
Arno Keppens1, Jean-Christopher Lambert1, José Granville1, Daan Hubert1, Tijl Verhoelst1, Steven Compernolle1, Barry Latter2, Brian Kerridge2, Richard Siddans2, Anne Boynard3,4, Juliette Hadji-Lazaro3, Cathy Clerbaux3,5, Catherine Wespes5, Daniel R. Hurtmans5, Pierre-François Coheur4, Jacob C. A. van Peet6, Ronald J. van der A6, Katerina Garane7, Maria Elissavet Koukouli7, Dimitris S. Balis7, Andy Delcloo8, Rigel Kivi9, Réné Stübi10, Sophie Godin-Beekmann3, Michel Van Roozendael1, Claus Zehner11

1Royal Belgian Institute for Space Aeronomy (BIRA-IASB), Brussels, 1180, Belgium
2Rutherford Appleton Laboratory (RAL) & National Centre for Earth Observation (NCEO), Chilton, Didcot, OX11, UK
3LATMOS/IPSL, UPMC Univ. Paris 06 Sorbonne Universités, UVSQ, CNRS, Paris, 78280, France
4SPASCIA, Ramonville-Saint-Agne, 31520, France
5Université Libre de Bruxelles (ULB), Brussels, 1050, Belgium
6Royal Netherlands Meteorological Institute (KNMI), De Bilt, 3731, the Netherlands
7Laboratory of Atmospheric Physics, Aristotle University of Thessaloniki (AUTH), Thessaloniki, 54124, Greece
8Royal Meteorological Institute of Belgium (RMIB), Brussels, 1180, Belgium
9Finnish Meteorological Institute (FMI-ARC), Sodankylä, 99601, Finland
10Federal Office of Meteorology and Climatology, Payerne, 1530, Switzerland
11European Space Agency (ESA/ESRIN), Frascati, 00044, Italy

Correspondence to: Arno Keppens (arno.keppens@aeronomie.be)

Abstract. Atmospheric ozone plays a key role in air quality and the radiation budget of the Earth, both directly and through its chemical influence on other trace gases. Assessments of the atmospheric ozone distribution and associated climate change therefore demand accurate vertically-resolved ozone observations with both stratospheric and tropospheric sensitivity, both on the global and regional scales, and both in the long term and at shorter timescales. Such observations have been acquired by two series of European nadir-viewing ozone profilers, namely the scattered-light UV-visible spectrometers of the GOME family, launched regularly since 1995 (GOME, SCIAMACHY, OMI, GOME-2A/B, TROPOMI, and the upcoming Sentinel-5 series), and the thermal infrared emission sounders of the IASI type, launched regularly since 2006 (IASI on Metop platforms and the upcoming IASI-NG on Metop-SG). In particular, several Level-2 retrieved, Level-3 monthly gridded, and Level-4 assimilated nadir ozone profile data products have been improved and harmonised in the context of the ozone project of the European Space Agency’s Climate Change Initiative (ESA Ozone_cci). To verify their fitness-for-purpose, these ozone datasets must undergo a comprehensive quality assessment (QA), including (a) detailed identification of their geographical, vertical and temporal domains of validity, (b) quantification of their potential bias, noise and drift and their dependences on major influence quantities, and (c) assessment of the mutual consistency of data from different sounders. For this purpose we have applied to the Ozone_cci Climate Research Data Package (CRDP) released in 2017 the versatile
QA/validation system Multi-TASTE which has been developed in the context of several heritage projects (ESA’s Multi-TASTE, EUMETSAT’s O3M-SAF, and the European Commission’s FP6 GEOmon and FP7 QA4ECV). This work, as the second in a series of four Ozone_cci validation papers, reports for the first time on data content studies, information content studies and ground-based validation for both the GOME- and IASI-type climate data records combined. The ground-based reference measurements have been provided by the Network for the Detection of Atmospheric Composition Change (NDACC), NASA’s Southern Hemisphere Additional Ozonesonde programme (SHADOZ), and other ozonesonde and lidar stations contributing to the World Meteorological Organisation’s Global Atmosphere Watch (WMO GAW). The nadir ozone profile CRDP quality assessment reveals that all nadir ozone profile products under study fulfil the GCOS user requirements in terms of observation frequency and horizontal and vertical resolution. Yet all L2 observations also show sensitivity outliers in the UTLS and are strongly correlated vertically due to substantial averaging kernel fluctuations that extend far beyond the kernel’s 15 km FWHM. The CRDP typically does not comply with the GCOS user requirements in terms of total uncertainty and decadal drift, except for the UV-VIS L4 dataset. The drift values of the L2 GOME and OMI, the L3 IASI, and the L4 assimilated products are found to be overall insignificant however, and applying appropriate altitude-dependent bias and drift corrections make the data fit for climate and atmospheric composition monitoring and modelling purposes.

Dependence of the Ozone_cci data quality on major influence quantities – resulting in data screening suggestions to users – and perspectives for the Copernicus Sentinel missions are additionally discussed.

1 Introduction

Climate studies related to atmospheric composition and the Earth’s radiation budget require accurate monitoring of the horizontal and vertical distribution of ozone on the global scale and in the long term (WMO, 2010). Atmospheric ozone concentration profiles have been retrieved from solar backscatter ultraviolet radiation measurements by nadir viewing satellite spectrometers since the 1960s, starting with the USSR Kosmos missions in 1964-1965 (Iozenas et al., 1969) and NASA’s Orbiting Geophysical Observatory in 1967-1969 (Anderson et al., 1969) and Backscatter Ultraviolet (BUV) on Nimbus 4 in 1970-1975 (Heath et al., 1973), and continuing with the Solar SBUV/2 series after 1978 (Heath et al., 1975), the Global Ozone Monitoring Experiment (GOME) family of sensors since 1995 (Burrows et al., 1999), and the Ozone Mapping Profiler Suite (OMPS-nadir) series started in 2011 (Flynn et al., 2006). Thermal infrared emission measurements of the ozone profile by nadir viewing satellite spectrometers were introduced more recently with the Aura Tropospheric Emission Spectrometer (TES) in 2004 and the series of Metop Infrared Atmospheric Sounding Interferometers (IASI) since 2006. Over the past decades these retrievals have been frequently quality-checked and often improved in order to meet climate research user requirements like the Global Climate Observing System (GCOS) targets (WMO, 2010). Yet both the verification of retrieval algorithm updates and the validation of their outputs against fiducial reference measurements (FRM) are still essential parts of the climate monitoring process, to be performed by specialised independent groups (Donlon, 2014; Loew et al., 2017).
The data quality assessment presented in this work (as part of a series of four papers addressing total ozone columns, nadir ozone profiles, limb ozone profiles, and tropical tropospheric ozone columns, respectively) has been performed in the context of the European Space Agency’s Climate Change Initiative (ESA CCI), aiming at better using satellite data records for the monitoring of essential climate variables (ECV) (http://www.esa-ozone-cci.org/). A major goal of the Ozone_cci subproject is to produce time series of tropospheric and stratospheric ozone distributions from current and historical missions that meet the requirements for reducing the uncertainty in estimates of global radiative forcing. Yet Keppens et al. (2015), based on analysis principles discussed by Rodgers (2000), have illustrated that the comparison of nadir (ozone) profiles with FRM, although very informative on a specific data product, usually is insufficient to fully appreciate the relative quality of different retrieval products and to verify their compliance with user requirements. The present work therefore adopts the more exhaustive seven-step evaluation approach established in Keppens et al.: (2015), including (1) satellite data collection and post-processing, (2) dataset content study, (3) information content study, (4) FRM data selection, (5) co-located datasets study, (6) data harmonisation, and (7) comparative analyses and their dependences on physical influence quantities of relevance.

Section 2 first introduces the vertical profile retrieval schemes that have been used to generate the ESA Ozone_cci nadir profile (NP) Climate Research Data Package (CRDP). These are namely the RAL version 2.14 for the backscatter UV-visible instruments and the FORLI (Fast Optimal Retrievals on Layers for IASI) version 20151001 for the thermal infrared mission instruments, developed at the Rutherford Appleton Laboratory (RAL, United Kingdom) and by the French-Belgian ULB/LATMOS cooperation, respectively. The RAL processor has been applied to retrieve L2 NP from the ERS2 GOME, Envisat SCIAMACHY, Metop-A GOME-2, Metop-B GOME-2, and AURA OMI instruments, while the FORLI algorithm has retrieved Metop-A and Metop-B IASI ozone profiles. Sections 3 to 5 then describe the validation approach and the FRM data selection, data and information content studies, and report on the comparative validation analyses, respectively. Section 6 concludes with general discussions of the results and with an assessment of the compliance with GCOS requirements for vertically-resolved ozone climate modelling, e.g. in view of CCI contributions to the Tropospheric Ozone Assessment Report (TOAR).

2 Ozone_cci nadir ozone profile CRDP

2.1 CRDP overview

The 2017 release of the ESA Ozone_cci Climate Research Data Package contains thirteen nadir ozone profile products in total, as listed in Table 1, and a description of their associated uncertainties. The latter are included in the comparison results discussion presented in Section 5. The time span of the products is indicated in Table 2. All five level-2 (L2) backscatter UV-VIS instrument retrievals are performed by the Rutherford Appleton Laboratory (RAL, UK) algorithm, while the infrared thermal emission measurements of the IASI instruments are processed by a collaboration between the Belgian ULB (Université Libre de Bruxelles, Belgium) and the French LATMOS (Laboratoire Atmosphères, Milieux,
Observations Spatiales, Paris, France), using their FORLI (Fast Optimal Retrievals on Layers for IASI) algorithm. **All instruments listed in Table 1 are on satellite vehicles with a sun-synchronous low-earth-orbit, resulting in fixed local solar overpass times (also see Section 3.3).**

Monthly-averaged level-3 (L3) products and assimilated level-4 (L4) atmospheric fields of the ozone profile are produced from the L2 UV-VIS data by the Royal Meteorological Institute of the Netherlands (KNMI). The L4 product is generated by assimilation of the L2 GOME and GOME-2A products (NP_GOME and NP_GOME2A). Version 0004 of the L3 and L4 products has been considered in this work (see **Table 1**). For the thermal infrared IASI instrument on Metop-A, only a tropospheric L3 product (prefix TTC instead of NP in **Table 1**) has been generated by the ULB/LATMOS team, of which the first release (version 0001) is under study in this work.

<table>
<thead>
<tr>
<th>Satellite/instrument</th>
<th>Level</th>
<th>CCI CRDP product ID</th>
<th>Processor</th>
<th>Range (# levels/layers)</th>
<th>O3 units in file</th>
</tr>
</thead>
<tbody>
<tr>
<td>ERS2 GOME</td>
<td>L2</td>
<td>NP_GOME</td>
<td>RAL v2.14</td>
<td>0-80 km (20)</td>
<td>Parts per volume</td>
</tr>
<tr>
<td>Envisat SCIAMACHY</td>
<td></td>
<td>NP_SCIAMACHY</td>
<td>RAL v2.14</td>
<td>0-80 km (20)</td>
<td>Parts per volume</td>
</tr>
<tr>
<td>Metop-A GOME-2</td>
<td></td>
<td>NP_GOME2A</td>
<td>RAL v2.14</td>
<td>0-80 km (20)</td>
<td>Parts per volume</td>
</tr>
<tr>
<td>Metop-B GOME-2</td>
<td></td>
<td>NP_GOME2B</td>
<td>RAL v2.14</td>
<td>0-80 km (20)</td>
<td>Parts per volume</td>
</tr>
<tr>
<td>AURA OMI</td>
<td></td>
<td>NP_OMI</td>
<td>RAL v2.14</td>
<td>0-80 km (20)</td>
<td>Parts per volume</td>
</tr>
<tr>
<td>Metop-A IASI</td>
<td></td>
<td>NP_IASIA</td>
<td>FORLI v20151001</td>
<td>0-60 km (41)</td>
<td>DU</td>
</tr>
<tr>
<td>Metop-B IASI</td>
<td></td>
<td>NP_IASIB</td>
<td>FORLI v20151001</td>
<td>0-60 km (41)</td>
<td>DU</td>
</tr>
<tr>
<td>ERS2 GOME</td>
<td>L3</td>
<td>NP_L3_GOME</td>
<td>KNMI v0004</td>
<td>Surface-1 hPa (19)</td>
<td>Molecules / m²</td>
</tr>
<tr>
<td>Envisat SCIAMACHY</td>
<td></td>
<td>NP_L3_SCIAMACHY</td>
<td>KNMI v0004</td>
<td>Surface-1 hPa (19)</td>
<td>Molecules / m²</td>
</tr>
<tr>
<td>Metop-A GOME2</td>
<td></td>
<td>NP_L3_GOME2A</td>
<td>KNMI v0004</td>
<td>Surface-1 hPa (19)</td>
<td>Molecules / m²</td>
</tr>
<tr>
<td>AURA OMI</td>
<td></td>
<td>NP_L3_OMI</td>
<td>KNMI v0004</td>
<td>Surface-1 hPa (19)</td>
<td>Molecules / m²</td>
</tr>
<tr>
<td>Metop-A IASI</td>
<td></td>
<td>TTC_IASI</td>
<td>ULB/LATMOS v0001</td>
<td>0-6 km (1)</td>
<td>DU</td>
</tr>
<tr>
<td>merged (GOME, GOME-2A)</td>
<td>L4</td>
<td>NP_L4_ASSIM</td>
<td>KNMI v0004</td>
<td>Surface-1 hPa (44)</td>
<td>Molecules / m²</td>
</tr>
</tbody>
</table>

Table 1: Overview of the nadir ozone profile data products generated and delivered in the Ozone_cci CRDP. The products' vertical range (with number of levels or layers between brackets) and original ozone units are added in the last two columns.

<table>
<thead>
<tr>
<th>CCI CRDP product ID</th>
<th>95</th>
<th>96</th>
<th>97</th>
<th>98</th>
<th>99</th>
<th>00</th>
<th>01</th>
<th>02</th>
<th>03</th>
<th>04</th>
<th>05</th>
<th>06</th>
<th>07</th>
<th>08</th>
<th>09</th>
<th>10</th>
<th>11</th>
<th>12</th>
<th>13</th>
<th>14</th>
<th>15</th>
</tr>
</thead>
<tbody>
<tr>
<td>NP_GOME</td>
<td>26</td>
<td></td>
</tr>
<tr>
<td>NP_SCIAMACHY</td>
<td>31</td>
<td></td>
</tr>
<tr>
<td>NP_GOME2A</td>
<td></td>
<td>14</td>
<td></td>
</tr>
<tr>
<td>NP_GOME2B</td>
<td></td>
<td></td>
<td>18</td>
<td>23</td>
<td></td>
</tr>
<tr>
<td>NP_OMI</td>
<td></td>
<td></td>
<td></td>
<td>52</td>
<td></td>
</tr>
<tr>
<td>NP_IASIA</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>52</td>
<td></td>
</tr>
<tr>
<td>NP_IASIB</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>10</td>
<td>14</td>
<td></td>
</tr>
<tr>
<td>NP_L3_GOME</td>
<td></td>
</tr>
<tr>
<td>NP_L3_SCIAMACHY</td>
<td></td>
</tr>
<tr>
<td>NP_L3_GOME2A</td>
<td></td>
</tr>
<tr>
<td>NP_L3_OMI</td>
<td></td>
</tr>
<tr>
<td>TTC_IASI</td>
<td></td>
</tr>
<tr>
<td>NP_L4_ASSIM</td>
<td></td>
</tr>
</tbody>
</table>

Table 2: Time coverage (up to 2015) of the nadir ozone profile data products generated and delivered in the Ozone_cci CRDP (numbers indicate start and end weeks for L2 data).
2.2 L2 UV-VIS retrieval algorithm

Full time series of the ERS-2 GOME (1996-2011), Envisat SCIAMACHY (2002-2011), Metop-A GOME-2 (2007-2013), Metop-B GOME-2 (2013-2015), and AURA OMI (2004-2015) nadir ozone profile data were retrieved at the Rutherford Appleton Laboratory using version 2.14 of its RAL retrieval system. Each ozone profile is provided in volume-mixing ratio (VMR) and number density (ND) units on a fixed vertical grid with 20 levels ranging between 0 and 80 km, while the values of the 19 intermediate partial ozone column layers are provided as well. The RAL retrieval is a three-step process (Munro et al., 1998; Siddans, 2003; Miles et al., 2015).

In the first step, the vertical profile of ozone is retrieved from Sun-normalized radiances at selected wavelengths of the ozone Hartley band, in the range 265-307 nm, which primarily contains information on stratospheric ozone. Prior ozone profiles come from the McPeters-Labow-Logan (McPeters et al., 2007) climatology, except in the troposphere where a fixed value of 10^{12} ozone molecules per cubic meter is assumed. A prior correlation length of 6 km is applied to construct the covariance matrix. The surface albedo, a scaling factor for the Ring effect, and the dark signal are retrieved jointly. In the second step, the surface albedo for each of the ground pixels is retrieved from the Sun-normalized radiance spectrum between 335 and 336 nm. Then, in step three, information on lower stratospheric and tropospheric ozone is added by exploiting the temperature dependence of the spectral structure in the ozone Huggins bands. The wavelength range from 323 to 334 nm is used in conjunction with ECMWF ERA-Interim (ERA-I) meteorological fields (Dee et al., 2011). Each direct Sun spectrum is thereby fitted to a high-resolution (0.01 nm) solar reference spectrum to improve knowledge of wavelength registration and slit function width. In this step the a-priori ozone profile and its error are the output of step one, except that a prior correlation length of 8 km is imposed.

RAL’s radiative transfer model (RTM) is derived from GOMETRAN (Rozanov et al., 1997), but the original code has been modified substantially in order to increase its efficiency without losing accuracy. Within the RTM there is no explicit representation of clouds, but their effects are incorporated as part of the Lambertian surface albedo (from step 2 of the retrieval). Therefore a negative bias in retrieved ozone is to be expected where high or thick cloud is extensive and there is limited photon penetration (no ‘ghost column’ is added). The linear error analysis of the RAL retrieval is additionally complicated by the three-step retrieval approach. Particularly as the ozone prior covariance used in step three is not identical to the solution covariance output from step one. This is handled by linearizing each step and propagating the impact of perturbations in parameters affecting the measurements through to the final solution. The estimated standard deviation of the final retrieval is taken to be the square-root of the step-three solution covariance.

In this work, all nadir ozone profile screening of RAL retrievals follows the recommendations as outlined in the latest version of RAL’s Ozone Profile Algorithm Product User Guide (PUG). As summarised in Table 3, the filtering requires that the normalised cost function is less than two, the convergence flag equals one, all ozone profile values are positive, the solar zenith angle is below 80°, and the effective cloud fraction (ECF) below 20 %. Additionally, for GOME-
2A and B the Band 1 slant column density must stay below 500 DU, and the OMI outer two pixels from each swath are rejected (see product-specific criteria in Table 3). Back-scan measurements are never considered.

<table>
<thead>
<tr>
<th>Filtering criterion</th>
<th>UV-VIS RAL algorithm v2.14</th>
<th>TIR FORLI algorithm v20151001</th>
</tr>
</thead>
<tbody>
<tr>
<td>Averaging kernel matrix</td>
<td>/</td>
<td>- DFS > 1</td>
</tr>
<tr>
<td></td>
<td></td>
<td>- All elements < 2</td>
</tr>
<tr>
<td></td>
<td></td>
<td>- First derivative < 0.5</td>
</tr>
<tr>
<td></td>
<td></td>
<td>- Second derivative < 1</td>
</tr>
<tr>
<td>Chi-square test</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>Convergence</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>Cost function (normalised)</td>
<td>< 120 (< 2)</td>
<td>/</td>
</tr>
<tr>
<td>Effective cloud fraction</td>
<td>< 0.20</td>
<td>< 0.13</td>
</tr>
<tr>
<td>Negative ozone values</td>
<td>Rejected</td>
<td>Rejected</td>
</tr>
<tr>
<td>Product-specific</td>
<td>- GOME-2A/B: January-to-May band 1 SCD < 500 DU</td>
<td>- Ozone rejected if incomplete H2O retrieval</td>
</tr>
<tr>
<td></td>
<td>- GOME-2B from June 2015</td>
<td>- IASI-B: March 8 to April 24, 2013 rejected (erroneous setting) and from April, 2015</td>
</tr>
<tr>
<td>Solar zenith angle</td>
<td>< 80°</td>
<td>< 83° (day-time) or > 91° (night-time)</td>
</tr>
<tr>
<td>Surface pressure</td>
<td>Rejected if unrealistic</td>
<td>Rejected if unrealistic</td>
</tr>
<tr>
<td>Surface temperature</td>
<td>/</td>
<td>Rejected if unrealistic</td>
</tr>
<tr>
<td>Tropospheric ozone</td>
<td>/</td>
<td>Ratio of 6 km integrated column to total integrated column > 0.085</td>
</tr>
</tbody>
</table>

Table 3: L2 nadir ozone profile filtering criteria applied in this work (first column) and their settings for the RAL UV-VIS retrieval algorithm (second column) and the FORLI TIR retrieval algorithm (third column). Values that do not comply with the settings are rejected as suggested by the respective data providers.

2.3 L2 TIR retrieval algorithm

The Ozone_cci Metop-A and Metop-B IASI nadir ozone profile data for 2008-2015 and 2013-2015, respectively, were generated in a near real time mode using the FORLI-O3 (Fast Optimal Retrievals on Layers for IASI Ozone) latest version 20151001 (see Hurtmans et al. (2012) for a full description of the retrieval parameters and performances). FORLI-O3 relies on a fast radiative transfer and a retrieval algorithm based on the optimal estimation method (Rodgers, 2000). In the current version of FORLI-O3, look-up tables (LUTs) were precomputed to cover a larger spectral range (960-1105 cm\(^{-1}\)) using the HITRAN 2012 spectroscopic database (Rothman et al., 2013) and correcting numerical implementation, especially with regard to the LUTs at higher altitude compared to the previous version. Ozone is retrieved using the 1025-1075 cm\(^{-1}\) spectral range, which is dominated by ozone absorption with only few overlapping water vapour lines and a weak absorption contribution of methanol. The a priori information used in the FORLI algorithm consists of a single global ozone prior profile. The prior and a variance-covariance matrix is built from the McPeters-Labow-Logan climatology (McPeters et al., 2007), as for RAL. A purely diagonal wavenumber-dependent effective noise at a value around 2 \(10^8\) W/cm/sr is considered in the retrievals (Hurtmans et al., 2012).
The FORLI-O3 product consists of a vertical profile retrieved on a uniform and fixed 1 km vertical grid on 40 layers from the surface up to 40 km, with an extra residual layer from 40 km to the top of the atmosphere (60 km in practice). Associated averaging kernels and relative total error profiles are provided on the same vertical grid. A posteriori filtering of the data – performed by ULB/LATMOS before data distribution – is applied to keep only the more reliable data, by removing those corresponding to poor spectral fits (root mean square of the spectral fit residual higher than 3.5×10^{-8} W/cm/sr) or incomplete water vapour retrievals. Additionally, quality flags rejecting biased or sloped residuals, suspect averaging kernels, and violations of the maximum number of iterations are applied (see Table 3). Cloud contaminated IASI scenes characterized by a fractional cloud cover above 13% are also filtered out, as identified using cloud information from the EUMETCast operational processing (August et al., 2012). Upon discussion within the Ozone_cci community, it has been decided to in this work also reject FORLI ozone profiles whose ratio of the 0-6 km integrated column to the fully integrated column exceed 0.085. These provisional fixes however are corrected for in the online Ozone_cci nadir ozone profile product release.

2.4 L3 monthly gridded data

For the thermal infrared IASI instrument on Metop-A, a tropospheric level-3 (L3) product (prefix TTC instead of NP in Table 1) has been generated by the ULB/LATMOS team from their quality-screened L2 nadir ozone profile retrievals directly. This product consists of horizontally gridded (1° latitude by 1° longitude) monthly averages of the zero to six kilometre vertically integrated IASI-A ozone observations. Monthly-averaged L3 profile products are produced from the filtered RAL v2.14 GOME, GOME-2A, SCIAMACHY, and OMI data by the Royal Meteorological Institute of the Netherlands (KNMI). Version 0004 of the KNMI L3 products has been used in this work (see Table 1). The KNMI level-3 data consist of monthly ozone profile averages, also on a one-by-one degree latitude-longitude grid, containing 19 layers between 20 fixed pressure levels at each grid-point. The algorithm that calculates the monthly-averaged ozone fields assumes that the L2 satellite ground pixel vertices (labelled ABCD) are ordered as indicated in Figure 1. Each pixel’s across-track direction is defined by the lines AB and DC, while the along-track direction is defined by the lines AD and BC (note that corners C and D are reversed with respect to the GOME/GOME-2 convention). The satellite pixel is divided into 25 subpixels, five in the along-track direction and five in the cross-track direction, and each subpixel is assigned to the L3 grid cell (the boundaries are indicated with the dashed lines in Figure 1) containing the subpixel. The along-track pixel edges and cross-track pixel edges are divided into a number of points. The first point on AB and the first on DC determine a line which is divided into the same number of points as AD. Each of these points is then assigned to a grid cell. Suppose that the horizontal line of diamonds in Figure 1 represents the ground subpixels (numbered 1 to 7) and the two dashed lines denote the grid cell boundaries which are numbered the same way as the ground pixel corners (i.e. grid cell A is the lower right cell). In that case, subpixels 1 to 3 are added to grid cell A, and the counter for grid cell A is increased by 3. Subpixels 4 to 7 are added to grid cell D and the
counter for grid cell \(D \) is increased by 4. The subpixel values \(x_i \) are weighted by the square inverse of their uncertainties \((\sigma_i^{-2}) \) before adding, so the weighted mean grid cell value \(x_c \) and the corresponding standard deviation \(\sigma_c \) are given by

\[
x_c = \sigma_c^2 \sum_i x_i \sigma_i^{-2}
\]

and

\[
\sigma_c = (\sum_i \sigma_i^{-2})^{-\frac{1}{2}}
\]

respectively.

Figure 1: A L2 ground-satellite pixel ABCD is divided into ground subpixels (diamonds 1 to 7). Each subpixel is assigned to a TM5 assimilation L3 grid cell (indicated with the dashed boundaries) and the average and standard deviation are calculated (see text). In this example, subpixels 1-3 would be assigned to the lower-right grid cell and subpixels 4-7 would be assigned to the lower-left grid cell. The satellite pixel ABCD may have any orientation with respect to the L3 grid.

2.5 L4 data assimilation

Assimilated level-4 (L4) ozone fields are produced from the screened Ozone_cci UV-VIS nadir ozone profile data by the Royal Meteorological Institute of the Netherlands (KNMI) by use of its chemical transport model TM5. The resulting L4 assimilated fields consist of 44 ozone layers (surface to 1 hPa) on a two-by-three degree latitude-longitude grid for four times a day (0, 6, 12, 18 h). Version 0004 of the L4 products has been used in this work, meaning that the assimilation input is limited to the L2 GOME (Jan. 1, 1996 to May 31, 2011) and GOME-2A (May 1, 2007 to June 30, 2013) products (NP_GOME and NP_GOME2A in Table 1).

A complete description of KNMI’s assimilation algorithm can be found in Van Peet et al. (2017). The covariance matrices and the averaging kernel matrices from the L2 optimal estimation retrievals are thereby used. For the atmospheric model, the covariance matrix must be specified as well. The observations and the model data are combined using a Kalman filter technique. The averaging kernel matrix is incorporated into the observation operator and the observation and model covariance matrices are used in the Kalman equations to calculate the analysis fields. In order to reduce biases between multiple instruments, an ozonesonde-based bias correction has been developed. For this correction, only sondes collocated with cloud free retrievals (i.e. cloud fraction < 0.2) have been used. This correction is applied to the L2 data before the assimilation, meaning that the ozonesonde measurements involved (from 64 stations) cannot be used for the Ozone_cci L4 comparative validation exercise (see Section 5.6) as FRM used for comparisons have to be independent of the validated product.
3 Validation approach and reference data

3.1 Quality assessment of atmospheric satellite data

This work adopts the exhaustive seven-step satellite data quality assessment approach presented in Keppens et al. (2015), as schematised in its Appendix A. This approach includes (1) satellite data collection and post-processing, (2) dataset content study, (3) information content study, (4) FRM data selection, (5) co-located datasets study, (6) data harmonisation of data representation in terms of vertical sampling and units, and (7) comparative analyses including dependences on physical influence quantities of relevance. The satellite data collection and post-processing (mainly L2 profile screening) is described by the previous section. The L2 datasets have however been reduced to 300 km ground station overpass datasets for the quality assessment in this work, in order to reduce the total amount of data processing (i.e. satellite pixels must be within a 300 km radius from a FRM station). The FRM data selection, co-located datasets study, and data harmonisation are therefore included as the successive subsections within this section. The resulting satellite data content studies and information content studies are discussed in the next Section 4. These include statistics on the L2 station overpass data screening and spatiotemporal coverage, and averaging kernel-based information content measures, respectively. The FRM data selection, co-located datasets study, and data harmonisation on the other hand are included as the successive subsections within this section. The comparative analysis with both spatially and temporally co-located FRM data follows later in Section 5.

3.2 Ground-based reference data selection

Ground-based data records from the well-established Network for the Detection of Atmospheric Composition Change (NDACC), Southern Hemisphere Additional Ozonesonde programme (SHADOZ), and other ozonesonde and lidar stations contributing to the World Meteorological Organisation’s Global Atmosphere Watch (WMO GAW) ozonesonde and lidar networks are used as a transfer standard against which the nadir ozone profile retrievals are compared. Like for the satellite data, and prior to searching for co-locations with satellite ECV data, data screening has been applied to the FRM. The recommendations of the ground-based data providers to discard unreliable measurements are thereby followed, both on entire profiles and on individual vertical levels. Measurements with unrealistic pressure, temperature, or ozone readings are rejected automatically. Ozonesonde measurements at pressures below 5 hPa (above 30-33 km) and lidar measurements outside of the 15-47 km vertical range are rejected as well. The raw ozonesonde profiles retrieved from the public NDACC, SHADOZ data archives and World Ozone and UV Data Centre (WUDC) are moreover quality-screened according to the criteria outlined in Hubert et al. (2016) for a similar analysis on space-borne limb observations of atmospheric ozone: Entire FRM profiles are discarded when more than half of the levels are tagged bad or when less than 30 levels are tagged good. The resulting spatio-temporal distribution of ground-based observations is summarised in Figure 2. Despite the higher concentration of FRM in the northern mid-latitudes (20-60°) and before 2014, the distribution is sufficiently homogeneous to consider global comparison statistics and to enable drift assessments.
The uncertainties related to the sonde and lidar FRM used in this work are discussed in Keppens et al. (2015) and Hubert et al. (2016). Essentially, ozonesondes measure the vertical profile of ozone partial pressure with order of 10m vertical sampling (100–150m actual vertical resolution) from the ground up to the burst point of the balloon, usually between 30 and 33 km. Their estimated bias is smaller than 5%, and the precision remains within the order of 3%. Above 28 km the bias increases for all sonde types. Below the tropopause, due to lower ozone concentrations, the precision decreases slightly to 3-5%, depending on the sonde type. The tropospheric bias also becomes larger, between 5 and 7%. Stratospheric ozone lidar systems are sensitive from the tropopause up to about 45-50 km altitude with a vertical resolution that declines with altitude from 0.3 to 3-5 km. The estimated bias and precision are about 2% between 20 and 35 km and increase to 10% outside this altitude range where the signal-to-noise ratio is smaller.

![Figure 2: Latitude-time sampling (1996-2016) of the ground-based ozonesonde (red dots) and stratospheric ozone lidar (blue dots) measurements, obtained from the NDACC, SHADOZ, and WOUDC reference network databases.](image)

3.3 Co-location and harmonisation of satellite and reference data

From all quality-approved L2 nadir ozone profile data, only those that are located within a certain radius of an NDACC, SHADOZ, or GAW ozonesonde or stratospheric lidar station location are retained for further analysis. This radius is adapted to the ground pixel size of each spaceborne instrument, in such a way that the ground-based station is roughly located within the satellite pixel (see Table 4). The possible satellite pixel index (SPI) values within each cross-track scan and the resulting number of pixels per scan are provided for each instrument in Table 4 (taking into account pixel co-adding, see Section 2). Additionally, only co-locations with a maximal time difference of 6 hours for ozonesondes and 12 hours for lidars are allowed. These time windows are chosen to generally have at least one satellite co-location with each FRM, given the satellite’s fixed local solar time (LST, also see Section 2.1) and the fact that ozonesondes are typically launched around local noon, while lidar measurements are taken during the night. When multiple L2 satellite pixel co-locations with one unique ground-based measurement occur, only the closest satellite measurement is kept. For the L3 and L4 nadir ozone
profile data, only the grid cell that overlaps with the ground-based station location is considered. All FRM within this grid cell and within one the relevant month are included in the analyses for the L3 comparisons. For the six-hourly assimilated L4 data, the unique temporally closest ground-based reference measurement is always less than 3 hours away.

Calculating difference profiles also requires harmonisation of the satellite and reference ozone profiles in terms of at least their unit representation and vertical sampling (Keppens et al., 2015). While ozonesondes report measurements in partial pressure, easily converted into volume-mixing-ratio (VMR) units and also in number-density (ND) using the on-board PTU measurements, the lidar data are given in number density and in general the files do not provide associated temperature profiles for a beforehand ND to VMR conversion. The latter has therefore been accomplished by consistently applying pressure and temperature fields that were extracted from the latest ERA-Interim reanalysis. Moreover, if there is no GPS altitude data in the ozonesonde data files, the altitude scale is reconstructed via the hydrostatic equation from the pressure and temperature recordings by the radiosonde attached to the ozonesonde. The number density profiles are integrated to partial column profiles by use of these corresponding altitude grids. The partial column profiles are then converted to the fixed satellite vertical grids by use of mass-conserved regridding, meaning that the integrated ozone column between the outer vertical edges is conserved (Langerock et al., 2015).

The optimal estimation method used in the RAL and FORLI retrieval systems consists in minimizing the difference between the measured atmospheric spectra and spectra simulated by a radiative transfer code (forward model). Since the retrieval is performed at higher vertical sampling than the actual amount of independent pieces of profile information available from the measurement, the retrieval is in general under-constrained and consequently unstable. Retrieval schemes therefore include additional constraints, e.g. in the form of a-priori information on the profile, its shape and its allowed covariance. As a result, the retrieved quantity is a mix of information contributed by the measurement and of a-priori information, as represented in its vertically correlated averaging kernels. The satellite Level-2 and ground-based profiles’ vertical smoothing is in this work by default harmonised (i.e. reducing the vertical smoothing difference error) by averaging kernel smoothing of the FRM with the co-located averaging kernel (Keppens et al., 2015). The mass-conservation regridded ground-based profile \(x_g \) is thereby converted into its vertically smoothed form \(x_g' \) by multiplication with the satellite profile’s averaging kernel matrix \(A \) (in partial column units), yet taking into account the kernel’s sensitivity to the prior profile \(x_p \) of the optimal estimation retrieval:

\[
x_g' = Ax_g + (I - A)x_p
\]

The reference profile hence becomes a vertically smoothed combination of the ground-based measurement (by multiplication with \(A \)) and the prior profile (by multiplication with \(I - A \), with \(I \) being the unit matrix of dimensions \(A \)) (Rodgers, 2000).
Table 4: Local solar time (LST), possible scan pixel indices (SPI, with number of pixels per scan between brackets), ground pixel size, co-location distance, and temporal range of the comparative analysis. The asterisk with the Metop-B instruments indicates that the corresponding time series are not sufficiently long for drift studies. Next to the spatial co-location, a selection of the closest satellite measurement in time within 6 h for ozonesondes and 12 h for lidars takes place.

4 Nadir ozone profile retrieval content

4.1 Data content

The nadir ozone profile CRDP L2 data content study focuses on the spatiotemporal distribution and the effect of screening of the retrieved satellite profiles in the first place, next to the regular file structure, file content, and value checks for the quantities of highest relevance (also see Table 3). Figure 3 displays the latitude-time distribution per 10° latitude band and per month of the relative amount percentage of screened profiles for all nadir profile L2 station overpass (300 km) datasets (except for IASI on Metop-B). The data that are screened fail the filtering criteria suggested to data users as described in Table 3 and are therefore omitted from further analysis. Where the screening goes from 0 % (all data passes, in blue) to 100 % (no data passes, in red), one could equally insightfully interpret the plots as showing the spatiotemporal coverage of the satellite data ranging between 100 % (full coverage, in blue) and 0 % (no coverage left, in red), respectively.

The screening for the GOME and SCIAMACHY instrument retrievals is quite high (60-80 % on average), mainly due to the cloud screening that rejects all effective cloud fractions above 20 %. The lack of GOME data in the southern mid-latitudes from 2003 onwards is due to severe screening of L2 overpass data for ground stations that are all located near the South-Atlantic anomaly (SAA). The ECF has less impact on the GOME-2 and OMI instruments, but the solar-zenith angle screening (if higher than 80°) still causes meridian and seasonal coverage variations. Moreover a latitudinal striping can be observed for all UV-VIS instrument distributions, although this is partially due to the satellite pixel co-adding before retrieval and the 300 km station overpass data selection afterwards. The decreased GOME-2B availability from June 2015
onwards points at a retrieval issue and justifies additional screening, as shown in Table 3. The IASI screening on the other hand appears very low, yet this is due to the pre-screening by the product providers before data delivery, i.e., mainly the IASI cloud screening (if the fraction is higher than 13 %) cannot be observed from the plots, but is roughly of the same order as the UV-VIS data screening. Only the seasonality of the tropospheric ozone screening (ratio of the 6 km integrated column to total integrated column > 0.085) becomes clear near the Antarctic. The IASI-B availability is fully similar to IASI-A (and overlapping in time) and therefore not shown.

Figure 3: GOME, SCIAMACHY, GOME-2A, GOME-2B, OMI, and IASI-A (left to right and top to bottom) latitude-time distribution of relative data screening, taking into account the quality flags presented in Table 3. The decreased GOME-2B availability from June 2015 onwards points at a retrieval issue justifies additional screening. IASI-B is fully similar to IASI-A.
4.2 Information content

4.2.1 Information quantities

Each quantity that is retrieved using the optimal estimation technique contains information both from the satellite measurement and from the a-priori profile and covariance matrix. The contribution of prior information can be significant where the measurement is weakly or even not sensitive to the atmospheric ozone profile, e.g. in case of fine scale structures of the profile, below optically thick tropospheric clouds, and at the lower altitudes. The information distribution is captured by the retrieval’s ex-ante vertical averaging kernel matrix A (sometimes also AKM hereafter), which represents the sensitivity of the retrieved state \hat{x} to changes in the true profile x_t at a given altitude:

$$A(m,n) = \frac{\partial \hat{x}(m)}{\partial x_t(n)}$$ \hspace{1cm} (4)

A study of the algebraic properties of this averaging kernel matrix, denoted information content study, can help understanding how the system captures actual atmospheric signals. Through straightforward analysis however, it can be easily demonstrated that typical information content measures as discussed in this section usually depend on the units of the averaging kernel matrices they are calculated from (Keppens et al., 2015). As these measures however should be unit-independent, fractional AKMs A_F must be considered.

From Eq. (4), the fractional AKM is calculated by dividing the nominator and denominator by the corresponding retrieved and true ozone profile value, respectively. As the true profile however is not known, it is replaced by its best available estimate $\langle x_t \rangle$ being again the retrieved profile:

$$A^{RAL}_F(m,n) = A(m,n)x_t(n)\hat{x}^{-1}(m) \approx A(m,n)\langle x_t(n)\rangle\hat{x}^{-1}(m) = A(m,n)\langle \hat{x}(n)\rangle\hat{x}^{-1}(m)$$ \hspace{1cm} (5)

This approach is directly used for determining the fractional averaging kernel matrices in the UV-VIS RAL v2.14 retrieval products, wherefrom the RAL superscript. The FORLI v20151001 algorithm that performs the thermal infrared retrievals however, performs a unit-independent optimal estimation that immediately yields fractional AKMs. These fractional matrices are made unit-dependent by use of the prior profile before saving into the data files, allowing for more straightforward application (e.g. for vertical smoothing operations) by data users. For the information content studies presented here, this defractionalisation operation therefore has to be inverted:

$$A^{FORLI}_F(m,n) = A(m,n)x_p(n)x_p^{-1}(m)$$ \hspace{1cm} (6)

Hereafter, starting from the averaging kernels provided as part of the Ozone_cci CRDP L2 nadir ozone profile products, the degree of freedom in the signal (DFS) and the vertical sensitivity are studied. These quantities are given by the fractional AKM trace and row sum profile, respectively. The DFS of a retrieved atmospheric profile is a non-linear measure for the number of independent quantities that can be determined and as such loosely related to the Shannon information content (Rodgers, 2000). The vertical sensitivity to the measurement is a unit-normalised measure for how sensitive the retrieved ozone value at a certain height is to ozone values at all heights. According to Rodgers (2000) p. 47, measurement sensitivity “can be thought of as a rough measure of the fraction of the retrieval that comes from the data, rather than from the a-priori”.
Note however that the sensitivity at a specific retrieval level can nevertheless be negative or exceed unity (over-sensitivity) due to kernel fluctuations and correlations between adjacent retrieval levels, as reflected in the kernel width (see below).

Besides the more common DFS and sensitivity information content quantities, in this work the vertical averaging kernels’ offset and width are considered as well. The offset is an estimate of the uncertainty on the retrieval height registration, given either by the direct vertical distance (in km) between an averaging kernel’s peak sensitivity altitude z_{peak} and its nominal retrieval altitude z_{nom} as $d(m) = z_{\text{peak}}(m) - z_{\text{nom}}(m)$ or as the so-called centroid offset $d_c(m) = c(m) - z_{\text{nom}}(m)$ (Rodgers, 2000) with

$$c(m) = (\sum_n z(n) A^2_k(m, n) \Delta z(n)) (\sum_n A^2_k(m, n) \Delta z(n))^{-1}$$

(7)

Ideally, within each kernel, this distance equals zero.

Ozone_cci user requirements also specify an upper limit of the vertical resolution of the nadir ozone profile retrievals. In the literature different methods have been proposed to estimate the vertical resolution from the width of the vertical averaging kernels (see overview in Keppens et al., 2015), but usually it is determined either as a full width at half-maximum (FWHM) value around the kernel’s peak altitude or as the Backus-Gilbert spread (BG) or resolving length around its centroid:

$$w_{BG}(m) = 12 (\sum_n [c(m) - z(n)]^2 A_k^2(m, n) \Delta z(n)) (\sum_n A^2_k(m, n) \Delta z(n))^{-2}$$

(8)

Whereas an averaging kernel’s direct offset and FWHM width only take into account its central sensitivity peak, Eqs. (7) and (8) point out that the centroid offset and BG-spread include all vertical kernel information. As a result, the centroid at a given altitude can be considered a measure of the overall retrieval barycentre for that altitude, with the Backus-Gilbert spread showing the retrieval’s full extent, also taking into account sensitivity fluctuations. Other information content diagnostics, such as the measurement quality quantifier (MQQ) and the AKMs’ eigenvectors and eigenvalues, have previously been studied but are not reported here (Keppens et al., 2015).

4.2.2 Degrees of freedom in the signal

Figure 4 displays the latitude-time distribution per 10° latitude band and per month of the median DFS for all nadir profile L2 datasets (except for IASI on Metop-B). RAL’s UV-VIS DFS is typically around 5, with the lowest values for SCIAMACHY (4 to 5) and the highest for OMI (5 to 5.5), and quite stable in time, reflecting the signal degradation correction that is incorporated within the RAL v2.14 retrieval algorithm. This correction maintains the instrument’s signal-to-noise ratio close to its initial level and hence reduces the effect of the instrument degradation on the retrieval’s DFS.

Seasonal DFS variations amount to about 0.5, which is approximately the same as the DFS decrease per decade, except for the more stable OMI retrieval. The temporal DFS behaviour is also reflected in the AKMs’ eigenvalues and eigenvectors (not included). More exceptional are the 2 to 3 DFS outliers for SCIAMACHY, which typically occur in the South-Atlantic Anomaly (SAA) due to stratospheric intrusion of high-energetic particles (the tropospheric DFS is mostly maintained). Such SAA outliers also occur in other instrument retrievals, but to a lesser extent (also see next sections). Also note that the decreased retrieval performance for GOME-2B from June 2015 (eventually resulting in its total screening) actually has little

15
effect on its DFS behaviour. Due to its stronger meridian and seasonal dependence, the FORLI TIR median DFS for IASI-A ranges between 2 towards the poles and 4 towards the equator. The overall degradation however is negligible as for OMI. The IASI-B spatiotemporal DFS behaviour is fully similar to IASI-A (and overlapping in time) and therefore not shown.

![Figure 4: GOME, SCIAMACHY, GOME-2A, GOME-2B, OMI, and IASI-A (left to right and top to bottom) latitude-time distribution of degrees of freedom in the signal (DFS). IASI-B is fully similar to IASI-A.](image)

4.2.3 Height-resolved information content

Exemplary plots containing the global GOME-2A (left column) and IASI-A (right column) information content in terms of vertical sensitivity, retrieval offset, and averaging kernel width are displayed in Figure 5. Their dependence on DFS, solar zenith angle (SZA), or thermal contrast (TC) is introduced by the plot colour, whereby profiles corresponding to out-of-
range (OOR) influence quantity values are plotted in magenta. The other RAL v2.14 UV-VIS and FORLI v20151001 TIR retrieval products show similar statistics, respectively.

The vertical sensitivity profiles, which are the same in all three plots for each product, are close to unity around the ozone peak and above (25 to 45 km) for all retrieval products under consideration. Typically the sensitivity decreases above and below due to the smaller ozone concentrations (therefore the vertical range is limited to 50 km), but the actual behaviour strongly depends on the retrieval algorithm. The RAL retrieval usually results in a very strong over-sensitivity around the upper troposphere and lower stratosphere (UTLS), with a median value of 3. This peak partially compensates for the under-sensitivity right above and below, with the sensitivity dropping down to about 0.5 in the lowest 0-6 km column. The peak value moreover heavily correlates with the SZA, as one can expect for an UV-VIS retrieval algorithm. On the other hand, some RAL sensitivity profiles quickly decrease to zero when going from 25 to 40 km altitude. These are connected to very low DFS values (around two or below), as identified to occur around the SAA. Most of the retrieval information in these profiles is therefore located around the UTLS and in the troposphere.

The IASI instrument retrievals do not show this stratospheric decline for excessively low DFS values, but instead show sensitivity outliers around the UTLS, ranging from below -1 to above 2. Although the overall IASI sensitivity variability is strongest around the equator, these outliers typically occur in the polar regions, as can be expected from Figure 4, and go together with excessively high retrieved ozone peaks. The strong sensitivity variability, pointing at outliers in the averaging kernel matrices, in general hampers the averaging kernel smoothing of the reference profiles before comparison (see Eq. (3)), as this procedure then introduces a bias instead of reducing the vertical smoothing difference error. Usually however, except for decreased surface-level sensitivity (0.5) and a median 1.5 peak around the UTLS with slight compensation above and below, the FORLI v20151001 sensitivity is more vertically consistent.

Also according to Figure 5, little difference can be observed between the median UV-VIS retrieval offset in terms of its direct and centroid measures. The height registration uncertainty remains below 10 km (except again for the low DFS values), being negative in the upper stratosphere and positive towards the Earth’s surface, as can be expected for any nadir ozone profile retrieval. Note however that the direct offset is more discrete than the Backus-Gilbert (BG) spread due to its one-to-one connection with the vertical retrieval grid steps. This discreteness of the direct offset is even clearer for the FORLI IASI retrievals that are performed on a fixed 1 km vertical grid. The direct offset here is lower than the centroid offset on average, but amplifies some of the latter’s features, like the peak and jump around 5 and 25 km altitude, respectively. The FORLI IASI height registration uncertainty in terms of the centroid offset steadily increases from zero at 40 km to about 30 km near the surface, meaning that the retrieval barycentre altitude is decreasing slower than the nominal retrieval altitude. The dependence on DFS and thermal contrast however is rather small.

The behaviour of an averaging kernel’s sensitivity and offset is typically also reflected in its width. Figure 5 demonstrates that the RAL retrieval’s sensitivity peak in the UTLS goes together with a strongly increasing Backus-Gilbert spread, exceeding 60 km towards the Earth’s surface. The median FWHM width staying below 15 km indicates that the high BG-spread values are due to fluctuations in the averaging kernels of the retrieval, showing several highs and lows next to the
peak value. At higher altitudes, the median \textbf{BG} kernel width decreases first to about 20 km, and further to 10 km in the upper stratosphere, although individual results strongly depend on the SZA. From the low up to the middle latitudes the resolving length shows little seasonal variation, but from the mid-latitudes to the polar areas an annual variation indeed appears clearly from the ground up to the lower stratosphere, with maxima in winter and minima in summer (not shown). This conduct correlates directly with the annual variation of the slant column density (highest in winter and lowest in summer) and thus of the sensitivity.

The connection between averaging kernel offset and width is even stronger for FORLI’s v20151001 TIR retrieval scheme. At 25 km and below, where the offset shows fluctuations, the Backus-Gilbert spread is strongly variable and its median explodes, although acceptable values of the order of 15 km are found above 25 km altitude. As for the RAL retrieval scheme, the median FWHM width staying around 10 km overall indicates that the high BG-spread values are not due to the presence of a single broad sensitivity peak, but rather to strong fluctuations in the averaging kernels that are again little dependent on DFS or thermal contrast. Like already observed for the IASI vertical sensitivity, the strongest averaging kernel width variability occurs in the tropics.
Figure 5: Global GOME-2A (left) and IASI-A (right) information content in terms of vertical sensitivity, retrieval offset (in km), and averaging kernel width (in km) and their dependence on DFS, SZA, or thermal contrast (TC). Black dashed lines represent median values, while out-of-range profiles are plotted in magenta. Different measures are used for the offset and kernel width in the second and third rows, which include the centroid offset (c. offset) and Backus-Gilbert spread (BG), and the direct offset (d. offset) and FWHM, respectively. Plot titles provide the absolute and relative amounts of profiles after screening, and the number of ground-based overpass stations.
5. Ground-based comparisons

5.1 Comparison statistics

The baseline output of the L2 validation exercises consists of median absolute and relative nadir ozone profile differences at individual stations or within latitude bands for the entire time series. This median difference is a robust (against outliers) estimator of the vertically dependent systematic error, i.e. the bias, of the satellite data product. The bias profiles for the entire list of stations are then combined and visualized as a function of several influence quantities in order to reveal any dependences of the systematic error. The influence quantities considered in this work are latitude (for meridian dependence), quarter (for seasonal dependence), being December-January-February (DJF), March-April-May (MAM), June-July-August (JJA), and September-October-November (SON), total ozone column (TOC), DFS, SZA, scan pixel index, (effective) cloud fraction (for the UV-VIS products), thermal contrast (for the TIR products), and time. The latter actually results in drift studies, i.e. the annual or decadal bias change of the satellite product with respect to the ground-based reference time series.

Besides the median difference, also the Q84-Q16 or 68 % interpercentile spread (IP68) on the differences is calculated as a robust estimator of the random errors in the satellite data product, i.e. the precision profile. However, this spread on the differences will also include contributions from ground-based random uncertainties (limited to a few percent, as indicated in Section 3.2) and representativeness (sampling and smoothing) differences between the satellite and reference measurements, and therefore in fact provides an upper limit on the actual satellite uncertainty. In case of a normal distribution of the ozone differences, median and IP68 are equivalent to mean and standard deviation, but they offer the advantage to be much less sensitive to occasional outliers.

The long-term stability of the systematic errors in the ozone data products is a key user requirement. Robust linear regressions including an uncertainty estimate based on a bootstrapping approach (Hubert et al., 2016) are performed on the satellite-ground difference profiles for all stations within the predefined latitude bands or on the global scale. The uncertainty on the global drift that is as such introduced by inhomogeneities across the ground-based network is of the order of about 5 % per decade, but in fact partially covered by the confidence interval obtained by the bootstrapping. This value was estimated from the standard deviation on the ensemble of single-station drift estimates in ground-based comparisons with limb sounding instruments by Hubert et al. (2016), who use the same quality-checked selection of FRM stations. To avoid spurious effects due to a seasonal cycle in the differences, only time series of five or longer are used for this drift assessment. Therefore Metop-B GOME-2 and IASI instruments are excluded from the drift studies (indicated with an asterisk in Table 4). Moreover, only fully available years of the satellite datasets have been considered for comparative analysis in order not to introduce seasonal effects at the beginning and the end of each time series. This is with the exception of the Metop-B GOME-2 and IASI instruments however, that have not been used for drift studies (indicated with an asterisk in Table 4).

Due to its six-hourly assimilated content, the L4 comparative validation approach is fully similar to the L2 statistics described above. The strongly reduced amount of parameters in the L4 data product files however, reduces the number of
influence quantity dependences that can be studied. These have therefore been limited to the latitude, and quarter, and time (drift). Next to that, as vertical averaging kernel matrixes are only available for the L2 retrieved data, no averaging kernel smoothing can be applied before comparison. Yet as mentioned in Section 2.5, the L2 averaging kernel matrices are incorporated into the equations to calculate the analysis fields. Also remember that the satellite instrument bias correction by use of ozonesonde measurements, the 64 stations involved are not used for the L4 comparative validation exercise.

The situation is quite different for the validation statistics of the L3 monthly gridded averages. No L2 averaging kernels are used for the data generation and no merging or bias correction are implemented. The satellite-based and one-by-one degree gridded nadir profile level-3 data x^{L3}_s can be compared with spatially co-located ground-based reference profiles x_r directly, or with monthly (gridded) averages $\langle x_r \rangle$ of the latter (i.e. a ground-based level-3-type dataset). Yet both approaches introduce similar spatial and temporal representativeness errors into the difference statistics that upon because taking (monthly) averages as a bias estimator $\langle \Delta x \rangle$ yields comparable outcomes:

$$\langle \Delta x \rangle = N_m^{-1} \left[\left(x^{L3}_s - x_{r,1} \right) + \left(x^{L3}_s - x_{r,2} \right) + \cdots + \left(x^{L3}_s - x_{r,m} \right) \right] = x^{L3}_s - \langle x_r \rangle \tag{9}$$

For sufficiently fine-gridded L3 data, the comparisons can therefore be limited to direct differences with ground-based reference measurements, if one additionally only considers ground-based stations with a sufficient number N_m of valid measurements per month. This number has been set to six (per month, or about at least one measurement each five days) in the L3 validation presented in this work. As such, an implicit averaging of at least six ozonesonde or lidar measurements per month is introduced in the comparison statistics. The one-by-one degree box that overlaps with the ground measurements is thereby taken as the co-located measurement. Thanks-Due to this high horizontal resolution of the Ozone_cci L3 satellite nadir ozone profile products and the constraint on the temporal representativeness of the ground-based data, representativeness errors are thus kept to a minimum.

5.2 L2 UV-VIS nadir ozone profiles

In this section comparison results between L2 RAL v2.14 nadir ozone profiles and ground-based ozonesonde and lidar measurements are reported in the form of statistics on the median relative difference (bias) and 68 % interpercentile spread of ozone differences as a function of several influence quantities. Figure 6 to Figure 10 contain the results for GOME, SCIAMACHY, GOME-2A, GOME-2B, and OMI, respectively, as a function of latitude, quarter, total ozone column, DFS, SZA, scan pixel index, and effective cloud fraction. Note that the number of comparisons (shown in each plot title) is higher for the latter as the ECF filter has been switched off. Estimates of the relative satellite errors provided with the RAL v2.14 products have been added to the graphs (grey lines), in order to discuss them with respect to the ozone differences and spreads. In each plot the third subgraph displays the median sensitivity of the retrieved ozone profile as a function of altitude (and the relevant influence quantity), as calculated from the fractional RAL v2.14 vertical averaging kernels.
Before discussing the comparison results in terms of influence quantities, it is interesting to note that the vertical averaging smoothing of the ground-based reference data with averaging kernels mostly yields qualitatively similar bias and spread estimates as when merely the regridded data are considered (not included). The comparisons from regridded reference data however show a vertically oscillating structure (as smoothing difference error) that largely disappears for the kernel smoothed comparisons. This structure is strongest around the Tropics, yielding significant differences between the regridded and smoothed data, mostly due to a positive bias peak just below 20 km for the regridded data. The corresponding comparison spreads indicate that the random uncertainty on the bias is reduced by about 10% on average by applying the averaging kernel smoothing. This value provides a rough estimate of the vertical smoothing difference error between the ground-based reference data on the one hand and the satellite data on the other hand.

Focussing on the comparisons involving averaging kernel smoothed partial column profiles, one observes that generally the five RAL v2.14 UV-VIS retrieval products agree similarly with the ground-based data, showing a rather typical Z-curve with zero biases approximately at 5 and 25 km altitude (the third around 55 km is not on the plots because of the sparseness of the FRM data availability above 50 km). The negative bias peak in the UTLS and above (5 to 25 km) and the positive bias peak in the upper stratosphere (between 25 and 55 km) both amount to about 20 to 40%. Comparison results for the 0-6 km subcolumn show that the bias again shifts towards 40% positive values in that layer, with the exception of the OMI instrument that keeps its median tropospheric bias within 10%. The sensitivity for this lowest layer however is reduced to about 0.5, meaning that generally about 50% of the retrieval information comes from the prior profile rather than from the measurement. In the 0 to 45 km altitude range, the UV-VIS nadir ozone profile comparison uncertainties in terms of the 68% interpercentile spread display a U-shaped curve with a minimum of about 10% around 25 km. The uncertainty increases to roughly 40% at 45 km, to slightly decrease again above, but rises even more strongly where the sensitivity profile peaks and towards the ground.

The individual L2 UV-VIS comparison graphs also contain information on the validity of ex-ante uncertainties provided for the satellite nadir ozone profile retrievals (thin grey lines). The relative random error reported in the RAL v2.14 data files amounts to about 5% at the altitude of the ozone maximum, up to about 10% at higher altitudes, and up to 40% in the lower troposphere. In theory the IP68 spread should be close to the combined uncertainty of the satellite data, the ground-based data, and metrology errors due to remaining differences in vertical and horizontal smoothing of atmospheric variability (including co-location mismatch errors). The latter is difficult to assess, but one can expect that the bias and spread estimates resulting from the comparisons including AK smoothing are close to the combined uncertainty of satellite and ground-based data, or at least the ex-ante satellite uncertainty in practice (Miles et al., 2015). The plots in Figure 6 to Figure 10 show that this is hardly the case (also see the discussion in the previous paragraph). The satellite measurement uncertainties provided in the product files do not cover the systematic and random uncertainties obtained by FRM comparisons (subtraction of the FRM uncertainties discussed in Section 3.2 does not make a difference). This means that the total satellite measurement and retrieval uncertainty is typically underestimated in the RAL v2.14 nadir ozone profile products, because the ex-ante uncertainty under consideration only includes random noise errors. The only exception is given.
by Only for the OMI tropospheric ozone data with a bias within 10 % does the combined uncertainty come close to that have a bias below their ex-ante uncertainty. The total ex-post satellite uncertainty is an unknown number because of precision ignorance, but can be estimated to range in between the combined (quadratic sum) bias and satellite random uncertainty and the combined bias and comparison spread (although the latter contains error contributions that are not part of the satellite observation, like co-location mismatch).

Looking at the dependence of the L2 UV-VIS product comparison results on the eight influence quantities shown in Figure 6 to Figure 10, one can observe that the latitude band and total ozone column have the biggest impact on the RAL v2.14 retrieval performance. Especially in the UTLS and the troposphere the comparison variability is very high, which is also reflected in the strong differences in spread between different influence quantity ranges. Smaller biases are typically obtained in the northern hemisphere and for intermediate to larger total ozone columns. The latter is indeed expected to result in an improved satellite measurement and retrieval sensitivity, and thus more stable averaging kernel behaviour with smaller vertical dependences. On the other hand, the DFS and SZA behaviour is somewhat smaller and, as one can again expect for UV-VIS observations, rather similar, with the higher solar zenith angles typically corresponding to the larger DFS values (mainly from the stratosphere), the largest stratospheric biases, and the smallest tropospheric biases. The latter could be due however to a somewhat reduced tropospheric sensitivity, bringing the retrieved profile closer to the prior profile. This effect is most clear for the GOME and SCIAMCHY instruments though, while the overall DFS dependence for the other instruments is less obvious. For all UV-VIS instruments except GOME-2B however, some satellite profiles with very low DFS, nearly-zero stratospheric sensitivity and high bias occur (mainly in the SAA, see previous sections). These profiles result from retrievals without stratospheric measurement information (hence the low DFS) and should appropriately be screened by users accordingly, e.g. using a DFS < 3 flag. Nadir ozone profiles flagged as such should then only be considered for tropospheric ozone monitoring or fully rejected because of the increased bias.

Again more or less in line with nadir ozone profile retrieval expectations, the comparison results depend little on the surface albedo and effective cloud fraction, except for the lowermost 0 to 6 km retrieval layer. Higher ozone concentrations logically correspond with lower cloud fractions and higher albedos. Note however that the ECF and surface albedo dependence is also reflected, yet inversely, in the UTLS, due to the typically high sensitivity peak in this region and the low compensation above. This effect is most clearly visible for the GOME-2B and OMI instruments. Instead of the full-profile effective cloud screening suggested by the RAL team now, one could thus apply layer screening up to the UTLS instead. Finally, for the UV-VIS retrievals under consideration the quarter and scan pixel index have hardly any effect on the comparison results, meaning that the RAL v2.14 retrieval algorithm copes with ozone seasonality and instrument viewing angle effects very appropriately.
Figure 6: Median relative differences, 68% interpercentile spreads, and vertical sensitivities for comparison of RAL v2.14 L2 GOME retrieved profiles with ground-based reference measurements (1996-2010). The same difference and information statistics are redistributed in each plot over several influence quantity ranges, with the influence quantities being (from left to right and top to bottom) latitude, quarter, total ozone column (DU), DFS, SZA, scan pixel index, surface albedo, and effective cloud fraction. The black dashed line shows the average of the coloured curves, while light grey lines indicate the satellite uncertainty provided in the product. The number of comparisons is higher for the latter as the ECF filter has been switched off.
Figure 7: As for Figure 6, but for RAL v2.14 L2 SCIAMACHY data (2003-2010).
Figure 8: As for Figure 6, but for RAL 2.14 L2 GOME-2A data (2008-2012).
Figure 9: As for Figure 6, but for RAL v2.14 L2 GOME-2B data (2013-2015).
Figure 10: As for Figure 6, but for RAL v2.14 L2 OMI data (2005-2015).
5.3 L3 UV-VIS monthly gridded ozone product

Median relative differences and 68% interpercentile spreads for comparison of L3 GOME, SCIAMACHY, GOME-2A, and OMI data with ground-based reference measurements are presented in Figure 11. The same difference statistics are redistributed for each instrument over two influence quantity ranges, with the influence quantities being the latitude and quarter. Note the high numbers of co-locations in the title of each plot, as for each ground-based reference measurement an overlapping L3 data grid cell can be identified. As can be expected, the median relative differences roughly follow the bias features of the respective L2 datasets for their comparison with ozonesonde and lidar data. These features, together with the corresponding spreads, however seem to be enlarged due to larger differences in spatiotemporal representativeness. The latter results from the lack of averaging kernel smoothing that reduces vertical smoothing difference errors and the limited amount of reference data measurements per month (although at least six, see previous sections). Note however that the lack of kernel smoothing instead reduces the L3 spread for the lowest level, which has a strongly reduced sensitivity in comparison with the levels above.

GOME level-3 data show an negative above-tropopause bias of 5-10 % positive to negative, with strong outliers around 70 hPa and 8 hPa, exceptions especially in the tropical UTLS and Antarctic local spring (up to 50 %) due to ozone hole’s vortex conditions. The corresponding spread is of the order of 10-30 %, with again outliers at the same two scenes. Especially during Antarctic spring (SON) the spread explodes to order of 100 %. Below the tropopause (100-200 hPa), GOME level-3 data show stronger negative and positive biases ranging between 10 and 30 %. Exceptions can be observed in the Arctic winter (DJF) and Antarctic spring (SON), with outliers ranging up to 60 % and -50 %, respectively. Corresponding spread values are of the order of 20-40 %, with the highest values again in Arctic winter.

The SCIAMACHY level-3 bias and spread values are very similar to those of the GOME level-3 comparison results. Only exceptions are the strong positive Arctic spring (MAM) bias in the troposphere (up to 40 %) and the availability of Antarctic winter (JJA) data showing a strong negative bias in the UTLS and above (-30 to -40 %). Also the GOME-2 instrument on-board Metop-A shows a performance that is very similar to the GOME instrument in terms of level-3 bias and spread. The only significant difference is in the bias during the northern and southern DJF quarter: GOME-2A outliers are much more negative (up to -50 %) for the lowest partial columns. OMI’s level-3 bias and spread again are very similar to those of the other three instruments, with the difference that the negative tropical tropospheric bias is more pronounced (-40 %) and a positive tropospheric bias (30-50 %) is introduced in the southern hemisphere during local winter (JJA).

Overall one could state that between about 10 hPa and the tropopause (100-200 hPa), relative differences and spreads are of the order of -5 % and 10-30 %, respectively, for all four instruments, while the troposphere shows a 10-40 % bias (both positive and negative) and spread. Strong outliers however occur, typically in the troposphere of the Arctic winter (DJF), in the equatorial UTLS (order of 50 % positive for all seasons and instruments), and in the Antarctic local winter (JJA) and spring (SON) due to strong ozone variability around the polar vortex.
5.4 UV-VIS L2 and L3 drift studies

Relative decadal drift and 68% interpercentile spreads for comparisons of L2 and L3 GOME, SCIAMACHY, GOME-2A, and OMI data with ground-based reference measurements are collected in Figure 12. As discussed in the previous section for their bias and spread behaviour, the similarity between the L2 and L3 UV-VIS drift results for the same instrument appears very clearly. Again however, features in the L2 statistics are enlarged for the L3 data due to larger differences in spatiotemporal representativeness (except for the lowest-level spread, see previous section).

The GOME L2 and L3 stratospheric drift typically do not exceed 10 %/decade values, with the exception of an almost 20 %/decade positive drift near the southern pole lower stratosphere and an equally large L3 peak around 35 km. Only the latter however is clearly significant in terms of the corresponding 95 % drift confidence interval (CI, as horizontal error bars). This can also be observed from the highly peaked (> 60 %) IP68 spread on the differences (right-hand panel in each plot of Figure 12). This peak indeed partially reflects the instrument’s drift, as the spread is not determined from the drift residuals but with respect to the overall median difference. A large drift will as such contribute to a large spread. The negative drift values appearing above 45 km are considered less trustworthy because of the lidar reference data sparseness. The GOME tropospheric drift equals about -5 % per decade on average, but at the lowest altitudes ranges from -20 %/dec. at the southern pole to 20 %/dec. near the equator. Yet again the L2 drifts remain within the CI and are therefore insignificant.

SCIAMACHY drift results strongly differ from the GOME observations: Although still mostly insignificant, the above-tropopause drift is of the order of -10 % per decade and shows the same L3 outlier at 35 km. Below the tropopause however, the drift ranges from about 20 %/dec. at the poles to 50-60 %/dec. towards the equator. This entails that in the mid-latitudes (both north and south) and tropics this drift is significant. The GOME-2A drift results come close to the SCIAMACHY drift performance, although the sub-tropopause drift is even stronger (around 50 %/decade) and significant globally. Besides, a
significant negative drift of the order of 30 %/dec. also appears in the UTLS, which is strongest around the equator, reaching -70 % per decade around 100 hPa.

Despite the occurrence of insignificant negative drifts in the northern hemisphere, the OMI L3 tropospheric drift is significantly positive (around 40 %/decade on average) in the southern hemisphere and the tropics, resulting in a global average L3 tropospheric drift of the order of 15 % per decade (see Figure 12). The L2 tropospheric drift equals about 5 to 10 %/dec. only and is close to insignificant. It is remarkable that the OMI L3 drift is typically 10 % negative in the UTLS (with -40 % per decade values around the equator), while in the stratosphere above an average 10 %/dec. positive drift can be observed. Both L2 and L3 show a negative close to 20 % per decade value just below 40 km. These results and their significance are in qualitative agreement with Huang et al. (2017) on the OMI PROFOZ retrieval product.

On the global scale, as shown in Figure 12, the decadal drift is order of 5 % negative and insignificant for GOME, and order of -15 % and 10 % insignificant (except for the tropics) for OMI’s L2 stratosphere and troposphere, respectively. A significant positive drift of the order of 40 % per decade is observed for SCIAMACHY and GOME-2A below the tropopause. GOME-2A moreover shows a significant 30 %/decade negative drift in the UTLS at all latitudes.
Figure 12: Relative decadal drift and 68% interpercentile spreads for comparisons of L2 (left) and L3 (right) GOME, SCIAMACHY, GOME-2A, and OMI data (top to bottom) with ground-based reference measurements. Two sigma error bars, resulting from a bootstrapping with 1000 samples, are added to the drift profiles.
5.5 L4 assimilated data

The L4 1996-2013 data, constructed by data assimilation at KNMI from merged RAL v2.14 GOME and GOME-2A observations, can be compared with ground-based reference profiles directly. The single two-by-three degree box that overlaps with the ground measurement within three hours is thereby taken as the co-located measurement. The number of co-locations and stations however is smaller than for the L3 data, as data from 64 ozonesonde stations (that have been used for satellite bias correction during assimilation) are omitted from the comparative analysis. Median relative differences and 68% interpercentile spreads for comparison of the L4 assimilated nadir ozone profile data with ground-based reference measurements are collected in Figure 13, redistributed over two influence quantity ranges (latitude and quarter). The corresponding relative decadal drift and overall 68% interpercentile spread profiles are added as well.

The most remarkable result that can be observed from the UV-VIS L4 comparison statistics is that, as a result of the model assimilation, the typical Z-shape of the L2 bias has disappeared. The L4 bias typically remains below 10 % (positive and negative) with the exception of a strong positive outlier around 5 hPa (as for the L3 data) and the surface boundary layer, and a 20 % positive to negative fluctuation around the UTLS that is strongest in the tropics (~ 50 % positive for all seasons, with a similar but smaller only positive bias feature in the southern hemisphere). This entails that the L2 and L3 comparison features in the Antarctic spring (SON) with ozone hole conditions and in most of the troposphere have been strongly reduced. The L4 spread remains close to the L2 and L3 values, though with an even stronger reduction (to 20 %) in the troposphere than the L3 comparisons as no monthly averages are considered. Moreover, due to the ozonesonde-based bias correction the remaining L4 drift is of the order of a few percent only and insignificant, i.e. within the 95 % CI, for all altitudes up to about 40 km globally.

Figure 13: Median relative differences and 68% interpercentile spreads for comparison of L4 assimilated nadir ozone profile data with ground-based reference measurements (top and middle). The same difference statistics are redistributed over two influence quantity ranges, with the influence quantities being the latitude (top) and quarter (middle). The black dashed line shows the average of the coloured curves, while light grey lines indicate the satellite uncertainty provided in the product. The bottom plot shows the corresponding relative decadal drift and 68% interpercentile spread. Two sigma error bars, resulting from a bootstrapping with 1000 samples, are added to the drift profile.
5.6 L2 TIR nadir ozone profiles

As for the L2 RAL v2.14 UV-VIS retrievals, Figure 14 and Figure 15 now contain the median relative differences, 68% interpercentile spreads, and vertical sensitivities for the comparison of FORLI v20151001 retrieved IASI profiles with ground-based reference measurements (IASI-A for 2008-2015, IASI-B for 2013-2015).

Difference and information statistics are again redistributed in each plot over several influence quantity ranges, with the influence quantities now being the latitude, quarter, total ozone column (DU), DFS, SZA, scan pixel index, and thermal contrast. For IASI-A in Figure 14, the corresponding relative decadal drift and overall 68% interpercentile spread are also added.

As already pointed out in the information content studies, the IASI-A and IASI-B results are very similar, showing no significant differences between their respective statistics. Overall the FORLI v20151001 IASI retrieval data products show a less than 10% and insignificant stratospheric bias, a 10 to 30% positive bias in the UTLS, and an order of 10% negative bias in the troposphere. The latter is in agreement with an initial IASI tropospheric ozone (also retrieved with FORLI v20151001) validation exercise using ozonesonde reference measurements performed by Boynard et al. (2016). Possible reasons for the UTLS bias are discussed in Dufour et al. (2012). Taking into account the FRM uncertainties discussed in Section 3.2, the ex-ante IASI uncertainties provided in the product files (light grey lines in the plots) are typically of the order of the bias, except in the UTLS. The ex-post random uncertainty, as estimated by the spread, is roughly twice as large, except for the lower tropics. This means that overall the total satellite measurement and retrieval uncertainty is underestimated in the IASI FORLI v20151001 nadir ozone profile products. The comparison results show hardly any scan angle dependence or seasonality, except for some larger systematic differences around the Antarctic ozone hole that can be partially attributed to co-location errors at the edge of the polar vortex. The remaining meridian dependences are typically limited to stronger UTLS bias fluctuations in the tropics.

Both the polar sub-tropopause and tropical UTLS outliers seem to go together with a thermal contrast dependence of the differences (clearer for IASI-A than for IASI-B) that also agrees with the sensitivity dependence. One would expect the thermal contrast to be mainly influential in the lowermost layers, but the information content studies on the IASI product have indeed demonstrated that the corresponding averaging kernels show significant vertically interdependent oscillations. Therefore the polar sensitivity outliers around 30 km altitude can be related to the strongly negative thermal contrasts and typically go together with very low DFS values (below two, suggesting screening upon this threshold) and strong ozone over-estimations. The latter is again clearer for the longer IASI-A time series, wherein the highest total ozone column profiles have the lowest DFS values. Finally, differences can be observed between the IASI day-time (SZA < 83°) and night-time (SZA > 91°) measurements, which are most clear for the largest solar zenith angles (140 to 180°). Due to the small numbers of co-locations for the latter however, it is difficult to attribute any significance to these differences.

Looking at latitude-resolved drift studies for the Ozone_cci IASI-A nadir ozone profiles (not shown), a significant decadal negative drift of the order of 25% or higher can be observed in the Antarctic UTLS and the northern hemisphere.
troposphere. On the global scale (see Figure 14), the significance of these drifts remains in terms of the corresponding 95% drift confidence intervals (horizontal error bars) and is again reflected in the peaked UTLS IP68 spread on the differences (40%) as the spread is not determined from the drift residuals but with respect to the overall median difference. A less pronounced positive drift is detected around 30 km altitude. Part of the overall negative tropospheric drift of the FORLI v20151001 IASI retrievals could however be due to a change in the processing of the IASI L2 processor (e.g. temperature profile) at EUMETSAT that changed to version 5.0.6 in September 2010. This idea is supported by Boynard et al. (2017), who have observed that the IASI-A FORLI v20151001 tropospheric drift becomes statistically insignificant if calculated from the Sept. 2010 to 2016 period retrievals only.
Figure 14: Median relative differences, 68% interpercentile spreads, and vertical sensitivities for comparison of FORLI v20151001 L2 IASI-A retrieved profiles with ground-based reference measurements (2008-2015). The same difference and information statistics are redistributed in each plot over several influence quantity ranges, with the influence quantities being (from left to right and top to bottom) latitude, quarter, total ozone column (DU), DFS, SZA, scan pixel index, and thermal contrast. The black dashed line shows the average of the coloured curves, while light grey lines indicate the satellite uncertainty provided in the product. The bottom right plot contains the corresponding relative decadal drift and 68% interpercentile spread. Two sigma error bars, resulting from a bootstrapping with 1000 samples, are added to the drift profile.
Figure 15: As for Figure 14, but for FORLI v20151001L2 IASI-B data (2013-2015). Because of the limited temporal extent of this product, no drift study has been performed.

5.7 L3 TIR monthly gridded tropospheric ozone product

Time series of median relative differences (in solid blue), spreads (in dashed blue), and linear drift (green) for direct comparisons of the IASI-A level-3 monthly gridded mean tropospheric ozone column data (integrated from 0 to 6 km) with integrated ozonesonde reference data (at stations with at least six valid measurements per month) are determined within five latitude bands and plotted in Figure 16. The yearly linear drift value and its 95% confidence interval as an uncertainty estimate on the derived slope are both determined from a bootstrapping technique using 1000 subsamples and are added in the lower-left corner of each graph.

The IASI-A TIR monthly gridded tropospheric ozone column data for January 2008 to December 2012 show a strong seasonal variation in their comparison with the integrated ozonesonde data, ranging up to 100%, especially around the southern pole. Despite this strong seasonality, and in agreement with the IASI-A L2 comparison statistics, median relative differences throughout the whole time series range between 25% negative in the northern mid-latitudes and 30% negative in Antarctica, with a nearly zero overall bias around the equator. The corresponding spread decreases from about 25% in the tropics to about 5-10% towards the poles. The drift on the other hand increases from less than one percent per year negative in the tropics to up to -4% per year around the southern pole. In contrast with the IASI-A L2 drift study results, none of these drifts however is significant, as the 95% confidence intervals in combination with the comparison spreads indicate: Where the confidence interval is fully negative, as is the case for the mid-latitudes, the distance of the confidence interval from zero drift is much smaller than the average spread on the differences. This difference between the IASI L2 and L3 significance of the drift is mainly due to their difference in spatiotemporal representativeness with respect to the ground-based reference data (averaging kernel smoothing, vertical integration, and monthly averaging).
Figure 16: Time series of the median bias (solid blue), spread (dashed blue), and linear drift (green line) for direct comparisons of IASI L3 monthly gridded mean tropospheric ozone column data (0 to 6 km) with vertically integrated ozonesonde reference data (at stations with at least six launches per month), divided into five latitude bands (sorted north to south). The number of filtered values is added between brackets in the title of each plot, while the yearly linear drift value and its 95% confidence interval are added in the lower-left corner.

6 Discussion

Table 5 summarises the major QA/validation quantities discussed throughout this work, their corresponding typical values as discussed in the previous sections, and provides associated GCOS user requirements for the entire Ozone_cci nadir ozone profile CRDP, meaning that UV-VIS and TIR measurement and retrieval based products are combined. These 13 ozone ECV datasets together cover the 1995 to 2015 time period globally, which is sufficiently long for (drift-corrected) ozone trend studies according to the GCOS user requirements (UR). Yet the ongoing and upcoming satellite observations of both the GOME-type (GOME-2 on Metop-A/B, Sentinel-5 Precursor TROPOMI, and the upcoming Copernicus Sentinel-5 series) and the IASI-type (IASI on Metop platforms and IASI-NG on Metop-SG platforms) will even extend the available time series. Expecting for these data a similar or even improved quality in terms of information content, total uncertainty, and especially horizontal resolution (cf. Sentinel-5p with a 7 km by 7 km ground pixel), the Ozone_cci CRDP seems fit for
long-term vertically-resolved ozone climate monitoring and modelling as e.g. done in the Tropospheric Ozone Assessment Report (TOAR), the WMO/UNEP Ozone Depletion Assessment, and the SPARC LOTUS initiative. All nadir ozone profile products under study indeed also fulfil the GCOS user requirements in terms of observation frequency and horizontal and vertical resolution. Only for the latter one has to keep in mind that all L2 nadir ozone profile observations show UTLS sensitivity outliers and are strongly correlated vertically due to averaging kernel fluctuations that extend far beyond the (typically tropospheric) kernel’s 15 km FWHM.

The Ozone_cci CRDP nadir ozone profile products typically do not comply with the GCOS user requirements in terms of total uncertainty and decadal drift. The total uncertainty is thereby determined as the quadratic sum of the products’ systematic and random uncertainties, which on their turn are estimated from the comparison (with ground-based reference measurement) bias and spread, respectively. Note that this as a conservative estimate, as the bias and spread also include uncertainties due to smoothing and sampling differences between the satellite data and the FRM. Whereas the RAL v2.14 UV-VIS retrieved products show a typical Z-curve bias with strong 20-40 % positive (stratosphere) and negative (UTLS) maxima, the FORLI v20151001 systematic uncertainty is rather consistently of the order of 10 % in the stratosphere and troposphere, but shows stronger fluctuations (20 to 40 %) in the (especially tropical) UTLS. Total uncertainties therefore range from about 10 % at minimum in the stratosphere to at least 20 % in the troposphere (for IASI), and even higher values in the UTLS and for the UV-VIS instruments. Comparison statistics for the L3 monthly gridded averages are obviously of the same order, but L2 features can be both enlarged or reduced due to clear differences in spatiotemporal representativeness (also with the FRM data). KNMI’s L4 data contain a remaining 10 % bias, with the exception of a positive outlier around 5 hPa and near the Earth’s surface, and an order of 20 % fluctuation around the UTLS that increases to about 50 % in the tropics.

Drift studies for all nadir ozone profile CRDP products (except for the Metop-B instruments) show that the 1 to 3 % per decade GCOS requirement is only met by the L4 UV-VIS data. The higher drift values are however found to be mostly insignificant for the L2 GOME and OMI instrument retrievals, and for the L3 TIR data. The SCIAMACHY and GOME-2A products however have a strong positive drift (up to 40 %) in the troposphere, and GOME-2A moreover shows a 20 % per decade negative drift around the tropopause. The FORLI IASI-A instrument retrieval shows an order of 25 % significant negative drift in the Antarctic UTLS and Northern Hemisphere troposphere only. Together with the systematic uncertainty studies, these drift results call for an appropriate altitude-dependent bias and drift correction of the L2 Ozone_cci nadir ozone profile products by data users for climate and atmospheric composition monitoring and modelling purposes.

Applying bias and drift corrections to the nadir ozone profile CRDP presented in this work straightforwardly might not yield optimal results however. Next to the L2 data screening recommended by the respective data providers as summarised in Table 3, the validation results presented in the previous sections point at additional data screening options. In the UV-VIS instrument datasets (except for GOME-2B), some satellite profiles with very low DFS, nearly-zero stratospheric sensitivity and high bias occur, mainly around the South-Atlantic anomaly. By insertion of e.g. a DFS < 3 flag, these profiles could be fully screened or considered for tropospheric ozone monitoring only. The latter would be equivalent with-to an
altitude-dependent screening, which could also be used as an alternative to along with the full-profile effective cloud screening advised by the RAL team. Comparison results have shown that one could apply a layer screening up to the UTLS instead, as the stratospheric ozone retrieval is hardly affected by the ECF (or surface albedo). Analogously, the bias outliers for the FORLI v20151001 IASI retrievals in the polar troposphere and the tropical UTLS go together with a thermal contrast and sensitivity dependence of the differences. These profiles could therefore be excluded from any further use by insertion of a strongly negative thermal contrast or low DFS value screening, e.g. shifting the DFS screening threshold from one (as suggested by the ULB/LATMOS retrieval team) to two. As for the RAL data, vertically-resolved profile screening could additionally reject consistent altitude-dependent bias or drift outliers.

<table>
<thead>
<tr>
<th>QA quantity (GCOS UR)</th>
<th>UV-VIS L2</th>
<th>UV-VIS L3</th>
<th>UV-VIS L4</th>
<th>TIR L2</th>
<th>TIR L3 (TTC)</th>
</tr>
</thead>
<tbody>
<tr>
<td>L2 observation frequency (daily to weekly)</td>
<td>Global coverage within 3 days</td>
<td>/</td>
<td>/</td>
<td>Both day-time and night-time daily</td>
<td>/</td>
</tr>
<tr>
<td>Horizontal resolution (20-200 km)</td>
<td>32 to 160 km along track, 52 to 320 km across</td>
<td>1° by 1° (~115 km at equator)</td>
<td>2° by 3° (~230 by 345 km at equator)</td>
<td>12 km</td>
<td>1° by 1° (~115 km at equator)</td>
</tr>
<tr>
<td>Vertical resolution (6 km to troposphere)</td>
<td>Fixed grid with up to 6 km layers but ~15 km kernel width and SZA dep. tropospheric fluctuations</td>
<td>Fixed layers of a few km thickness</td>
<td>Fixed layers of 1-2 km thickness</td>
<td>Fixed 1 km gird but 10-15 km kernel width and strong UTLS and tropospheric fluctuations</td>
<td>0 to 6 km integrated column</td>
</tr>
<tr>
<td>DFS</td>
<td>4 to 5.5 with 0.5 seasonality</td>
<td>/</td>
<td>/</td>
<td>2-4 with strong meridian and seasonal dep.</td>
<td>/</td>
</tr>
<tr>
<td>Vertical sensitivity</td>
<td>UTLS peak ~3 with under-sensitivity right above and below</td>
<td>/</td>
<td>/</td>
<td>Outliers around UTLS from -1 to 2</td>
<td>/</td>
</tr>
<tr>
<td>Height registration uncertainty</td>
<td>< 10 km</td>
<td>/</td>
<td>/</td>
<td>~0 at 40 km to about 30 km near the surface</td>
<td>/</td>
</tr>
<tr>
<td>Systematic uncertainty estimated from comp. bias</td>
<td>Z-curve with maxima at 20-40 % pos. (stratosphere) and neg. (UTLS)</td>
<td>Overall ~5 % in stratosphere, +/- 10-30 % in troposphere</td>
<td>< 10 % with exception pos. outlier around 5 hPa and surface, 20 % pos. to neg. fluctuation around UTLS (~50 % in tropics)</td>
<td>< 10 % stratospheric bias, 20-40 % pos. (UTLS) to ~10 % neg. (troposphere)</td>
<td>-25 % in NH, -30 % in Antarctica yet nearly zero around equator</td>
</tr>
</tbody>
</table>
Random uncertainty estimated from comp. spread | U-curve with 10 % minimum around 25 km | 10-30 % in stratosphere, 20-40 % in troposphere | 10-30 % in stratosphere, 20 % in troposphere | Order of bias, showing similar features | ~25 % in tropics to ~10 % towards the poles but up to 100 % seasonality

Total uncertainty (16 % below 20 km, 8 % above 20 km) | 10 % minimum at 25 km, increasing above and below | From ~10 % in stratosphere at minimum to 20-50 % in troposphere | 15-30 % in stratosphere at minimum, higher below | ~10 % stratosphere, 20 % in troposphere, higher in UTLS | ~25 % in tropics to ~30 % towards the poles with up to 100 % seasonality

Dependence on influence quantities | latitude and TOC have biggest impact especially in UTLS and troposphere, higher SZA corresponds to larger DFS and smaller bias, small surface albedo and ECF dep. propagates to higher altitudes | Strong bias outliers in the troposphere of Arctic winter, equatorial UTLS, and Antarctic local winter and spring | L2/3 features in Antarctic spring and troposphere are strongly reduced but tropical UTLS bias remains | TC especially in polar troposphere and tropical UTLS, agrees with sensitivity dep., no seasonality except for Antarctic ozone hole | Strong meridian dependence and seasonality

Stability (1-3 %/dec.) | No significant GOME and OMI drift, -20 %/dec. GOME-2A drift around TP, strong pos. SCIAMACHY and GOME-2A tropospheric drift | Significant ~20 %/dec. peaks around 40 km, -20 %/dec. GOME-2A drift around TP, strong pos. SCIAMACHY and GOME-2A tropospheric drift | Order of a few percent at maximum, insignificant up to 40 km | ~25 % neg. in Antarctic UTLS and troposphere, ~15 %/dec. pos. around 30 km | ~10 % neg. in tropics to ~40 % neg. around southern pole yet insignificant

Table 5: Major QA/validation quantities, their corresponding typical values, and indication of GCOS user requirement (UR) compliance for the Ozone_cci nadir ozone profile CRDP.

7 Conclusions

This work, the second in a series of four Ozone_cci papers, reports for the first time on data content studies, information content studies, and comparisons with co-located ground-based reference observations for all thirteen nadir ozone profile data products that are part of the Climate Research Data Package (CRDP) on atmospheric ozone of the European Space Agency’s Climate Change Initiative. These products consist of five L2 UV-VIS instrument retrieval datasets, two L2 TIR retrieval datasets, four UV-VIS L3 monthly gridded data series, a merged UV-VIS L4 product, and a 0 to 6 km integrated tropospheric L3 product based on IASI-A data. To verify their fitness-for-purpose and especially their compliance with the requirements identified for the Global Climate Observing System (GCOS), these ozone datasets were subjected to a
A comprehensive quality assessment system developed in several heritage projects. The ground-based reference measurements have thereby been taken from the well-established NDACC, SHADOZ, and WMO GAW ozonesonde and lidar networks. All nadir ozone profile products under study fulfil the GCOS user requirements in terms of observation frequency and horizontal and vertical resolution. Yet all L2 nadir ozone profile observations also show sensitivity outliers in the UTLS and are strongly correlated vertically due to substantial averaging kernel fluctuations that extend far beyond the (typically tropospheric) kernel’s 15 km FWHM. The required observation period for climate modelling however is only fully covered when several instrument time series are combined. Moreover, the nadir ozone profile CRDP typically does not comply with the GCOS user requirements in terms of total uncertainty and decadal drift (except for the UV-VIS L4 dataset). The drift values of the L2 GOME and OMI, the L3 IASI, and the L4 assimilated products are found to be overall insignificant however, and applying appropriate altitude-dependent bias and drift corrections make the data fit for climate and atmospheric composition monitoring and modelling purposes. The nadir ozone profile product validation in terms of several influence quantities presented in this work correspondingly calls for the introduction of one or more L2 profile flags in addition to those recommended by the data providers, majorly based on a lower DFS threshold.

Acknowledgements

The reported work was funded by ESA via the CCI – ECV Ozone project, with support from the Belgian Federal Science Policy Office (BELSPO) and ProDEx via project A3C. We made use of the versatile Multi-TASTE validation system which was developed in heritage projects and refined recently within the FP7 EU Project Quality Assurance for Essential Climate Variables (QA4ECV), grant No. 60740. The ground-based ozonesonde and lidar data used in this publication were obtained as part of WMO’s Global Atmospheric Watch (GAW) programme, including the Network for the Detection of Atmospheric Composition Change (NDACC) and NASA’s Southern Hemisphere Additional Ozonesonde programme (SHADOZ), and are publicly available via the NDACC Data Host Facility, the SHADOZ archive, and World Ozone and Ultraviolet Data Center (WOUDC) (see http://www.ndacc.org/, http://croc.gsfc.nasa.gov/shadoz/, and http://www.woudc.org/, respectively). We warmly thank several members of the NDACC ozonesonde and lidar working groups for fruitful discussions. Lidar operation is funded through national collaborators and we are grateful to the following institutes and their co-workers who contributed to generating these data: CNRS and CNES (Dumont d’Urville station and Observatoire Haute Provence, PI is S. Godin-Beekmann), DWD (Höhenpeißenberg station, PI is H. Claude), RIVM and NIWA (Lauder station, PIs are D. P. J. Swart and R. Querel), NASA/JPL (Mauna Loa Observatory and Table Mountain Facility, PIs are I. S. McDermid, R. C. Schnell and T. Leblanc), and NIES (Tsukuba station, PI is H. Nakane).
References

The response to the Referees shall be structured in a clear and easy-to-follow sequence: (1) comments from Referees, (2) author's response, (3) author's changes in manuscript.

Anonymous Referee #1
Received and published: 17 March 2018

General comments:

The article is in general very comprehensive and detailed. The level of detail is very useful, but so dense it is easy for the reader to get lost. Several tables and figures would benefit greatly by additional labelling to orient the reader. Particularly figures with multiple panels should be labelled with instrument names, reference quality, etc. as appropriate so that at a glance the reader can identify what distinguishes one panel from another and one figure from the next for those that are very similar in appearance.

The ordering of two sections seems illogical. This is based on the concept that the satellite data should be fully discussed before discussing the FRM. Yet a sentence in the section on screening implies that the screening is not solely based on satellite data quality, but additionally on coincidence opportunities with FRM. If this is the case, the order presented makes sense, but how and why the coincidences with FRM factor into the screening is not motivated or explained.

The section describing the L3 data gridding process is not clear for the novice, and overkill for an expert. Choose your audience, and make adjustments.

Detailed comments:

(1) P2, line 16-17: Needs references for SBUV/2, GOME and OMPS.
(2) The authors agree that references are required here. References to (Heath et al., 1975), (Burrows et al., 1999), and (Flynn et al., 2006) have been added in the text and in the reference list.
(3) The second sentence of the introduction now reads as follows: “Atmospheric ozone concentration profiles have been retrieved from solar backscatter ultraviolet radiation measurements by nadir viewing satellite spectrometers since the 1960s, starting with the USSR Kosmos missions in 1964-1965 (Iozenas et al., 1969) and NASA’s Orbiting Geophysical Observatory in 1967-1969 (Anderson et al., 1969) and Backscatter Ultraviolet (BUV) on Nimbus 4 in 1970-1975 (Heath et al., 1973), and continuing with the Solar SBUV(2) series after 1978 (Heath et al., 1975), the Global Ozone Monitoring Experiment (GOME) family of sensors since 1995 (Burrows et al., 1999), and the Ozone Mapping Profiler Suite (OMPS-nadir) series started in 2011 (Flynn et al., 2006).”

(1) Section 2: An introduction to the orbital characteristics of the satellite vehicles will be useful for the reader to better understand the later discussions on gridding and colocation of ground data. The beginning of Section 2 might be a good place for such a discussion. Section 3.3: As previously noted in section 2, knowledge of the orbital characteristics of the satellite vehicles would help in the understanding of the points in this section.

(2) The authors agree that some knowledge on the orbital characteristics of the satellites might be of help to the user. This information has been added in Section 2.1. However, regarding the co-location criteria that are used, knowledge of the LST (as indicated in Table 5) is sufficient. Section 3.3 has therefore been slightly extended with reference to the orbital characteristics mentioned in Section 2.1.
(3) Section 2.1 has been extended with the following sentence: “All instruments listed in Table 1 are on satellite vehicles with a sun-synchronous low-earth-orbit, resulting in fixed local solar overpass times (also see Section 3.3).” and Section 3.3 has been slightly changed with reference to the first addition: “These time windows are chosen to generally have at least one satellite co-location with each FRM, given the satellite’s fixed local solar time (LST, also see Section 2.1) and the fact that ozonesondes are typically launched around local noon, while lidar measurements are taken during the night.”
Table 1: Additional columns indicating physical characteristics (vertical units/resolution/range, horizontal grids) of the measurements would be useful. These are all discussed in the text, but Table 1 is an opportunity for easy reference.

The authors agree that such overview would be helpful in understanding all CRDP products, and have added two columns to Table 1 and extended its caption.

Two columns have been added to Table 1, and its caption has been extended as follows: “The products’ vertical range (with number of levels or layers between brackets) and original units are added in the last two columns.”

P5 line 23: Change ‘has to stay’ to ‘must stay’.
Agree

On page 5 line 23 “has to stay” has been replaced by “must stay”

P6 line 14: The A priori for RAL and FORLI are both constructed from the same source as indicated. Are they also both global? It is not clear from this statement.

The authors agree that this statement is not fully clear and have modified the text to make the similarities and distinctions between RAL and FORLI prior data clear.

P6 line 13-15 has been updated as follows: “The a priori information used in the FORLI algorithm consists of a single global ozone prior profile. The prior variance-covariance matrix is built from the McPeters-Labow-Logan climatology (McPeters et al., 2007), as for RAL.”

P7 line 7-9: Are these rejected data included before or after the ‘screening’ discussed later in the paper?

This question is not fully clear to the authors. All data screening is discussed in Section 2, summarised in Table 3, and studied in Section 4.1. The relative screening numbers in Figure 3 refer to all screening as discussed in Section 2 relative to the total number of retrieved profiles.

No further action has been taken.

Section 2.4 L3 monthly gridded data: This section is not needed for experts in gridding data, and not helpful to the novice, so it is not clear who the authors are writing to. Figure 1 and this section would benefit for a discussion of the orbital characteristics of the satellite vehicles (either here or at the beginning of Sect 2 as suggested.). Also relate A, B, . . . and 1,2,3, . . . to the physical items they represent. Refer to the profiles of the L2 data, and the grid points of L3. If A, B, etc. are the grid points, and 1, 2, 3 are the L2 profiles (and it is not clear that this is the case), is there an advantage to this approach of 4 grid points defining a rectangle, and subdividing the enclosed area, or is it the same as creating a rectangle around a grid point and assigning all profiles within that rectangle to the grid point? The latter seems so much simpler conceptually at least to a novice. What is the subtle missing difference?

P7, line 21: Is there a reference for the GOME/GOME2 convention?

Caption to Fig 1: Why is TM5 assimilation grid referenced here? This figure is used to illustrate the creation of L3 data, not the assimilated L4 data.

Section 2.5: There is a detailed, though difficult, description of how to create the L3 gridded data, but no discussion of how to move to the 2x3 degree L4 grid. This is confusing since Fig 1 refers to the transport model. This needs a little clean up.

In the context of the KNMI L3 product, a pixel refers to a satellite measurement, while a lat-lon grid cell refers to the regular 1x1 degree latitude-longitude grid for which the mean and standard deviation are calculated. Each pixel is divided into 25 subpixels, which are assigned to the grid cell containing the subpixel. The mean and standard deviation for the grid cell are calculated according to the equations given in the text. The authors agree with both reviewers that the text on which subpixels are assigned to which grid cell is unclear and the text of section 2.4 and the caption of figure 1, which is preferably maintained, have been updated accordingly.

The paragraph before Eq. (1) has been replaced by the following: “Monthly-averaged L3 profile products are produced from the filtered RAL v2.14 GOME, GOME-2A, SCIAMACHY, and OMI data by the Royal Meteorological Institute of the Netherlands (KNMI). Version 0004 of the KNMI L3 products has been used in this work (see Table 1). The KNMI level-3 data consist of monthly ozone
profile averages, also on a one-by-one degree latitude-longitude grid, containing 19 layers between 20 fixed pressure levels at each grid-point. The algorithm that calculates the monthly-averaged ozone fields assumes that the L2 satellite ground pixel vertices (labelled ABCD) are ordered as indicated in Figure 1. Each pixel’s across-track direction is defined by the lines AD and BC, while the along-track direction is defined by the lines AB and DC. The satellite pixel is divided into 25 subpixels, five in the along-track direction and five in the cross-track direction, and each subpixel is assigned to the L3 grid cell (the boundaries are indicated with the dashed lines in Figure 1) containing the subpixel. The subpixel values x_i are weighted by the square inverse of their uncertainties (σ_i^2), so the weighted mean grid cell value x_c and the corresponding standard deviation σ_c are given by: "The caption of Figure 1 now reads as follows: “Figure 1: A L2 satellite pixel ABCD is divided into subpixels (diamonds 1 to 7). Each subpixel is assigned to a L3 grid cell (indicated with the dashed boundaries) and the average and standard deviation are calculated (see text). In this example, subpixels 1-3 would be assigned to the lower-right grid cell and subpixels 4-7 would be assigned to the lower-left grid cell. The satellite pixel ABCD may have any orientation with respect to the L3 grid.”

(1) P8, line 9: 44 ozone layers in what altitude range?
(2) The authors agree that this was not clear.
(3) “surface to 1 hPa” has been added as a clarification between brackets.

(1) P8, line 27: ‘data harmonization’ means different things to different people. Many think of it as bias correcting as a step preliminary to combining data. Perhaps use ‘harmonization of data reporting units’ to clarify.
(2) Thanks for pointing out this ambiguity. The authors have changed the text to clarify.
(3) “data harmonisation” has been replaced by “harmonisation of data representation in terms of vertical sampling and units”

(1) P9 line 17: It would be beneficial to add a line or two about the additional screening criteria used in this study and Hubert et al. 2016 for the ozonesonde data.
(2) The authors agree. A sentence has been added after the reference to Hubert et al.
(3) Added sentence: “Entire FRM profiles are discarded when more than half of the levels are tagged bad or when less than 30 levels are tagged good.”

(1) P9 line 26: State measurement variables and resolution for the lidar as a parallel to the ozonesonde description in the previous paragraphs.
(2) The authors believe that the information requested by the reviewer was already available at the end of the paragraph under consideration (thus not above).
(3) No changes have been made.

(1) Figure 2: When ozonesonde is removed as an FRM for the level 4 data, there is little left in the tropics to validate L4.
(2) The authors are somewhat confused by this statement. Nowhere it is stated that ozonesondes are not used for L4 validation. On the contrary, it is stated in the text that “For the six-hourly assimilated L4 data, the unique temporally closest ground-based reference measurement is always less than 3 hours away.” Meaning that there is a co-location for each FRM.
(3) No action has been taken.

(1) P10, line 13-14: Do you mean within one month (+/- one month) or within relevant month?
(2) Thanks for pointing out this unclarity. The text has been updated to make elucidate this statement.
(3) “All FRM within this grid cell within one month are included in the analyses for the L3 comparisons.” has been replaced by “All FRM within this grid cell and within the relevant month are included in the analyses for the L3 comparisons.”

(1) Table 4: The column name SPI needs more explanation. How to the numbers in this relate to Figure 1?
(2) The authors admit that the meaning of the SPI values had erroneously not been mentioned in the text. Therefore the text has been extended with reference to Table 4. This however does not immediately relate to Figure 1, as should now be clear from the updated text.

(3) After the first reference to Table 4 in Section 3.3, the following sentence has been added: “The possible satellite pixel index (SPI) values within each cross-track scan and the resulting number of pixels per scan are provided for each instrument in Table 4 (taking into account pixel co-adding, see Section 2).” The notation of the possible SPI in Table 4 has been changed from X:X:X (start, step, end) to X,X,X,…,X (start, start+1, start+2,…,end).

(1) Section 3 leads with a description of the layout of the next several sections. This is very helpful given the complexity of the paper. But it is unclear why the choice is made to shift at this point to a description of the FRM data before completing the discussion on information content (screening) of the satellite data. Are these not separate concepts? Why not continue with the evaluation of satellite, and complete it before moving onto the description of the FRM? (See also related comment in section 4.1 specifically P12, line 14.)

(2) The authors agree that this approach might be somewhat misleading as the pre-processing of the data might not have been fully clear from the text: The data and information content studies are performed on ground station overpass data, i.e. satellite pixels must be within a 300 km radius from a FRM station. Section 3.1 has been rewritten to make this clear and motivate the subsequent ordering of sections.

(3) The end of Section 3.1 has been replaced by the following: “The satellite data collection and post-processing (mainly L2 profile screening) is described by the previous section. The L2 datasets have however been reduced to 300 km ground station overpass datasets for the quality assessment in this work, in order to reduce the total amount of data processing (i.e. satellite pixels must be within a 300 km radius from a FRM station). The FRM data selection, co-located datasets study, and data harmonisation are therefore included as the successive subsections within this section. The satellite data content studies and information content studies are discussed in the next Section 4. These include statistics on the L2 station overpass data screening and spatiotemporal coverage, and averaging kernel-based information content measures, respectively. The comparative analysis with both spatially and temporally co-located FRM data follows later in Section 5.”

(1) Section 4.1 Data Content: It is not clear how a measure of percent of data screened is a measure of data content. It is apparent that the desire is knowledge as to the distribution of the satellite data in latitude and time. It is noted in the description of Figure 3 that for IASI-A, there is little data removed by the screening process leaving a featureless contour implying an even distribution of data. But it is also stated that this is due to pre-screening of data before release by the data providers. This technique does not show where the pre-screening removed data. Instead a more relevant measure of content and distribution would be the absolute number of measurements left after screening and its latitudinal and temporal distribution.

(2) In line with the previous comment and corresponding answer, the authors believe that the presentation of percentages is now better motivated: As station overpass data are studied, absolute numbers would be misleading and even more stress the spatial selection of the data. Figure 3 mainly wants to show were L2 data can be found and what the impact is of the screening suggested by the data providers. This has been made more clear in the first paragraph of Section 4.1.

(3) The beginning of Section 4.1 has been updated as follows: “The nadir ozone profile CRDP L2 data content study focuses on the spatiotemporal distribution and the effect of screening of the retrieved satellite profiles in the first place, next to the regular file structure, file content, and value checks for the quantities of highest relevance (also see Table 3). Figure 3 displays the latitude-time distribution per 10° latitude band and per month of the percentage of screened profiles for all nadir profile L2 station overpass (300 km) datasets (except for IASI on Metop-B).”

(1) P12, line 15: How can the latitudinal striping in the UV-Vis instruments be partially ‘due to station overpass’ if the screening is solely based on criteria in Table 3? Is screening based solely on data quality, or also on co-location? Additionally what data is in the CCI data release? Only the screened data? Only the screened co-located data?
The authors agree that this was unclear from the original text, but believe that this is now clarified by the previous two answers on the use of 300 km station overpass data. It should be clear that the full L2 datasets are available in the CCI data release, without screening and without any co-location.

No additional changes have been made to the text.

Figure 3, first panel: What causes the gap in the GOME dataset after 2003 in the tropics?
(2) As ground stations are located near the South-Atlantic Anomaly (SAA) and a quite severe GOME data screening has to be applied, no (near) SAA data are left. This has now been made clear in the text.
(3) “The lack of GOME data in the southern mid-latitudes from 2003 onwards is due to severe screening of L2 overpass data for ground stations that are all located near the South-Atlantic anomaly (SAA).” has been added.

Figure 3, caption: What is meant by ‘The decreased GOME-2B data from 2015 onwards justifies additional screening’ mean? Are you trying to say that it indicates additional screening?
(2) The authors agree that this statement is misleading. The caption has therefore been brought in line with the main text.
(3) “justifies additional screening” has been replaced by “points at a retrieval issue”

P14, line 5: change to ‘understanding of how the system’
(2) The reviewer’s proposal for improving the readability has been followed, yet somewhat differently, in agreement with the suggestion by the second reviewer.
(3) “understanding how the system” has been replaced by “understand how the system”

Figure 4, first panel: Why is the area in the tropics of missing data in the GOME panel larger than that in Figure 3?
(2) If all data are screened (100 % values in Fig. 3) than the DFS and other information content values are empty.
(3) No changes made.

Figure 5: The offset in the second and third rows are labelled identically, but the graphs are different. The caption only states that ‘different measures are used’. Are the measures direct and centroid? Differences in the measures for width are clearly indicated. Offset could also be simply added by label and in the caption.
(2) The authors agree that offset and spread indications in Figure 5 can be improved. The caption of Figure 5 has been updated accordingly.
(3) The caption of Figure 5 has been updated as follows: “Global GOME-2A (left) and IASI-A (right) information content in terms of vertical sensitivity, retrieval offset (in km), and averaging kernel width (in km) and their dependence on DFS, SZA, or thermal contrast (TC). Black dashed lines represent median values, while out-of-range profiles are plotted in magenta. Different measures are used for the offset and kernel width in the second and third rows, which include the centroid offset and Backus-Gilbert spread, and the direct offset and FWHM, respectively. Plot titles provide the absolute and relative amounts of profiles after screening, and the number of ground-based overpass stations.”

P20, line 22: change ‘fiver’ to ‘five’.
(2) Thank you for spotting this typo; the text has been corrected.
(3) ‘fiver’ has been changed to ‘five’
(1) P21, line 18: Here 68% interpercentile spread is used for the first time, but the acronym IP68 is not introduced. Later in the text and graphs there is inconsistent use of the acronym and the full term. Introduce both here, and consistently use the acronym or the full name in later text.
(2) Actually the 68% interpercentile spread and its acronym are first introduced on page 20, line 8, as Q84-Q16.
(3) The authors have added “68 % interpercentile” explicitly to page 20, line 8 to avoid the impression of inconsistent use of terms and acronyms.

(1) P21, line 26-27: Should ‘vertical averaging smoothing’ be ‘vertical smoothing’?
(2) The authors intended either “vertical smoothing” or “vertical averaging kernel smoothing”. The latter has been chosen here. Yet in agreement with a comment by the second reviewer, the phrasing has been changed.
(3) “vertical averaging smoothing” is replaced by “vertical smoothing of ground-based reference data with averaging kernels”

(1) P39, line 10: Add the word ozonesonde: ’64 ozonesonde stations’.
(2) The authors have followed the suggestion by the reviewer.
(3) “64 stations” has been changed into “64 ozonesonde stations”

Figure 13 caption refers to top, middle and bottom instead of left, middle and right. Label each panel.
(2) The caption of Figure 13 has been written with the final mark-up of the paper in mind, i.e. with the three plots combined into a column (not a row).
(3) No action has been taken.

(1) P40, line 4-5: The Southern mid lats do not look smaller but similar to the tropics in the UTLS.
(2) It was the intention of the authors to state that the bias indeed looks similar, but has only positive values. This observation has been made more explicit in the update of the text.
(3) “but smaller” has been replaced by “but only positive”

(1) P40, line 19: Replace ‘As for’ with ‘Similarly to’ and remove the word ‘now’.
(2) The authors have adopted the suggestions by the reviewer to increase readability.
(3) The sentence referred to now reads as follows “Similarly to the L2 RAL v2.14 UV-VIS retrievals, Figure 14 and Figure 15 contain...”

Figure 3: This figure (and many after) need additional labelling. Label each panel with the satellite name so it is obvious at a glance.
Figure 4: Label each panel with the satellite name.
Figure 5: This figure is difficult to interpret and needs more explanation and labelling. Label the columns with the instrument name.
Figures 6-10: These are very hard to distinguish when trying to compare the results. Label each figure with the instrument and years (GOME 1996-2010 for example). Also label each panel with the influence quantity. These are stated in the caption, but are more easily interpreted if the panels are directly labelled.
Figure 11: Label the columns with Latitude and Quarter, and the rows with the instrument name for easy recognition.
Figure 12: Label the columns with L2, L3 and the rows with the instrument name for easy reference.
Figure 14, 15: Label each panel with the influence quantity displayed, and ‘drift’ in the final panel of Fig. 14.
(2) The authors agree that readability and interpretation of graphs can be improved upon insertion of satellite instrument and influence quantity labels on the relevant plots.
(3) All plots have been updated with the requested labels.
(1) Figure 16: Why is the time series shown for IASI L3, but not for others? It might also be enlightening to show the profile of the L3 drift.
(2) For the FORLI IASI product only tropospheric column L3 data are available, so only columnar values can be shown. Such values however allow for a more easy time series representation. Vertical drift profiles are not possible, and have been replaced by a trend line.
(3) No further action has been taken.

(1) P 51, Acknowledgements: Some of the NDACC PIs listed are retired. It might be of use to additionally include the current persons in these positions as is done for TMF.
(2) The authors acknowledge that some PI references require updating. The names of R. Querel and R. C. Schnell have been added.
(3) The lidar PI acknowledgement now reads as follows: “CNRS and CNES (Dumont d’Urville station and Observatoire Haute Provence, PI is S. Godin-Beekmann), DWD (Höhenpeißenberg station, PI is H. Claude), RIVM and NIWA (Lauder station, PIs are D. P. J. Swart and R. Querel), NASA/JPL (Mauna Loa Observatory and Table Mountain Facility, PIs are I. S. McDermidR. C. Schnell and T. Leblanc), and NIES (Tsukuba station, PI is H. Nakane)”
The response to the Referees shall be structured in a clear and easy-to-follow sequence: (1) comments from Referees, (2) author’s response, (3) author’s changes in manuscript.

Anonymous Referee #2
Received and published: 16 April 2018

General Comments:

This paper presents a comprehensive and lengthy assessment of the Ozone_cci CRDP of 13 nadir ozone profile data products from both UV-VIS and TIR instruments as well as 1 data assimilation product. The evaluation includes data content studies, information content, and validation against ground-based ozonesonde and lidar observations in terms of median relative biases and the IP68 spread as a function of various influence quantities and relative decadal drift. It is a very useful study and its scope is very suitable for publication in AMT. This paper is generally well organized, the methodology is generally very good and valid, and the results are well described. However, some of the sections are difficult to understand. For example, the section of L3 gridding could be made clearer and simpler and Figure 1 could be removed. The results of the vertical sensitivity are very difficult to interpret, and the derivation of vertical sensitivity could be improved. Also, the abstract does not include main conclusions. In addition, some texts need clarifications. Overall, I think that this paper can be published after addressing the comments mentioned here and specific comments below.

Specific Comments:

(1) 1. In abstract, no conclusions are given. So what are the main conclusions of this study? Some of the sentences in the conclusions/discussion sections can be paraphrased here.
(2) The authors agree that some of the major conclusions should be provided in the abstract as well, and have extended the abstract accordingly.
(3) After “(WMO GAW),” the abstract has been extended as follows: “The nadir ozone profile CRDP quality assessment reveals that all nadir ozone profile products under study fulfil the GCOS user requirements in terms of observation frequency and horizontal and vertical resolution. Yet all L2 observations also show sensitivity outliers in the UTLS and are strongly correlated vertically due to substantial averaging kernel fluctuations that extend far beyond the kernel’s 15 km FWHM. The CRDP typically does not comply with the GCOS user requirements in terms of total uncertainty and decadal drift, except for the UV-VIS L4 dataset. The drift values of the L2 GOME and OMI, the L3 IASI, and the L4 assimilated products are found to be overall insignificant however, and applying appropriate altitude-dependent bias and drift corrections make the data fit for climate and atmospheric composition monitoring and modelling purposes. Dependence of the Ozone_cci data quality on major influence quantities – resulting in data screening suggestions to users – and perspectives for the Copernicus Sentinel missions are additionally discussed.”

2. In the introduction, full instrument names should be specified at their first occurrences.

(1) 3. In Sections 2.2 and 2.3, it is useful to mention the unit of the retrieved ozone profile for each algorithm: partial ozone column in DU, average ozone mixing ratio in ppbv, etc.
(2) In reply to a similar comment by reviewer 1, the authors have added two columns to Table 1 and extended its caption.
(3) Two columns have been added to Table 1, and its caption has been extended as follows: “The products’ vertical range (with number of levels or layers between brackets) and original units are added in the last two columns.”

(1) 4. Figure 1 and the text on P7 are difficult to follow and confusing. I guess that grid cells refer to those 1 x 1 boxes, but Figure 1 caption says TM5 assimilation grid. Is TM5 grid 1x1 (looks like it is 2 x 3 based on sect. 2.5)? Also grid cells boundaries typically are not parallel or perpendicular to ground pixel edges as shown in the figure. The naming of grid cells based on pixel corners also makes it more confusing as depending on the pixel size, the entire pixel can lie in one grid cell. Also, what is the size
of subpixels and how many subpixels for different instruments? I think that this can be described more clearly and also more concisely. The figure does not really help here and can be removed. Basically, each ground pixel is divided into subpixels (size, #), each subpixel contains the same value and uncertainty, then assign the subpixels to grid cells.

(2) In the context of the KNMI L3 product, a pixel refers to a satellite measurement, while a lat-lon grid cell refers to the regular 1x1 degree latitude-longitude grid for which the mean and standard deviation are calculated. Each pixel is divided into 25 subpixels, which are assigned to the grid cell containing the subpixel. The mean and standard deviation for the grid cell are calculated according to the equations given in the text. The authors agree with both reviewers that the text on which subpixels are assigned to which grid cell is unclear and the text of section 2.4 and the caption of figure 1, which is preferably maintained, have been updated accordingly.

(3) The paragraph before Eq. (1) has been replaced by the following: “Monthly-averaged L3 profile products are produced from the filtered RAL v2.14 GOME, GOME-2A, SCIAMACHY, and OMI data by the Royal Meteorological Institute of the Netherlands (KNMI). Version 0004 of the KNMI L3 products has been used in this work (see Table 1). The KNMI level-3 data consist of monthly ozone profile averages, also on a one-by-one degree latitude-longitude grid, containing 19 layers between 20 fixed pressure levels at each grid-point. The algorithm that calculates the monthly-averaged ozone fields assumes that the L2 satellite ground pixel vertices (labelled ABCD) are ordered as indicated in Figure 1. Each pixel’s across-track direction is defined by the lines AD and BC, while the along-track direction is defined by the lines AB and DC. The satellite pixel is divided into 25 subpixels, five in the along-track direction and five in the cross-track direction, and each subpixel is assigned to the L3 grid cell (the boundaries are indicated with the dashed lines in Figure 1) containing the subpixel. The subpixel values x_i are weighted by the square inverse of their uncertainties (σ_i^2), so the weighted mean grid cell value x_c and the corresponding standard deviation σ_c are given by”

The caption of Figure 1 now reads as follows: “Figure 1: A L2 satellite pixel ABCD is divided into subpixels (diamonds 1 to 7). Each subpixel is assigned to a L3 grid cell (indicated with the dashed boundaries) and the average and standard deviation are calculated (see text). In this example, subpixels 1-3 would be assigned to the lower-right grid cell and subpixels 4-7 would be assigned to the lower-left grid cell. The satellite pixel ABCD may have any orientation with respect to the L3 grid.”

(1) 5. Please put table captions before the tables.

(2) This is done automatically in the final publication mark-up.

(3) Action is taken upon final submission of the manuscript.

(1) 6. P10, L17-21, temperature profiles are not required for conversion between number density and average layer VMR. Assuming a layer is well mixed, then average VMR = 1.25 * (partial ozone column in DU) / (pressure difference of the layer in atm). Please see appendix B of Ziemke et al. (“Cloud slicing”: A new technique to derive upper tropospheric ozone from satellite measurements, JGR, 106, (D9), P 9853–9867, 2001) for more detail. The partial ozone column is related to number density and altitude difference of the layer.

(2) In these lines the level-related VMR value is intended, not the layer-average VMR. In that case the temperature profile is required. The authors are familiar with the literature referred to, but thank the reviewer for pointing this out again.

(3) No changes have been made.

(1) 7. P11, it is not clear about the three numbers in SPI column separated by “:”

(2) The authors admit that the meaning of the SPI values had erroneously not been mentioned in the text. Therefore the text has been extended with reference to Table 4, also in agreement with a comment by reviewer 1. The notation in Table 4 has moreover been changed.

(3) After the first reference to Table 4 in Section 3.3, the following sentence has been added: “The possible satellite pixel index (SPI) values within each cross-track scan and the resulting number of pixels per scan are provided for each instrument in Table 4 (taking into account pixel co-adding, see Section 2).” The notation of the possible SPI in Table 4 has been changed from X:X:X (start, step, end) to X,X,X,…,X (start, start+1, start+2,…,end).
8. P12, L18, even if it is difficult to know how much IASI data are screened as a function of latitude and time, the data providers should know on average how much data are screened out due to the use of cloud fraction greater than 13%.

(2) This section has been somewhat modified according to suggestions by the first reviewer. The authors agree that IASI’s pre-screening does not allow a full assessment of the data (screening) distribution. Yet cloud screening has globally a similar effect on both the UV-VIS and TIR data. This information has been added to the text.

(3) The sentence on the IASI screening has been extended as follows: “The IASI screening on the other hand appears very low, yet this is due to the pre-screening by the product providers before data delivery, i.e., mainly the IASI cloud screening (if the fraction is higher than 13%) cannot be observed from the plots, but is roughly of the same order as the UV-VIS data screening.”

(2) The authors considered it quite obvious that a satellite signal degradation correction results in maintaining the signal-to-noise ratio close to its initial level and hence in a quite stable DFS upon nadir ozone profile retrieval. The DFS reduces in correlation with the signal if no signal degradation correction is applied. Yet for clarity, the authors have added this explanation in the text.

(3) “This correction maintains the instrument’s signal-to-noise ratio close to its initial level and hence reduces the effect of the instrument degradation on the retrieval’s DFS.” has been added.

10. P15, L18-19, It is useful to explain the lower DFS under SAA: shorter wavelengths with weak signals cannot be used due to SAA, thus significantly reducing DFS in the stratosphere.

(2) The authors agree that some clarification would be helpful.

(3) “due to stratospheric intrusion of high-energetic particles (the tropospheric DFS is mostly maintained)” has been added.

11. P14, equation (6), based on the text, A_F is provided from the FORLI algorithm, so should the defractionalisation operation derive $A(m, n)$ from A_F rather than derive A_F from $A(m, n)$? I suggest changing this equation to $A(m, n) = A_F \times \ldots$

(2) The reviewer might have misunderstood: the absolute averaging kernel A is given in the FORLI data, yet this AK is calculated by the data providers from the fractional AK that results from the retrieval. This calculation is done using the prior profile, hence in this work we also use the prior profile to invert this operation and again obtain the fractional kernel matrix. The authors believe that this is clearly stated in the text already: “These fractional matrices are made unit-dependent by use of the prior profile before saving into the data files, allowing for more straightforward application (e.g. for vertical smoothing operations) by data users. For the information content studies presented here, this defractionalisation operation therefore has to be inverted”

(3) No further changes have been made.

12. P14, L22, and first paragraph of P17, Figure 5: It is not easy to understand the meaning of vertical sensitivity. Based on the definition on P14, it is an indication of the fraction of the information that is from the data. But on Figure 5 and P17, the vertical sensitivity values peak in the UTLS with a median value of 3, and are often greater than 1 even below 6 km, which does not seem to be consistent with the definition of the fraction of information from the measurement. Also the vertical sensitivity should not peak in the UTLS, as there is stronger vertical sensitivity in the stratosphere from UV-VIS measurements. Please check DFS at individual layers to make sure this is the case. It seems to me that this concept is not actually a good indicator of the vertical sensitivity or it might depend on how the vertical sensitivity is derived (e.g., from AKM or fractional AKM, what is the unit of state vector, e.g., DU or mixing ratio etc.). Based on the definition, when you sum the sensitivity of retrieved ozone at a layer to the perturbations of ozone at all layers, the units of state vector or the weighting of the perturbations at each layer are important. Using mass conserved units like DU or the weighting of perturbations at each layer by a priori error (rather than the a priori or the retrieved profile) might make more sense. Between IASI and UV-VIS retrievals, it is good to convert
the AK to the same units and then apply the same concept. Please clarify this on P4. You may also consider the use of DFS at each layer (diagonal elements of AK) normalized to the depth of layer (to account for non-uniform, variable vertical altitude grid) to show the vertical sensitivity, which is straightforward and independent of the retrieval scheme and might be more meaningful.

(2) The authors acknowledge that a fraction-like measure below zero or above one makes little sense. This sensitivity interpretation by Rodgers however is only a rough approximation (as stated in the text). In practice, the sensitivity at a specific retrieval level can nevertheless be negative or exceed unity (over-sensitivity) due to kernel fluctuations and correlations between adjacent retrieval levels, as reflected in the kernel width. This has now been made clear in the text. The over-sensitivity in the UTLS hence is no surprise, as especially the UV-VIS nadir ozone profile retrieval shows difficulties around the tropopause and below. The normalized layer-DFS (that is known to the authors) certainly is a useful quantity that has been considered in this work, but has been found to add little to the combined DFS and vertical sensitivity discussion. It has therefore not been additionally discussed.

Both (overall) DFS and vertical sensitivity calculated from fractional averaging kernel matrices are fully unit-independent measures (the authors refer to Keppens et al., 2015, for a more extensive discussion), as requested by the reviewer.

(3) In section 4.2.1, right after the vertical sensitivity interpretation by Rodgers (2000), it has been added that “Note however that the sensitivity at a specific retrieval level can nevertheless be negative or exceed unity (over-sensitivity) due to kernel fluctuations and correlations between adjacent retrieval levels, as reflected in the kernel width (see below).”

(1) 13. P17, L12-14, it is not clear why the strong sensitivity variability affects vertical smoothing and Eq. 3 introduces a bias. Please make it clearer.

(2) The authors agree that this might not be clear immediately. It has now been pointed out that the sensitivity variability points at outliers in the averaging kernel matrices, thus introducing biases upon averaging kernel smoothing.

(3) It has been added that the sensitivity variability is “pointing at outliers in the averaging kernel matrices”

(1) 14. P17, L17-18 and also in Fig. 5 caption, it is not clear which is direct and centroid offset between 2nd and 3rd rows. Please make it clear in the figure caption. Also please mention the dotted lines in the figure caption.

(2) The authors agree that offset and spread indications can be improved. The caption of Figure 5 has been updated accordingly.

(3) The caption of Figure 5 has been updated as follows: “Global GOME-2A (left) and IASI-A (right) information content in terms of vertical sensitivity, retrieval offset (in km), and averaging kernel width (in km) and their dependence on DFS, SZA, or thermal contrast (TC). Black dashed lines represent median values, while out-of-range profiles are plotted in magenta. Different measures are used for the offset and kernel width in the second and third rows, which include the centroid offset and Backus-Gilbert spread, and the direct offset and FWHM, respectively. Plot titles provide the absolute and relative amounts of profiles after screening, and the number of ground-based overpass stations.”

(1) 15. P17, L31, in “decreases first to about 20 km”, it seems to me from the figure that the maximum median FWHM is 20 km, so should it be a smaller number here?

(2) At this point the BG spread was intended. The authors agree that this was not fully clear and have made this explicit.

(3) The beginning of the sentence has been changed into “At higher altitudes, the median BG kernel width”

(1) 16. P18, first sentence, “slant column density” should not be parallel to “the sensitivity” because the larger slant column density, the smaller the sensitivity from surface to the lower stratosphere. The real reason is because, the larger slant path length or slant column density, the fewer photons penetrating into the troposphere, the smaller the sensitivity in the troposphere, and the larger the resolving length values.
(2) The authors agree that the phrasing “and thus of the sensitivity” might be confusing to the non-expert reader. The reference to the vertical sensitivity has therefore been omitted.
(3) “and thus of the sensitivity” has been removed.

(1) 17. P20, L4, suggest changing “quarter” to “season”
(2) The authors agree that the ‘seasonal’ dependence is studied, yet for clarity and simplicity, full months are considered for grouping. This specification in terms of quarters is maintained throughout the text. In order to explicitly refer to the study of the “seasonal dependence” of the difference statistics however, this formulation has now been added to the text.
(3) The text has been updated as follows: “The influence quantities considered in this work are latitude (for meridian dependence), quarter (for seasonal dependence)…”

(1) 18. P20, L24-25, The sentence “This is with the exception of the Metop-B GOME-2 and IASI instruments however, that have not been used for drift studies” is difficult to understand. Suggest changing to “So Metop-B GOME-2 and IASI instruments are excluded for drift studies” and move it after “for this drift assessment”
(2) The authors agree that the reviewer’s phrasing is more clear, and have adopted it accordingly.
(3) The second part of the paragraph has been changed into “To avoid spurious effects due to a seasonal cycle in the differences, only time series of five years or longer are used for this drift assessment. Therefore Metop-B GOME-2 and IASI instruments are excluded from the drift studies (indicated with an asterisk in Table 4). Moreover, only fully available years of the satellite datasets have been considered for comparative analysis in order not to introduce seasonal effects at the beginning and the end of each time series.”

(1) 19. P20, L29, in addition to latitude and season, the influence quantity of time should be added.
(2) The authors agree; time has been added.
(3) The sentence has been changed to “These have therefore been limited to the latitude, and quarter, and time (drift).”

(1) 20. P21, the sentence above Eq. 9 is difficult to read. Suggest changing to “Yet both approaches introduce similar spatial and temporal representativeness errors into the difference statistics because taking (monthly) averages as a bias estimator XXX yields comparable outcomes:”
(2) The authors agree with the reviewer that the phrasing of this sentence can be simplified and have therefore adopted the reviewer’s suggestion.
(3) The sentence before Eq. (9) has been changed into “Yet both approaches introduce similar spatial and temporal representativeness errors into the difference statistics because taking (monthly) averages as a bias estimator X yields comparable outcomes:”

(1) 21. P22, L15, is the ex-ante uncertainty from the retrievals for random noise errors or for both random noise errors and smoothing errors? As the averaging kernels are applied to reference data to remove smoothing errors, ex-ante uncertainty of random noise errors should be shown here. Please clarify this.
(2) The authors acknowledge this point with respect to error budget assessments. The ex-ante errors referred to here only include random errors. This has now been made clear in the text, with additional reference to Miles et al. (2015).
(3) The beginning of the paragraph has been changed into “The individual L2 UV-VIS comparison graphs also contain information on the validity of ex-ante uncertainties provided for the satellite nadir ozone profile retrievals (thin grey lines). The relative random error reported in the RAL v2.14 data files amounts to about 5 % at the altitude of the ozone maximum, up to about 10 % at higher altitudes, and up to 40 % in the lower troposphere. In theory the IP68 spread should be close to the combined uncertainty of the satellite data, the ground-based data, and metrology errors due to remaining differences in vertical and horizontal smoothing of atmospheric variability (including co-location mismatch errors). The latter is difficult to assess, but one can expect that the bias and spread estimates resulting from the comparisons including AK smoothing are close to the combined uncertainty of
satellite and ground-based data, or at least the ex-ante satellite uncertainty in practice (Miles et al., 2015).”

(1) 22. P22, L26, suggest adding “because the retrievals only include random noise errors and smoothing errors in the ex-ante uncertainty” after the “nadir ozone profile products”
(2) The authors have only partially adopted this suggestion in order to clarify the statement, because the ex-ante errors referred to only contain random uncertainties.
(3) “because the ex-ante uncertainty under consideration only includes random noise errors” has been added to the text.

(1) 23. P22, L26, OMI is not an exception in that the total satellite measurement uncertainty is underestimated because the ex-ante uncertainty should be compared to comparison spread or the quadratic sum of comparison bias and spread rather than the comparison bias only.
(2) The authors agree that this statement confuses the uncertainty contributions. It has therefore been changed.
(3) “The only exception is given by the OMI tropospheric ozone data that have a bias below their ex-ante uncertainty.” has been replaced by “Only for the OMI tropospheric ozone data with a bias within 10 % does the combined uncertainty come close to the ex-ante uncertainty.”

(1) 24. P23, L1, it is not generally true that there are smaller biases for larger total ozone columns based on the figures as the biases often increases when the total ozone increases from 300-400 to 400-500 or 500-600 DU (very clearly for GOME and OMI retrievals).
(2) The authors agree that the dependence is not linear, and have modified the text to avoid giving this impression.
(3) “Smaller biases are typically obtained in the northern hemisphere and for intermediate to larger total ozone columns. Larger ozone columns are indeed expected to result in an improved satellite measurement and retrieval sensitivity, and thus more stable averaging kernel behaviour with smaller vertical dependences.” has been changed into “Smaller biases are typically obtained in the northern hemisphere and for intermediate to larger total ozone columns. Larger ozone columns are indeed expected to result in an improved satellite measurement and retrieval sensitivity, and thus more stable averaging kernel behaviour with smaller vertical dependences.”

(1) 25. P23, L3-4, the relationship between SZA/DFS and the biases are altitude-dependent. From the figures, the biases are typically smaller at larger SZAs/DFS in the troposphere, but are larger at larger SZAs/DFS. Larger SZAs typically lead to larger total DFS due to the increase of DFS in the stratosphere and often lead to smaller DFS in the troposphere due to reduced photon penetration. Smaller biases in the troposphere at larger SZAs/DFS could be due to the reduced retrieval sensitivity in the troposphere (i.e., retrievals are closer to the a priori). So the causal relationship is not as straightforward as larger DFS means better retrieval sensitivity and therefore smaller biases.
(2) The authors thank the reviewer for clearly pointing this out. In order to introduce this vertical dependence of the SZA/DFS relationship, the text has been extended.
(3) The original statement has been replaced by the following: “On the other hand, the DFS and SZA behaviour is somewhat smaller and, as one can again expect for UV-VIS observations, rather similar, with the higher solar zenith angles typically corresponding to the larger DFS values (mainly from the stratosphere), the largest stratospheric biases, and the smallest tropospheric biases. The latter could be due however to a somewhat reduced tropospheric sensitivity, bringing the retrieved profile closer to the prior profile.”

(1) 26. P33, L11, based on figures, the spread is not always enlarged in the L3 comparison. Instead, the spread is typically significantly reduced below 6 km. This should be mentioned and explained.
(2) The authors agree that this reduction of the L3 spread for the lowest level was not discussed in the original text. A statement has been added that points at this effect and provides a brief explanation.
(3) The following statement has been added: “Note however that the lack of kernel smoothing instead reduces the L3 spread for the lowest level, which has a strongly reduced sensitivity in comparison with the levels above.”
(1) 27. P34, L1, says “GOME L3 data show a negative above-tropopause bias of 5-10%”. But based on the first panel of Fig. 11, I see mostly positive biases above 100 hPa, especially with large positive biases of 20% around 70 hPa and positive biases of 40% around 8 hPa. Please clarify this.
(2) The authors acknowledge this mistake and thank the reviewer for his/her thorough reading. This statement has been changed and extended for clarity.
(3) The first sentence of the paragraph now reads as follows: “GOME level-3 data show an above-tropopause bias of 5-10% positive to negative, with strong outliers around 70 hPa and 8 hPa, especially in the tropical UTLS and Antarctic local spring (up to 50%) due to ozone hole’s vortex conditions.”

(1) 28. P36, L11, again the spread values for the L3 comparison can be smaller below 6 km, which should be mentioned.
(2) The authors agree that this deviation should be mentioned for completeness. This has been done by reference to the previous section.
(3) “(except for the lowest-level spread, see previous section)” has been added.

(1) 29. P40, L7-8, it is useful to explain to the readers why there is stronger tropospheric reduction to 20% and why the drift is small (e.g., due to bias correction).
(2) The authors agree that some additional explanation is helpful to the reader. The text has been extended with the requested information.
(3) The last sentences of Section 5.5 have been changed into “The L4 spread remains close to the L2 and L3 values, though with an even stronger reduction (to 20%) in the troposphere than the L3 comparisons as no monthly averages are considered. Moreover, due to the ozonesonde-based bias correction the remaining L4 drift is of the order of a few percent only and insignificant, i.e. within the 95% CI, for all altitudes up to about 40 km globally.”

(1) 30. P45, last line, the 30% negative should be 30% positive in Antarctica as shown in last panel of Fig. 16. Also please change Table 5 correspondingly.
(2) The authors thank the reviewer for pointing out this error and have corrected the text and table accordingly.
(3) The text has been changed into “Despite this strong seasonality, and in agreement with the IASI-A L2 comparison statistics, median relative differences throughout the whole time series range between 25% negative in the northern mid-latitudes and 30% positive in Antarctica, with a nearly zero overall bias around the equator.” In Table 5, row 9 column 6, “-30” has been changed into “30”.

(1) 31. In table 5, suggest changing “Vertical resolution (6 km to troposphere)” to “Vertical grid/resolution”, changing to “115 km2”, “230 by 345 km2”, “12 km2”, “115 km2”
(2) The “Vertical resolution (6 km to troposphere)” QA quantity and user-requirement are given by GCOS and therefore preferably left unchanged. The horizontal resolution user requirements on the other hand are provided for a single dimension by GCOS (see first column) and therefore expressed in km.
(3) No changes have been made.

(1) 32. In Figs. 6-10, 14-15, change second bracket from “[“ to “[)” in Fig. captions
(2) The open bracket “[“ is used commonly to indicate that the last value is not included, i.e. it indicates that values included in the set go up the last value (<), but don’t equal the last value (<=). The authors wish to preserve this indication as such, as it better represents the content of the sets.
(3) No action has been taken.

(1) Technical Comments:
1. P2 last line, and P8 L25, change “Keppens et al., 2015” to “Keppens et al. (2015)”
2. P4, L6, change to “time series”
3. P4, L13, P5, L15, P6, L13, change “priori” to “a priori”
4. P9, L14, change “beyond” to “above”
5. P11, change “prior” or “a-priori” to “a priori”
6. P11, suggest changing “averaging kernel smoothing of the FRM” to “smoothing the FRM with averaging kernel”
7. P12, L6, suggest changing “relative amount” to “percentage”
8. P12, L18, suggest changing “delivery. E.g.” to “delivery, i.e., “
9. P13, L10, change “prior” or “a-priori” to “a priori”
10. P14, L5-6, change to “help understand”
11. P14, L16 & L26, change “prior” or “a-priori” to “a priori”
12. P21, L13, suggest changing “Thanks to” to “Due to” to make it formal.
13. P21, L21, change “vertical averaging smoothing of ground-based reference data” to “vertical smoothing of ground-based reference data with averaging kernels”
14. P21, L29-30, change “smoothing difference error” to “retrieval smoothing error” and “Tropics” to “tropics”
15. P23, L6, change to “instruments except for GOME-2B”
16. P33, L12, change to “lack of”
17. P48, L10, change to “7 km by 7 km” or “7 by 7 km2”
18. P49, L11, change to “equivalent to”
19. P49, L12, suggest changing “as an alternative” to “along with”

(2) The authors thank the reviewer for the extensive technical check and suggestions. All suggestions have been incorporated, except for those suggesting to change “prior” into “a priori” (3, 5, 9, 11). The use of the synonym “prior” sometimes improves readability and has therefore been kept. Suggestion 14 has only been partially followed: “Tropics” has been changed to “tropics” at all instances, but “smoothing difference error” has not been changed. This phrasing indicates that the error is due to the difference in smoothing between the satellite and reference profiles, and not to the satellite profile smoothing only.

(3) All suggestions have been incorporated, except for those suggesting to change “prior” into “a priori” (3, 5, 9, 11), and to rephrase “smoothing difference error”.