Journal cover Journal topic
Atmospheric Measurement Techniques An interactive open-access journal of the European Geosciences Union

Journal metrics

  • IF value: 3.089 IF 3.089
  • IF 5-year<br/> value: 3.700 IF 5-year
    3.700
  • CiteScore<br/> value: 3.59 CiteScore
    3.59
  • SNIP value: 1.273 SNIP 1.273
  • SJR value: 2.026 SJR 2.026
  • IPP value: 3.082 IPP 3.082
  • h5-index value: 45 h5-index 45
https://doi.org/10.5194/amt-2017-298
© Author(s) 2017. This work is distributed under
the Creative Commons Attribution 4.0 License.
Research article
29 Aug 2017
Review status
This discussion paper is a preprint. It is a manuscript under review for the journal Atmospheric Measurement Techniques (AMT).
Characterization and Correction of OMPS Nadir Mapper Measurements for Ozone Profile Retrievals
Juseon Bak1,a, Xiong Liu2, Jae-Hwan Kim1, David P. Haffner3, Kelly Chance2, Kai Yang4, and Kang Sun2 1Pusan National University, Busan, Korea
2Harvard - Smithsonian Center for Astrophysics, Cambridge, MA, USA
3Science Systems and Applications, Inc . , 10210 Greenbelt Rd, Lanham, MD 20706, USA
4Department of Atmospheric and Oceanic Science, University of Maryland College Park, College Park, Maryland, USA
aCurrently at Harvard - Smithsonian Center for Astrophysics, Cambridge, MA, USA
Abstract. This paper verifies and corrects the Ozone Mapping and Profiler Suite (OMPS) Nadir Mapper (NM) Level 1B v2.0 measurements with the aim of producing accurate ozone profile retrievals using an optimal estimation based inversion method to fit measurements in the spectral range 302.5–340 nm. The evaluation of available slit functions demonstrates that preflight-measured slit functions well represent OMPS measurements compared to derived Gaussian slit functions. Our initial OMPS fitting residuals contain significant wavelength and cross-track dependent biases, resulting into serious cross-track striping errors in the tropospheric ozone retrievals. To eliminate the systematic component of the fitting residuals, we apply “soft calibration” to OMPS radiances. With the soft calibration the amplitude of fitting residuals decreases from ~ 1 % to 0.2 % over low/mid latitudes, and thereby the consistency of tropospheric ozone retrievals between OMPS and the Ozone Monitoring Instrument (OMI) is substantially improved. A common mode correction is also implemented for additional radiometric calibration; it improves retrievals especially at high latitudes where the amplitude of fitting residuals decreases by a factor of ~ 2. We estimate the floor noise error of OMPS measurements from standard deviations of the fitting residuals. The derived error in the Huggins band (~ 0.1 %) is twice the OMPS L1B measurement error. OMPS floor noise errors better constrains our retrievals, leading to improving information content of ozone and reducing fitting residuals. The final precision of the fitting residuals is less than 0.1 % in the low/mid latitude, with ~ 1 degrees of freedom for signal for the tropospheric ozone, meeting the general requirements for successful tropospheric ozone retrievals.

Citation: Bak, J., Liu, X., Kim, J.-H., Haffner, D. P., Chance, K., Yang, K., and Sun, K.: Characterization and Correction of OMPS Nadir Mapper Measurements for Ozone Profile Retrievals, Atmos. Meas. Tech. Discuss., https://doi.org/10.5194/amt-2017-298, in review, 2017.
Juseon Bak et al.
Juseon Bak et al.
Juseon Bak et al.

Viewed

Total article views: 143 (including HTML, PDF, and XML)

HTML PDF XML Total BibTeX EndNote
109 34 0 143 0 1

Views and downloads (calculated since 29 Aug 2017)

Cumulative views and downloads (calculated since 29 Aug 2017)

Viewed (geographical distribution)

Total article views: 143 (including HTML, PDF, and XML)

Thereof 142 with geography defined and 1 with unknown origin.

Country # Views %
  • 1

Saved

Discussed

Latest update: 23 Sep 2017
Publications Copernicus
Download
Short summary
This paper verifies and corrects the Ozone Mapping and Profiler Suite (OMPS) Nadir Mapper (NM) Level 1B v2.0 measurements to retrieve reliable ozone profile and tropospheric ozone using an optimal estimation inversion with the fitting window of 302.5–340 nm. We apply "soft calibration" and "common mode correction" to OMPS radiances to eliminate systematic errors in the fitting residuals and derive random-noise measurement errors accounting for both OMPS radiances and forward model calculation.
This paper verifies and corrects the Ozone Mapping and Profiler Suite (OMPS) Nadir Mapper (NM)...
Share