Journal cover Journal topic
Atmospheric Measurement Techniques An interactive open-access journal of the European Geosciences Union

Journal metrics

  • IF value: 3.089 IF 3.089
  • IF 5-year<br/> value: 3.700 IF 5-year
    3.700
  • CiteScore<br/> value: 3.59 CiteScore
    3.59
  • SNIP value: 1.273 SNIP 1.273
  • SJR value: 2.026 SJR 2.026
  • IPP value: 3.082 IPP 3.082
  • h5-index value: 45 h5-index 45
https://doi.org/10.5194/amt-2017-73
© Author(s) 2017. This work is distributed under
the Creative Commons Attribution 3.0 License.
Research article
02 May 2017
Review status
A revision of this discussion paper is under review for the journal Atmospheric Measurement Techniques (AMT).
The effects of meteorological parameters and diffusive barrier reuse on the sampling rate of a passive air sampler for gaseous mercury
David S. McLagan, Carl P. J. Mitchell, Haiyong Huang, Batual Abdul Hussain, Ying Duan Lei, and Frank Wania Department of Physical and Environmental Sciences, University of Toronto Scarborough, 1065 Military Trail, M1C 1A4, Toronto, Ontario, Canada
Abstract. Passive air sampling of gaseous mercury (Hg) requires a high level of accuracy to discriminate small differences in atmospheric concentrations. Meteorological parameters have the potential to decrease this accuracy by impacting the sampling rate (SR), i.e., the volume of air that is effectively stripped of gaseous mercury per unit of time. We measured the SR of a recently calibrated passive air sampler for gaseous Hg in the laboratory under varying wind speeds (wind-still – 6 m s−1), temperatures (−15–35 °C), and relative humidities (44–80 %). While relative humidity has no impact on SR, SR increases slightly with both wind speed (0.003 m3 day−1 increase in SR or 2.5 % of the previously calibrated SR for every m s−1 increase for wind speeds > 1 m s−1, typical of outdoor deployments) and temperature (0.001 m3 day−1 increase in SR or 0.7 % for every 1 °C increase). The temperature dependence can be fully explained by the effect of temperature on the molecular diffusivity of gaseous mercury in air. Although these effects are relatively small, accuracy can be improved by adjusting SRs using measured or estimated temperature and wind speed data at or near sampling sites. We also assessed the possibility of reusing Radiello® diffusive barriers previously used in the passive air samplers. The mean rate of gaseous Hg uptake was not significantly different between new and previously used diffusive barriers in both lab and outdoor deployments, irrespective of the applied cleaning procedure. No memory effect from Radiellos® previously deployed in a high Hg atmosphere was observed. However, a loss in replicate precision for the dirtiest Radiellos® in the indoor experiment suggests that cleaning is advisable prior to reuse.

Citation: McLagan, D. S., Mitchell, C. P. J., Huang, H., Abdul Hussain, B., Lei, Y. D., and Wania, F.: The effects of meteorological parameters and diffusive barrier reuse on the sampling rate of a passive air sampler for gaseous mercury, Atmos. Meas. Tech. Discuss., https://doi.org/10.5194/amt-2017-73, in review, 2017.
David S. McLagan et al.
David S. McLagan et al.
David S. McLagan et al.

Viewed

Total article views: 317 (including HTML, PDF, and XML)

HTML PDF XML Total Supplement BibTeX EndNote
272 36 9 317 9 0 8

Views and downloads (calculated since 02 May 2017)

Cumulative views and downloads (calculated since 02 May 2017)

Viewed (geographical distribution)

Total article views: 317 (including HTML, PDF, and XML)

Thereof 317 with geography defined and 0 with unknown origin.

Country # Views %
  • 1

Saved

Discussed

Latest update: 21 Jul 2017
Publications Copernicus
Download
Short summary
Laboratory experiments indicate that the sampling rate of a passive air sampler for gaseous mercury is (1) not affected by relative humidity, (2) increases slightly with increasing temperature because of the effect of temperature on molecular diffusivity, (3) increases only slightly with wind speed as long as the wind speed is at least 1 m/s, and (4) is not changed when previously deployed diffusive barriers are used.
Laboratory experiments indicate that the sampling rate of a passive air sampler for gaseous...
Share