Journal cover Journal topic
Atmospheric Measurement Techniques An interactive open-access journal of the European Geosciences Union

Journal metrics

  • IF value: 3.089 IF 3.089
  • IF 5-year<br/> value: 3.700 IF 5-year
    3.700
  • CiteScore<br/> value: 3.59 CiteScore
    3.59
  • SNIP value: 1.273 SNIP 1.273
  • SJR value: 2.026 SJR 2.026
  • IPP value: 3.082 IPP 3.082
  • h5-index value: 45 h5-index 45
https://doi.org/10.5194/amt-2017-308
© Author(s) 2017. This work is distributed under
the Creative Commons Attribution 4.0 License.
Research article
29 Aug 2017
Review status
This discussion paper is a preprint. It is a manuscript under review for the journal Atmospheric Measurement Techniques (AMT).
Evaluation of a low-cost optical particle counter (Alphasense OPC-N2) for ambient air monitoring
Leigh R. Crilley1, Marvin Shaw2, Ryan Pound2, Louisa J. Kramer1, Robin Price3, Stuart Young2, Alastair C. Lewis2, and Francis D. Pope1 1School of Geography, Earth and Environmental Sciences, University of Birmingham, Birmingham, UK, B15 2TT
2National Centre for Atmospheric Science, Wolfson Atmospheric Chemistry Laboratories, University of York, York, UK, YO10 5DD
3Birmingham Open Media (BOM), 1 Dudley Street, Birmingham, UK, B5 4EG
Abstract. A fast growing area of research is the development of low-cost sensors for measuring air pollutants. The affordability and size of low-cost particle sensors makes them an attractive option for use in experiments requiring a number of instruments such as high density spatial mapping. However, for these low-cost sensors to be useful for these types of studies their accuracy and precision needs to be quantified. We evaluated the Alphasense OPC-N2, a promising low-cost miniature optical particle counter, for monitoring ambient airborne particles at typical urban background sites in the UK. The precision of the OPC-N2 was assessed by co-locating 14 instruments at a site to investigate the variation in measured concentrations. Comparison to two different reference optical particle counters as well as a TEOM-FDMS enabled the accuracy of the OPC-N2 to be evaluated. Comparison of the OPC-N2 to the reference optical instruments demonstrated reasonable agreement for the measured mass concentrations of PM1, PM2.5 and PM10. However, the OPC-N2 demonstrated a significant positive artefact in measured particle mass during times of high ambient RH (> 85 %) and a calibration factor was developed based upon κ-Kohler theory, using average bulk particle aerosol hygroscopicity. Application of this RH correction factor resulted in the OPC-N2 measurements being within 33 % of the TEOM-FDMS, comparable to the agreement between a reference optical particle counter and the TEOM-FDMS (20 %). Reasonable inter-unit precision for the 14 OPC-N2 sensors was observed. Overall, the OPC-N2 was found to accurately measure ambient airborne particle mass concentration provided they are i) correctly calibrated and ii) corrected for ambient RH. The reasonable level of precision demonstrated between multiple OPC-N2 suggests that they would be suitable device for applications where the spatial variability in particle concentration was to be determined.

Citation: Crilley, L. R., Shaw, M., Pound, R., Kramer, L. J., Price, R., Young, S., Lewis, A. C., and Pope, F. D.: Evaluation of a low-cost optical particle counter (Alphasense OPC-N2) for ambient air monitoring, Atmos. Meas. Tech. Discuss., https://doi.org/10.5194/amt-2017-308, in review, 2017.
Leigh R. Crilley et al.
Leigh R. Crilley et al.
Leigh R. Crilley et al.

Viewed

Total article views: 404 (including HTML, PDF, and XML)

HTML PDF XML Total Supplement BibTeX EndNote
283 118 3 404 15 2 4

Views and downloads (calculated since 29 Aug 2017)

Cumulative views and downloads (calculated since 29 Aug 2017)

Viewed (geographical distribution)

Total article views: 404 (including HTML, PDF, and XML)

Thereof 402 with geography defined and 2 with unknown origin.

Country # Views %
  • 1

Saved

Discussed

Latest update: 23 Sep 2017
Publications Copernicus
Download
Short summary
The affordability and small size of low-cost particle sensors makes them attractive for air pollution experiments that require multiple instruments, or take place in hard to access locations or low income countries. For any sensor to be useful, their accuracy and precision needs to be known. We evaluate the Alphasense OPC-N2 for monitoring airborne particles at typical UK urban background sites. The devices were found to be accurate provided they are correctly calibrated.
The affordability and small size of low-cost particle sensors makes them attractive for air...
Share