfire cases studied, the nominal plume rise calculation for the Fort McMurray simulation also seemed to perform the best relative to the plume rise observed by MISR. However, as the simulation continues, the nominal injection height, which varies based on the HYSPLIT model, and begins to diverge from
the MINX value, which was acquired on Day 1, and differences appear to develop in the simulations.

The model injection height, PBL height, and wind speeds for Day 2 of the Fort McMurray simulation are shown in Figure 3a for the sounding on May 8, 2016 (00 UTC) at Fort Smith, just north of Fort McMurray. The boundary layer depth is discernable on the sounding by the inversion in temperature and rapid relative humidity decrease at about 2.5 km. The injection height as determined by MISR was 4.2 km MSL and was set nominally by HYSPLIT at about 2.4 km MSL at the time the MISR snapshot was acquired. Unlike the injection height calculated by HYSPLIT on Day 1 of the simulation, the nominal injection height for Day 2 is below the PBL. From the differences in wind speed and direction at each level it is clear that poor injection height initialization will affect the accuracy of downwind air quality forecasts. Figure 2 shows the MISR-initialized and nominal simulations, MISR-initialized minus nominal difference plots, and MODIS true color imagery for the Fort McMurray wildfires on Day 2 of the simulations. The MODIS AOD is shown in Supplemental Material, Figure 4aS1a. Although the overall plume shapes, trajectories, and concentrations seem relatively similar, the difference plot reveals a significant deviation (Figure 2c). In the northwestern corner of the outlined portion of the plume, the MISR-initialized simulation displays higher aerosol concentrations than does the nominal one. When compared to the optical depth and visible imagery, the northern portion of this feature is covered in clouds, so the aerosol is obscured in the satellite data, but the southern portion is visible. The visible image has an optically thick, well-defined plume in the same area as the MISR-initialized case, favoring the MISR simulation, and the AOD map shows very high aerosol
concentrations. There are missing data points in the AOD map, further indicating that concentrations are very high, as there is a lack of cloud cover in the visible imagery.

In this case, we see a large difference in injection height arise by the second day of the simulation. The nominal injection height is located below the PBL whereas the MISR-initialized injection height is still above the PBL. We then observe a large difference in the simulated aerosol concentration for this northwestern feature; it shows better agreement with the MISR-initialized simulation than the nominal simulation based on the MODIS visible imagery and AOD.

3.2. Fraser Plateau Fire Plume, August 2017

The Fraser Plateau case study (Figure 4) is an example of the impact that meteorology and a relatively uniform wind profile can have on dispersion simulations. Table 1 shows an approximate 0.6 km plume rise underestimation in the nominal case at the time of the MISR overpass. By Day 2 of the simulation, the nominal plume is at 1.5 km ASL, and the difference had grown to approximately 1.4 km, although the actual injection height may have decreased as well. The sounding from ZXS Prince George on Day 2 of the simulation (Figure 3b) shows the PBL to be at approximately 3.1 km, indicating the MINX injection height is above the PBL, and nominal injection height is below the PBL. In the case studies examined here, simulations in disagreement about injection height being above or below the PBL generally show significant differences in plume dispersion that substantially exceed the uncertainty in the measurements. However, based on Figure 3b, the winds above the PBL are also fairly consistent with those below the inversion in this case, generally coming from the north around 10-15 knots- (5-8 m/s). In addition, about half of the plumes simulated in the MISR-initialized case are injected below the 3.1 km PBL. So even
Even though some plumes exceed the PBL, the wind shear differences are not significant enough to create large discrepancies, as we saw in the Fort McMurray case. Differences in plume dispersion between the nominal HYSPLIT and MINX-initialized simulations shown in Figure 4c do not exceed “slight,” and there are very few such differences. Higher smoke concentrations coincide with visible smoke in the true color images, and MODIS AOD mapping is also consistent. This is true for hour 42.3 of the simulation, where visible smoke appears in the southeastern corner of the MODIS image. Even this far into the simulation and approximately 1000 km downwind, visible smoke can be seen entering the Montana region, in agreement with the visible imagery, highlighting the accuracy of both the MISR-initialized and nominal simulations for this case.

Although large differences in injection height between the two simulations tend to yield different results, as shown here, this is not the only factor involved. As the root cause of differences between the simulations is the changing meteorology above and below the PBL, similar meteorological conditions will produce similar results even if the injection heights are separated by the PBL.

3.3. Thomas Fire Plume, December 2017

The Thomas Fire was an ideal case for testing the differences between meteorological fields having different spatial resolutions. Theoretically, the NAM12 higher resolution meteorological data used in the current comparison would be more effective at resolving the fairly complex terrain and mesoscale meteorological processes such as sea breezes that might operate here. However, we understand that the NAM lacks the skill the ECMWF and GFS models can achieve, even at coarser resolution. Figures 5 and 6 show Day 4 of the Thomas Fire simulation rarrun with GDAS
0.5° and NAM12 meteorological data, respectively. The overall plume dispersion is quite similar
between the GDAS and NAM simulations. In both cases, the nominal simulations are slightly
higher, e.g., along the eastern and southern edges of the most apparent visible plume, and on the
western edge of the visible plume the MISR-initialized simulation is significantly higher. Figures
5c and 6c highlight the differences between the GDAS and NAM simulations can be seen in the
difference plots themselves (Figure 5c and 6c). The locations where the differences occur are
almost identical, but the nominal vs. MINX differences are more prominent in the NAM12 plot.
The areas where the nominal simulation is slightly higher, such as the eastern and southern edges of
the visible plume, still exist in the NAM12 version but are much more prominent. The portion on
the western edge of the visible plume where the MISR-initialized simulation was significantly
higher also still exists, but with larger differences. So MINX differences are much more prominent
in the NAM12 plot (Figure 6c). As such, even in a location with complex terrain and mesoscale
meteorological processes affecting the simulations, the plume dispersion simulations are similar, and the overall with qualitative results are independent of the meteorological data spatial
resolution, but quantitatively, the differences can be significant.

In contrast to the Fraser Plateau fire, there were significant differences in vertical wind
speeds (and direction) with elevation altitude for the Thomas Fire. There was also a large difference
in the nominal and MINX injection heights; on Day 1, 1.9 and 5.5 km mean sea level (MSL),
respectively (Table 1). Although these values apply to the higher of the two plumes simulated, even
the lower plume reached an elevation of 4.4 km MSL, indicating a difference of approximately 2.5
– 3.6 km between the nominal and MINX injection heights at MISR overpass time. Figure 5 shows
the snapshots of each simulation on December 13 at 19:15 UTC, which is over 90 hours after the initialization of this simulation. Although both simulations perform well, especially considering how many hours after initialization this snapshot is taken, it is clear that the MISR-initialized simulation performed better, based on the difference plot in Figure 5c. Whereas the nominal simulation predicts slightly higher smoke concentrations near the southern edges of the outlined visible plume, it also predicts higher concentrations outside the visible plume that do not coincide with the contemporaneous visible imagery or AOD mapping. In addition, the MISR-initialized simulation predicts much higher smoke concentrations in the western portion of the visible plume outline, where the AOD is high and the visible imagery shows a dense band of smoke extending to the north/northeast.

The stronger advection that likely carried the smoke further in the westerly direction can be attributed to the stronger winds aloft shown in Figure 3c. At the MINX injection height, winds are out of the northeast at approximately 13-15 m/s (25 – 30 knots). The nominally calculated injection height is located around 1.9 km MSL, where the winds are light and variable around 2.6 m/s (5 knots).

This case reinforces many of the conclusions drawn from the Fort McMurray simulation. Large differences in nominal vs. MISR-initialized injection heights created very different results, favoring the MISR-initialized case when compared to MODIS validation. Unlike the Fraser Plateau case, differences in meteorology above and below the PBL were significant and yielded significantly different simulations.

3.4. Eyjafjallajökull Volcanic Eruption Plume, May 2010
For the volcanic cases, it is common for the injection heights of each plume to overshoot the height of the boundary layer due to the explosive nature of many such events. The nominal HYSPLIT injection heights are constrained by external data, so in many cases, the differences between the injection heights obtained from the VAAC and the corresponding MINX value are not large. (There are exceptions, however, e.g., Flower and Kahn (2017).) In addition, the meteorological conditions tend to be less variable with elevation within the free troposphere than between the free troposphere and the PBL, so detecting differences between the nominal and MISR-initialized HYSPLIT simulations can be more difficult than for wildfires. The VAAC advisory for the first day of this eruption reported plume heights at 6.7 km near MISR overpass time, whereas the MINX-derived injection height had a maximum height of about 5.8 km. Although 0.9 km is a significant difference in injection height, Figure 3d shows winds at these two levels within 2.6 m/s (5 knots) of each other, and are in nearly the same northwesterly direction. This can account for the nearly identical dispersion snapshots in Figure 7.

By As indicated by comparison with the visible imagery and AOD, both simulations reproduce the eruption well. The dispersion of the main plume extending from the vent is captured with high precision, and is constrained within the visible plume outline on each figure. Near-source concentrations are also both high, as seen in the true color image. Both simulations predicted a higher-concentration patch of ash on the eastern end of the laterally moving portion of the plume, which is apparent in the visible imagery (circled portion) as well. Although they both slightly misplace this portion of the plume, this snapshot was taken over 60 hours after initialization. The
presence and general location of such a small feature helps to emphasize the accuracy of HYSPLIT when initialized with accurate injection heights.

Large volcanic eruptions tend to inject ash well above the PBL, which means that simulated plumes are exposed to the generally less variable meteorology of the free troposphere. Due to this factor, differences between the simulations tend to be small, and can be difficult to discern.

3.5. Mount Etna Volcanic Eruption Plume, July 2001

The distinctions between the nominal and MISR-initialized cases for the Mount Etna eruption are also subtle compared to the wildfire cases discussed above. The observed PBL height is about 1 kilometer in the sounding of (Figure 3e). The MINX injection height is at about 5.5 kilometers, and the nominal HYSPLIT injection height equals approximately 5.2 kilometers.

As expected, with injection height initializations this is almost identical. Differences between the simulations would be difficult to identify without the assistance of are minimal, detailed in the difference plot in (Figure 8c). In this figure, concentration differences do not exceed the “slight” category, further showcasing the agreement. However, the MISR-initialized simulation does indicate the presence of slightly higher ash concentrations on the northeastern portion of the plume and the nominal indicates the slightly higher ash concentrations on the southwestern portion of the plume. Neither of these features can be verified due to the sun glint affecting these areas, but the near-source portions of the plume in both simulations have high correlations with the plume outlines the visible imagery.

The Mount Etna case is another example of small simulation differences due to fairly uniform meteorological conditions in the free troposphere. This case also reinforces the assertion...
that very similar injection heights produce similar results. The differences between the nominal and MISR-initialized injection heights were only approximately 0.3 km, so it is likely that meteorological conditions at these altitudes were similar.

3.6. Chikurachki Volcanic Eruption Plume, April 2003

The final case of this study was the Chikurachki eruption of April 2003 (Figure 8) on the Kuril Islands, southwest of the Kamchatka Peninsula. The sounding shown in Figure 3f and Figure 9 maps take place on the final day of the simulation, approximately 84 hours after HYSPLIT initialization. For this case, the MINX injection height is 4.2 kilometers and the nominal value is about 6.1 kilometers. As indicated in Figure 3f, the PBL height near this overpass time was around 1.3 kilometers, so both injection heights are well above this layer within the free troposphere. However, as in previous cases, there can still be significant differences depending on vertical wind shear and meteorology between these altitudes. Figure 3f also shows that winds are about 15.4 m/s (30 knots) faster at 6 kilometers than at 4 kilometers, and the wind direction is slightly more out of the westerly aloft as well. This suggests that Differences in the wind vectors suggest that the near-source concentrations would not be as high lower in the nominal asthan the MINX-initialized simulation, because the plume particles would be advected away more quickly, and with a more easterly trajectory, for the nominal simulation. will alter the dispersion accordingly. Both plots in Figure 9 support these predictions, and in addition, the plume shape is more accurately modeled in the MISR-initialized simulation. When comparing each run with the plume outlines in the visible imagery and visible plume outlines, the nominal case has a significantly wider visible plume than the MISR-initialized
plume, which captures the visible portion almost exactly. Due to inaccuracies in altitude used to initialize the discrepancy in model can significantly diminish the accuracy of the nominal downwind plume dispersion simulation, even when the aerosol is emitted into the free troposphere. In this case does not perform as well as the MISR-initialized one for the observed discrepancies include the near-source aerosol concentration, the plume trajectory, and plume shape in the portion of the plume that can be verified in the cloud-free imagery.

The Chikurachki case further emphasizes the fact that simulations can provide very different results when a large injection-height difference exists. It also demonstrates that, even in volcanic eruption cases with meteorological conditions in the free troposphere, conditions can still be significantly different at different altitudes. As the MISR-initialized case showcases better agreement with the visible imagery and AOD, it is reasonable to say that the more accurate injection height was key to providing the improved result.

4. Conclusions

In this paper, we present a detailed analysis of how injection-height initialization impacts the downwind plume simulations by the HYSPLIT model, for six well-defined wildfire smoke and volcanic aerosol plumes. In many cases, plume dispersion is accurately represented in both the nominal and MISR-initialized simulations. However, when injection is above the PBL, and especially if the nominal and MISR disagree about whether the plume is injected above the PBL, significant differences can appear in the simulated plume.
However, discrepancies do occur between the nominal and MISR injection altitude. Based on the analysis presented here, initializing HYSPLIT simulations with injection height determined via MINX can improve the dispersion dynamics of wildfire and volcanic ash plumes. The differences tend to be most pronounced when the injection estimates fall on either side of the boundary between the PBL and the free troposphere. Even if both simulations are initialized above the PBL, as in most volcanic cases, the VAAC advisories used to initialize HYSPLIT in the analysis shown here tend to overestimate the height, subjecting the simulated plume to different meteorological conditions. Based on this study, it appears that the availability of additional injection height constraints via MINX can help to improve simulated plume dispersion for wildfire and volcanic ash plumes using HYSPLIT. Wind shear common in the free troposphere produces discrepancies in downwind plume dispersion nevertheless. (Note also that the VAAC data used to initialize the nominal HYSPLIT process are obtained primarily from suborbital observations, and we selected cases from among those volcanoes having the best ground monitoring, whereas many other volcanoes around the globe are not monitored at all by surface or aircraft instrumentation.)

It also seems that wildfire simulations can obtain accurate downwind simulation results have important ramifications for aviation safety and air quality policy. For example, though observations have shown that particulate matter has decreased and related air quality improved overall in the United States, this is not true in the wildfire-prone Northwestern states (McClure and Jaffe, 2018), and is not the case for most of the rest of the world. If a state can prove that violations of the National Ambient Air Quality Standards (NAAQS) are due to natural activity (e.g., biomass burning) they may submit an exceptional events demonstration under the 2016 Exceptional Events...
Rule in order to avoid penalties assessed by the Environmental Protection Agency. These demonstrations often rely heavily on the use of HYSPLIT (Washoe County Health District, 2016) which necessitates the best possible representation of plume dispersion within the model framework.

The HYSPLIT wildfire simulations also appear to be more sensitive to variations in injection height than volcanic simulations. This is likely because wildfires frequently inject smoke near the PBL – free-troposphere boundary, where small changes in elevation can produce large changes in ambient wind speed and direction. However, volcanic simulations can also be improved where MINX injection heights are available. Model estimation of wildfire plume rise from first principles remains a challenging scientific problem (e.g., Val Martin et al., 2012). Yet, we note that MISR provides global coverage only about once per week on average, and the trade-off between initializing a simulation with more accurate MINX injection heights several days prior to a time of interest, vs. using less-accurate injection heights derived by a model closer to the time of interest, would depend on the particulars of the case involved. In future work, we hope to evaluate the wildfire plume-rise algorithms in HYSPLIT by comparison with plume-rise estimates from MINX in more detail. If the evaluation shows that improvements can be made, we hope to develop new approaches to more accurately simulate plume rise.

As assessing plume rise specifically was not the main goal of this research, the use of half-degree meteorological data was deemed sufficient to assess the large-scale plume dispersion analyzed here. However, finer spatial resolution, non-hydrostatic meteorological fields will be important for evaluating plume rise on smaller scales, especially in the complex terrain.
environments typical of where many wildfires typically occur. As there are many variables in addition to plume injection height that affect the accuracy of HYSPLIT simulations, future work might include constraining model simulations with other information provided by satellite instruments. For example, MISR aerosol type (Kahn et al., 2001; Limbacher and Kahn, 2014) could be used to initialize HYSPLIT instead of the operational particle characteristics from the SFS and VAACs. In addition, other instruments observations, such as space-based CALIPSO downwind aerosol layer heights and ground-based sensor AOD and particle properties, can help increase confidence in long-range smoke or volcanic aerosol dispersion forecasting.

Another next step would be to quantitatively evaluate the aerosol column mass concentration values and ground-level concentrations in HYSPLIT simulation results. More research into the relationship between the mass extinction coefficient and values and their relationship to aerosol optical depth is needed to address this issue; (e.g., Kahn et al., 2017), as this quantity determines the relationship between column-integrated AOD and aerosol column mass concentration. If the values can be reliably converted, quantitative analysis becomes possible, expanding upon the qualitative results shown in this study. But even with the qualitative results presented here, we have demonstrated qualitatively the influence aerosol injection height uncertainty can exert over simulation results, highlighting. Further, we have highlighted the importance of further efforts to reduce the uncertainty in these estimates for real-world emissions situations. We and have also demonstrated that the use of MINX injection heights, when available, can improve downwind dispersion forecasts in the HYSPLIT model.
Acknowledgements

We thank Mark Cohen and Alice Crawford from the NOAA Air Resources Lab for providing assistance with the HYSPLIT simulations presented here. Mark also participated in reviewing early versions of the manuscript to assure accurate representation of the HYSPLIT model simulations. The work of C.J. Vernon and R. Bolt is supported in part by a grant from the NASA Earth Science Applications program, under L. Friedl. Vernon is also funded in part by T. Canty in part by a grant from the NASA Atmospheric Composition Program under R. Eckman. The work of R. Kahn is supported in part by the NASA Climate and Radiation Research and Analysis Program under H. Maring and the NASA Atmospheric Composition Modeling and Analysis Program under R. Eckman.

References

Case Specific MISR Data, HYSPLIT run scripts, and BlueSky EMITIMES files, and VAAC/GVP advisories available upon request.
Figure 1. MINX Height Retrievals, measured from the geoid, for the Eyjafjallajökull volcano eruption plume, May 7, 2010. (a) Elevation map for the main plume. Each box represents a 0.55 km area where the height is displayed with darker colors on the low end and warmer colors on the high end. (b) MINX Height Profile, as a function of distance from the source. Terrain elevation is indicated by the green line. The injection height is ~ 5.8 km directly above the source, and remains at similar elevation downwind. (c) MINX Height Histogram, provides distribution of height retrievals without a wind correction, with the wind correction, and the cross/along track wind speeds.
1) Wildfire cases have multiple source locations, but are shown as one representative location here.
2) Wildfire source locations also have their own injection heights determined by MINX. The highest injection height is identified on this table. Vertical resolution for the MINX injection height is around 275 m. The height listed here is the highest plume height recorded for each source.
3) The nominal plume-rise height is given at the time of MISR overpass, for direct comparison with the MINX injection height. Figure 3 shows nominal plume rise and up-to-date meteorology at the time that the snapshot was taken for each case.
4) All PBL heights marked with ~ are approximated from the nearest sounding location. Heights without parentheses or ~ were derived from the meteorological data at the time and location of the MISR overpass. The heights in parenthesis are above ground level and not above the geoid.
5) The Chikurachki eruption simulation was started the day before the MISR overpass, because the overpass occurred close to the usual 00 UTC initialization. All other simulations had approximately 10 or more hours between initialization and the first snapshot.

![Figure 2. Fort McMurray wildfire smoke plume evolution.](image)

12:00 UTC Apr 21, 2016
00:00 UTC May 6, 2016
18:05 UTC May 6, 2016
(56.779, -110.610)
4.2
3.5
2.9
4.2 E+3
0.8 (1.0)
17:00 UTC May 7, 2016
Fort McMurray
00:00 UTC May 7, 2016
12:30 UTC May 7, 2016
(56.779, -110.610)
5.8
6.7
-1.5
N/A
0.6 (.601), 0.6 (.605), 0.6 (.612), 0.6 (.641)
12:25 UTC May 9, 2016
Refractom-plateau
00:00 UTC Jul 22, 2004
00:55 UTC Jul 22, 2004
(37.751, 14.993)
5.5
5.2
-1.2
N/A
0.6 (.601), 0.6 (.605), 0.6 (.612), 0.6 (.641)
12:55 UTC Jul 22, 2004
Elma
00:45 UTC Apr 22, 2013
(50.318, 155.457)
4.2
6.1
-1.3
N/A
0.6 (.608), 0.6 (.615), 0.6 (.624), 0.6 (.67)
01:15 UTC Apr 25, 2013
Chikurachki

Figure 2. Fort McMurray wildfire smoke plume evolution. (a) Day 2 sampling of the HYSPLIT 96-hour simulations that began on 06 May 2016, for 0 – 10 km, vertically integrated, qualitative smoke plume concentration based on MISR-MINX height initialization. Black outline indicates edges of visible smoke from satellite imagery and black star indicates source location (b) Same as (a), but using the nominal HYSPLIT height initialization. (c) MISR-Nominal initialization, qualitative smoke plume vertically integrated concentration differences. (d) MODIS true-color image acquired on 07 May 2016. Red outline matches black outline from panels (a), (b), and (c) but is red for visibility.
2) Fort McMurray Wildfire Simulation - May 7, 2016 (17:40 UTC)

- a) MISR-Initialized HYSPLIT
- b) Nominal HYSPLIT
- c) MISR - Nominal Difference
- d) Terra MODIS Truecolor Scene
Figure 3. Atmospheric soundings at each of the nearest airports at the closest time to the snapshot for each case. The vertical axis is atmospheric pressure in mb on a log scale and the horizontal axis is temperature in °C. Horizontal lines indicate approximate elevation in m, isotherms are indicated as light grey lines from lower left to upper right, and those generally trending toward the upper left are dry adiabats. The rightmost dark black line shows the temperature sounding, and the one to the left represents the dewpoint profile. Wind speeds and directions are indicated by the barbs on the right side of each plot. The red line marks the planetary boundary layer, the blue line marks the injection height of the MISR-initialized simulation, and the green line marks the injection height of the nominal simulation at the hour of the snapshot. a) Fort McMurray, 08 May 2016 at 00Z: pbl ~ 2.5 km, MISR-initialized = 4.2 km, nominal ~ 2.4 km. b) Fraser Plateau, 05 August 2017 at 00Z: pbl ~ 3.1 km, MISR-initialized = 4.2 km, nominal ~ 2.7 km. c) Thomas Fire, 14 December 2017 at 00Z: pbl ~ 3.1 km, MISR-initialized = 5.5 km, nominal ~ 1.9 km. d) Eyjafjallajokull, 09 May 2010 at 12Z: pbl ~ 1.2 km, MISR-initialized = 5.8 km, nominal = 6.7 km. e) Etna, 23 July 2001 at 06Z: pbl ~ 1 km, MISR-initialized = 5.5 km, nominal = 5.2 km. f) Chikurachki, 25 April 2003 at 00Z: pbl ~ 1.3 km, MISR-initialized = 4.2 km, nominal = 6.1 km
Figure 4. Same as Figure 2, but for the Fraser Plateau Fire plume on 04 August 2017. (a-b) Day 2 samplings of HYSPLIT 96-hour simulations that began on 03 August 2017, and (c) Day 2 difference plot. (d) MODIS true-color image acquired on 04 August 2017.
4) Fraser Plateau Wildfire Simulation - August 4, 2017 (18:40 UTC)

a) MISR-Initialized HYSPLIT

b) Nominal HYSPLIT

MISR – Nominal Difference

d) Terra MODIS Truecolor Scene
Figure 5. Same as Figure 2, but for the Thomas Fire plume, on 13 December 2017. (a-b) Day 4 samplings of HYSPLIT 96-hour simulations run with the GDAS 0.5° meteorology, beginning on 10 December 2017, and (c) Day 4 difference plot. (d) MODIS true-color image acquired on 13 December 2017.
5) Thomas Wildfire Simulation - December 13, 2017 (19:15 UTC)

a) MISR-Initialized HYSPLIT

b) Nominal HYSPLIT

c) MISR - Nominal Difference

d) Terra MODIS Truecolor Scene
Figure 6. Same as Figure 2, but for the Thomas Fire plume, on 13 December 2017 using NAM12 km meteorological data. (a-b) Day 4 samplings of HYSPLIT 96-hour simulations run with the NAM12 meteorology, beginning on 10 December 2017, and (c) Day 4 difference plot. (d) MODIS true-color image acquired on 13 December 2017.
6) Thomas Wildfire Simulation (With NAM12) - December 13, 2017 (19:15 UTC)

a) MISR-Initialized HYSPLIT

b) Nominal HYSPLIT

c) MISR - Nominal Difference

d) Terra MODIS Truecolor Scene
Figure 7. Same as Figure 2, but for the Eyjafjallajokull volcanic eruption plume, on 09 May 2010. (a-b) Day 3 samplings of HYSPLIT 96-hour simulations that began on 07 May 2010, and (c) Day 3 difference plot. (d) MODIS true-color image acquired on 09 May 2010.
7) Eyjafjallajökull Eruption Simulation - May 9, 2010 (12:25 UTC)

a) MISR-Initiated HYSPLIT

b) Nominal HYSPLIT

c) MISR - Nominal Difference

d) Terra MODIS Truecolor Scene
Figure 8. Same as Figure 2, but for the Mount Etna volcanic eruption plume, on 22 July 2001. (a-b) Day 1 samplings of HYSPLIT 96-hour simulations that began on 22 July 2001, (c) and Day 1 difference plot. (d) MODIS true-color image acquired on 22 July 2001.
8) Mount Etna Eruption Simulation - July 22, 2001 (09:55 UTC)

a) MISR-Initialized HYSPLIT

b) Nominal HYSPLIT

Qualitative Mass Concentration, Vertically Averaged 0-10 km

C) MISR - Nominal Difference

d) Terra MODIS Truecolor Scene
Figure 9. Same as Figure 2, but for the Chikurachki volcanic eruption plume, on 25 April 2003. (a-b) Day 4 samplings of HYSPLIT 96-hour simulations that began on 21 April 2003, and (c) Day 4 difference plot. (d) MODIS true-color image acquired on 25 April 2003.
9) Chikurachki Eruption Simulation - April 25, 2003 (01:15 UTC)

a) MISR-Initialized HYSPLIT

b) Nominal HYSPLIT

Qualitative Mass Concentration, Vertically Averaged 0-10 km

MISR - Nominal Difference

Terra MODIS Truecolor Scene
9) Chikurachki Eruption Simulation - April 25, 2003 (01:15 UTC)

a) MISR-Initialized HYSPLIT

b) Nominal HYSPLIT

c) MISR - Nominal Difference

d) Terra MODIS Truecolor Scene