We thank the reviewers for providing feedback on the manuscript and include our responses below.

Responses to Referee 1, Report 1

P. 2, l. 2: I wonder what is meant by “the homogeneous freezing RH of aqueous solution droplet”? Isn’t the RH irrelevant, if you consider homogeneous freezing of liquid water?

Yes, thank you, this is true for immersion mode ice nucleation, but we intend to define INPs in general before narrowing the discussion to immersion mode INPs only. In deposition ice nucleation studies, RH is an important factor.

P. 5, L. 29: I do not understand why the intensity of light reflected back to the camera decreases when droplets freeze, as frozen drops become opaque and lighter than clear liquid drops, scattering more light towards the camera and leaving less for absorption at the dark background of the well block?

Whether the intensity increases or decreases with freezing depends on the color of the substrate, so we added absolute value bars. That way it applies whether the materials that show through the sample volumes are dark or light.

The following change was made and reflected in both P5, L33 and Fig. 3 so that both are consistent with Fig. 4.

$$|I(t_i) - I(t_{i-1})| > \eta$$

P. 9, : A statement is required on how the equations (4) and (5) were derived, or where they are taken from.

A citation for equation (4) was added: Churchill and Chu, 1975.

Technical corrections:
Explain the acronym AIS upon first use: at present AIS occurs many times (e.g. in the abstract, and elsewhere) before it is first defined on page 5 L.1

Thank you. AIS is defined in the abstract upon first use now, and on P3 L32.

P. 2, L.13, insert “to” (identify drivers . . .)

P.2, L.13 now reads “..are needed to identify drivers...”

P. 2, L. 24 and many other places: check the references in brackets: often names of authors are put in brackets, although the names are part of the sentence. An Example: “In (Hiranuma et al., 2015), 17 online and offline . . . “

It appears that this bracket is standard formatting in AMT? From the website: “In general, in-text citations can be displayed as "[...] Smith (2009) [...]", or "[...] (Smith, 2009) [...].”

http://www.atmospheric-measurement-techniques.net/for_authors/manuscript_preparation.html

P. 3, L3: remove droplet assay

Thank you. P.3, L3 “droplet assay” has been removed.

P.3, L. 3: Upon introducing the ice spectrometer the text refers to a paper by Hill et al. (2016) that is not in the reference list. Or do you mean Hill (2014)?

Yes, correct. The reference should read Hill et al., 2014. P.3, L.3 now reads (Hill et al., 2014).

Please clarify. P.3, L. 10: How can 50µl of water be filled into a 1.2µl well ? Please check the numbers.

P.3, L.10 corrected and now reads “…small aliquots of water, typically around 50 µL each, are distributed in 1.2 mL wells…”

P.3, L.19: introduce the acronym FRIDGE after “Frankfurt Ice Nuclei Deposition Freezing Experiment.”

P.3, L.19 now reads “...the Frankfurt Ice Nuclei Deposition Freezing Experiment (FRIDGE)...”

P. 4, L. 23: Remove “Automated” in header of chapter 2.2

The header of chapter 2.2 is now “Physical Design of the Ice Spectrometer.”
P. 5, L. 12: I presume that it’s not room air but heat that leaks into the nitrogen flow? If so, then write something like “... room air heat leaks into...”.

Yes, actually, if flow rates are too low, we believe room air does leak into the system because it is not perfectly insulated. The acrylic lid for example, is not sealed, so if the flow of nitrogen is low, room air could seep in underneath the lid.

P.5, L. 32: "are" instead of "is" in: “time, freezing temperature, and location of the well are recorded...”

P.5, L. 32: now reads “...time, freezing temperature, and location of the well are recorded.”

P. 8, L2: In Fig. 5 nothing is highlighted in yellow, as stated in line 2 and on P. 9, L. 16. Please check.

Thank you, the measurements were updated in response to the other reviewer, so there is no longer a yellow highlighted feature in the manuscript.

Figure 5: In my copy the labels of all 4 axes as well as the legend and text in the insert have some strange characters (?). Please check.

This is another problem due to the pdf conversion. I will make sure that the characters convert correctly.

Reference:

Thank you, the updated reference of (Hiranuma et al., 2015) was added.
We thank the reviewers for providing feedback on the manuscript and include our responses below.

Responses to Referee 2, Report 2

Specific Comments

P4, L14 “Additional reasons for high freezing temperatures might be impurities in the water that become important at µL volumes.”

Thank you. L13-L15 now reads: “The homogenous freezing point of water is -38 °C, but either the 96-well sample tray surface, or impurities present in the water induce freezing at higher temperatures, typically starting at -25 to -27 °C, which limits the lower temperatures for which INP number concentrations may be assessed.”

P5, L33: “... is smaller than ... (If the intensity decreases with freezing, η should be a negative number (see also Fig. 4) or the opposite difference should be used: |I(ti) − I(ti−1)| > η)”

Whether the intensity increases or decreases with freezing depends on the color of the substrate, so we added absolute value bars. That way it applies whether the materials that show through the sample volumes are dark or light. The following change was made and reflected in both P5, L33 and Fig. 3 so that both are consistent with Fig. 4.

\[|I(t_i) − I(t_{i-1})| > η \]

P6, L1: “I(ti) − I(ti−1) < η (The correct equation is used in Fig. 3)”

See response to P5, L33.

P6, L5: Please mark the position or height of the thermistor in Fig. 6-8.

The height of the thermistor has been added to Fig. 6-8.
Where is something yellow in the inset of Fig. 5 (see also P9, L21)? I guess the black arrow shows the boundary conditions ("Data used in simulation"). This would mean a data range from about 800 s (Twell = 0 °C) to 3000 s (Twell = -27 °C). Why does the simulation cover only 1320 s of cooling?

Figure 5 (now Fig. 3) had been updated in previous versions of the manuscript with the same measurements to show a higher time resolution, but the simulation inputs had not been updated. I realize this could be confusing, particularly because as the referee pointed out, the cooling rate was different. In order to address both this issue and the referee’s suggestion (below) to quantify the offset between the well temperature and the thermistor, I made new measurements of the coolant and headspace gas temperature for the simulation input and remade Figures 5, 7-8. The new measurements were made to be sure that the calibration of the thermistor was up to date before using it to compare with the simulation output.

Originally, only 1320 seconds of cooling were shown in Fig. 7-8 in order to decrease the range of temperatures shown, and increase the resolution of the temperature gradient in the well block.

Fig. 5(3) has been updated to show the new measurements. Fig. 7-8 has been updated to show 3276 seconds of cooling, and a second colorbar was added to the close-up view of the well for higher resolution of the gradient.

Was the experimental bath temperature change with time used in the first simulation, too?”

Yes. P9, L20 now reads, “The simulation was run over 3276s with two different sets of boundary conditions representing the coolant fluid and headspace gas temperatures. In the first simulation, the coolant fluid temperatures from Fig. 3 were applied, but the difference between the temperature of the headspace gas and that of the well base was multiplied by two in order to approximate inefficient cooling of headspace gas.”

What does "a doubling of the warming mean"? The experimental temperature difference between the coolant bath and the headspace gas is about 10-11 °C after 800 s (below 0 °C). See response above to P9, L20.
P10, L11: ... +12 °C offset between the coolant bath and the headspace gas, ...

The paper would benefit from a graph which compares the simulation results. The interesting points for the reader would be the offset between the temperature of the water sample and the measured value at the well base, and the degree of stratification (the temperature gradient in the water sample).

The requested figures have now been added as supplementary figures, Fig. S2 and Fig. S3.

P10, L15: The experimental temperature difference between the well and the headspace gas changes, and values from 3 to 5 °C are found in the well temperature region between 0 and -27 °C. The first simulation shows that stratification is present at 5.6 °C with an offset and a temperature gradient of about 3 °C. What are limit values for stratification and a temperature bias?

I think the limit values for stratification and temperature bias are defined by the user of the IN measurement, and depends on how precisely they want to measure IN activation temperatures. Depending on the buoyancy of the INP, degree and sign of the gradient, the activation temperature may differ from the measured temperature. Another issue to consider in the case of a cold to warm gradient from top to bottom of the sample volume. Although I am not aware of any publications on the effects of convection on ice nucleation, I imagine it is possible that convection could affect ice nucleation processes and ultimately the measured activation temperatures. I aim through the two simulations, to show that even under conditions in which the headspace gas is cooled considerably below room temperature, stratification can occur, and should be considered when reporting measurements. I think a 1ºC threshold could be useful, because in (Hiranuma et al., 2015) instruments measuring wet suspensions of Illite agreed within 5ºC (or 3 orders of magnitude in terms of n_s). Perhaps a useful bias or stratification threshold should be at the same order of magnitude as the range of instrumental variability, decreasing as more agreement between instruments is achieved. In this manuscript however, I will consider stratification below the error associated with the thermal probe used as “unstratified”.

P10, L12 now reads: “With an offset between the base of the well and the headspace gas temperature of +3.0 °C, stratification has significantly decreased to 0.1 °C from top to bottom of the sample volume, which is within the error of the thermal probe (see Fig. S2).”

P10, L32: If the temperature offset should be quantified, why is that not a part of the current paper? Please comment on the difficulties of such a measurement here or add regarding results. I understand that the temperature measurement in the sample volumes does introduce a contamination, but a
calibration using pure water or solutions with similar thermal properties should make a part of the interesting temperature range available. The authors do not use the simulation to quantify the offset. Why is the simulation not a reliable tool?

Originally, the output of the simulation had not been verified with measurements, so the simulation was not used quantitatively. Since the entire surface of the system was constrained by boundary conditions in the simulation, independent temperature measurements to check against the simulation must come from the interior of the well block. As shown in Fig. 5 (3), measurements from one thermistor placed underneath a well (and interior to the well block) were recorded simultaneously with the measurements of the coolant fluid and headspace gas, and these are independent from the boundary conditions. Thus, these measurements are used in Fig. S1 as a quantitative comparison against the simulated temperatures in the air pocket below the well at each of the twelve time steps, which enables the quantification of uncertainty.

In the original simulation, only the left upper corner well was included in the simulation in order to reduce computation time. However, I have since learned that symmetry is required for heat transfer models, so I redesigned the model to include the entire upper left quadrant of the well block. The simulation outputs featured in in Fig. S1-S4, and Fig. 7-8 now show the quadrant, and when compared with the thermistor embedded in the block in Fig. S1, are accurate within ± 0.6 °C. Now the simulation is a more reliable tool and can be used to quantify the offset between the sample volume and other regions of the well block.

It would also be useful to measure the freezing point of a liquid solution with a well characterized freezing temperature between 0 and -25ºC, but I’m not aware of any solution with an appropriate homogenous freezing temperature. I think the same challenges motivated (Hiranuma et al., 2015), in their choice of Illite NX as a standard.

Changes to manuscript: Fig. 7-8, Fig. S1-S4.

P10 L32 now reads: “In order to verify the simulation output, simulated temperatures were checked against measurements that are independent of the simulation. Since the entire surface of the system was constrained by boundary conditions in the simulation, the measurements from inside of the well block at the well base (shown in Fig. 5) were used for comparison with the simulation output at the same location. Results of the comparison over the 12 time steps of the simulation are shown in Fig. S1. At subzero temperatures, the maximum difference between the measured and simulated temperatures was 0.6 °C at t = 819s, decreasing to values below the error of the thermistor for most of
the simulation. 0.6 °C is assumed to be the uncertainty of the simulation. The measured temperature was consistently slightly warmer than the simulated temperature, possibly because the hole drilled into the aluminum well block was not modelled. In the second simulation using measured boundary conditions, the average temperature of the sample volume was compared with the average temperature of the air pocket in which the thermistor is placed throughout the 3276s simulation (see Fig. S3), in order to quantify the offset between the thermistor and the sample. The air pocket temperatures are consistently colder than the sample volume temperatures, ranging from -1.8 °C to -1.2°C over the 3276s. Offsets in temperature between the 192 wells also exist in the AIS and are shown in Fig. S4. However, these results are not used quantitatively because there is currently only one thermistor embedded in the well block, so verification of the simulation’s temperature gradient in x and y was not possible without further modifications to the well block. In the future, additional thermistors embedded within the well block can be used to verify the simulation output so that measurements can be adjusted with offsets due to the gradient in x and y as well as z.”

P11, L14: The dilution is a useless information without the starting concentration.

Thank you. The exact dilution procedure was added and corrected. P11 L14 now reads:

“20 mg of illite NX was immersed in 500 mL of ultrapure water, resulting in a 4.0×10^{-3} wt % solution. Two more dilutions were made by immersing 25 mg of illite NX in 50mL of ultrapure water, and diluting again by factors of 1/10 and 1/100, resulting in solutions of 5.0×10^{-2} and 5.0×10^{-3} wt %, respectively. A final solution was prepared by starting with 300 mg in 50 mL of ultrapure water, then diluting by factors of 1/100 and 1/1000, resulting in a solution of 6.0×10^{-6} wt %.” Fig. 9 was also updated to reflect these changes.

P11, L17: Why are no measurements done with lower concentrations? Reliable values should be possible down to freezing temperatures of -25 C.

A dilution of 6.0×10^{-6} wt % was measured and Fig. 9 was updated to show measurements down to -25 °C.

P11, L27: Comment on the reason why an offset to the data is not applied. Do probably show a plausible temperature range in Fig. 9 using error bars.
See response to P10, L32. Now that the output of the simulation has been compared against an independent measurement, I can quantify its uncertainty, as shown in Fig. S1.

P12, L1: A quite high starting concentration of 10 mg/mL (≈1 wt%) and a dilution of 1:25,000 would correspond to a mass concentration of 4×10^{-4} mg/mL and a weight fraction of about 4×10^{-5} wt%, assuming a density of 1 g/cm3 and a negligible amount of solute. Please check values and units.

See comment for P11, L14. Thank you.

P12, L12 (a): As the CSU-IS and the new SIO-AIS are almost identical focus on the comparison of these two instruments. The CSU-IS used 60 μL samples and weight fractions of 0.5 to 3×10^{-6} wt% in the literature study. How can it be explained that the AIS data is in the high concentration range (low surface site densities and high freezing temperatures) whereas the concentrations are in the lower end?

Now that the concentrations have been corrected, we know that the dilutions fall in the middle of the range rather than the low end. AIS data is still in the upper end of the spread between the 6 instruments featured in Fig. 9.

The heat transfer simulations demonstrate how sensitive temperature measurements are to the placements of the probe and the thermal homogeneity of the environment. To my knowledge, the locations of thermal probes are not reported for the instruments featured in Fig. 9, so it is difficult to speculate on potential sources of bias for the other instruments. However, if there are similarities in the various instruments’ thermal properties, it is possible that the higher heat content of the sample volume relative to the rest of the system is consistent across multiple instruments. If this is true, since thermal probes cannot be in contact with the sample volume directly for the reasons described in Sec. 3.1, it is possible that they are in thermal contact with regions of the instruments which are colder than the sample volumes. For example, a thermal probe could be placed in the hole that is seen in the left top corner of Fig 6 b. A probe inserted into this hole could result in cold temperature bias, because the temperature of the air along the z axis of this hole is colder than the well temperature. So I believe that the AIS data might fall on the high concentration side, because the thermistor is so close and in thermal contact (with heat sink compound) with the sample volume.

P12, L12 (b): To compare the AIS to all the other instruments in Fig. 9 additional data at lower concentrations and freezing temperatures between -20 and -25 °C are needed to ensure overlap.
What is the reason for the difference to the other techniques? Can it be argued that the new one has a higher accuracy or are there other effects that have to be taken into account?

Additional data at lower concentrations has been added to Fig. 9, and freezing temperature are consistently higher than the other instruments. Barring any inconsistency in the standard Illite NX sample itself, potential cold biases are possible and discussed above in the response to P12, L12 (a).

Now that the simulation is used quantitatively, I believe it is possible to achieve higher accuracies with the AIS in comparison with the other instruments because sources of bias in freezing temperature measurements can be identified, quantified and mitigated. For example, Fig. S4 shows the gradient in sample volume temperatures from left to right over a cross section of the well block. Wells closer to the outside of the system are up to 2.2 °C warmer than wells closer to the interior of the block. Eventually I plan to use the simulation to map out the spatial temperature gradient in x, y and z, to determine offsets for each well from the thermistor embedded in the well block. However, as I would like to verify the simulation output in more than one location before I determine the offsets in x-y and z for all 192 wells, I represent the maximum offsets found through the simulations in Fig. 9 with error bars in this paper. In the z-direction, the offset between the thermistor embedded in the well block and the warmer sample volume reaches a maximum of -1.8 °C at subzero temperatures (see Fig. S2). In the x and y direction, the difference between colder sample volumes near the interior of the block and warmer sample volumes near the outer perimeter is a maximum of +2.2 °C. In summary, the z-direction temperature gradient presents a likely cold bias to the measurements, while the x and y temperature gradients present an opposing warm bias, that is greater than the cold bias. So the greater of the two uncertainties, ±2.2 °C, is represented in Fig. 9 with error bars.

P14, L16 now reads: “The heat transfer simulations applied here could support investigations of bias in temperature measurement for INP measurement techniques, enable higher accuracy in INP freezing temperature measurements, and ultimately help decrease disparities between various instruments.”

P13, L1: The experimental temperature differences are larger than 3 and 6 °C below a well temperature of -5 °C. Does this mean that stratification is present there?

There is indeed stratification present within the well in both simulations, as shown in the close-up of the sample volume in Fig. 7 and Fig. 8. The degree of stratification present in both simulations is
shown in Fig. S2, reaching a maximum of +0.6 °C in Simulation 1 and +0.2 °C in Simulation 2.

P10, L24 reads: “With an offset between the base of the well and the headspace gas temperature of +3.0 °C, stratification has significantly decreased to 0.1 °C from top to bottom of the sample volume, which is within the error of the thermal probe (see Fig. S2).”

P14, L1: See the comment on P12, L12.

Thank you, a more dilute solution of Illite NX was used in order to cover the freezing temperatures from -20 °C to -25 °C.

P14, L6: The amount of samples per hour depends on the number of wells per sample. In principle the AIS can process 192 samples per cooling cycle. But to adequately characterize an IN it is necessary to investigate several concentrations and an amount of individual volumes larger than 24.

P14, L6 now reads:

“...can process up to 7 samples per hour using 24 wells per sample, over 4 times faster throughput than older versions of the instrument (including time for loading samples).”

P14, L7: If the offsets are just identified but not quantified it does not lead to higher accuracies.

See response to P12, L12(b).

P16, Table 1: The Handbook of Chemistry and Physics gives thermal conductivities for air of 0.018 and 0.026 W m\(^{-1}\) K\(^{-1}\) at 200 and 300 K, respectively. Comment on the used values and add references.

Thank you. 0.027 W m\(^{-1}\) K\(^{-1}\) was used in the simulation and Table 1 has been corrected with references added.

To minimize a temperature bias between the aluminium block and the water sample the use of PCR wells made of thermally conductive plastics (k = 5-10 W m\(^{-1}\) K\(^{-1}\)) might be interesting.

True, thank you. The trouble would be finding one with a smooth consistent surface.
P21, Fig. 5: Why is the well temperature higher than the headspace gas temperature at the beginning? Is the system in equilibrium at the start (t = 0 s)?

Because the thermistor is calibrated for the range 5 °C to -35 °C, the thermistor does not accurately measure temperatures at higher temperatures. So the well temperature is not necessarily warmer at t = 0 s.

P25, Fig. 9: There is less data for the CSU-IS (bulk) than presented by Hiranuma et al. (2015). Add the additional points if available.

There seems to be an amount of points that does not belong to one of the given instruments. Are these the missing CSU-IS values? Some points are similar but not identical. I suggest the use of different symbol types additionally to the colors and a legend for the attribution.

I checked the figure again, and I see all 6 measurements there and labeled (7 including both CSU-IS measurements).

Technical corrections

Page 1, Line 28: The AIS is compared to 6 other instruments in Fig. 9, not 5. Please correct that number whenever the comparison is discussed.

Corrected, thank you.

P2, L14: ... clouds. Accurately ...

The strikethrough was removed.

P3, L18: ... the University of Colorado Raman Microscope Cold Stage (CU-RMCS) ...

L18 now reads: “...the University of Colorado Raman Microscope Cold Stage (CU-RMCS) (Baustian et al., 2010; Wise et al. 2010)...”

P3, L24: ... frozen droplets ... grow by taking up water ... (the liquid droplets shrink)
L24 now reads: “...in which frozen droplets near liquid droplets take up water vapour as the liquid droplets shrink...”

P3, L31: ... change. Additionally, the heat transfer properties of the new SIO-AIS (Scripps Institution of Oceanography - Automated Ice Spectrometer) are characterized in the current paper through ...

L31 now reads: Additionally, the heat transfer properties of the new SIO-AIS (Scripps Institution of Oceanography – Automated Ice Spectrometer) instrument are also characterized through”

P5, L9: ... temperature air away from the well ...

L9 now reads: “The cold nitrogen gas purges room temperature air away from of the well region”.

P5, L12: Change the figure numbers to the order of their appearance in the text: Fig. 5 → 3, and following.

Fig. 5 is now Fig. 3, and the old Fig. 3 and Fig 4 have shifted down one number accordingly.

P5, L17: ... National Instruments’ LabVIEW software ...

VIEW has been capitalized.

P7, L10: ... ± 0.3 °C ...

Spacing has been added.

P8, L6: ... is warmest in the simulation range, a maximum of 5.3 °C warmer ...

L6 now reads: “Figure 5 shows that the air above the well region is warmest in the simulation range, a maximum of +5.28 °C.”

P8, L28: where Q_{convection} is the rate ...

“The” has been added to this phrase in L28.

P9, L1: ... as two vertical plates, calculating the Nusselt number N, and using h = Nk/H, where H is ...

P9, L1 now reads: “...estimated by approximating the wells as two vertical plates, calculating the
Nusselt number N, and using $h = N k / H$, where...

P9, L6: Ra and Pr are the Rayleigh and ...

Spelling of Rayleigh number was corrected.

P9, L8: Ra... Pr (the viscosity has to be squared)

5 Corrected the equation by adding the square, thank you.

P9, L8: define the acceleration of gravity g

Added a definition of g in L8.

P9, L13: ... diffusivity. Since $\beta, u, \alpha, \text{ and } k$ are..

Italicized k in L13.

10 P11, L26: ... calculated using Eq. (1) (Vali, 1971). Although ...

P11, L26 now reads: “Cumulative concentration of INPs per volume per 0.25 ºC were calculated using Eq. (1) (Vali, 1971).”

P12, L1: ... The AIS measurement results in terms of cumulative INPs per volume were converted to the surface site density $n_{s,BET}$ using the mass concentration and the specific surface area as follows: ...

15 P12, L1 verbiage altered to reflect above.

P12, L7: Add the BINARY here to get the 6 instruments of the comparison.

Added BINARY to the list of instruments in the comparison.

P12, L11: ... favourably to those of ...

P12, L11 now reads: “...the Automated Ice Spectrometer measurements compare favourably to those of the other 6 techniques...”

20 P12, L26: ... from having to constantly monitor ...
P12, L26 now reads: “...and frees the operator from having to constantly monitor sample processing.”

P15, L27: Change the doi text color to black.

Text changed to black.

P15, L27: Insert a line break between the two articles.

Corrected spacing, thank you.

P19, Fig. 3: Add the Tolerance e to the Ramp option.

Fig. 3: Tolerance e was added to the Ramp option.

P21, Fig. 5: Clean the figure for ? symbols and use the same type of axis labels in all figures, e.g. "Temperature / °C".

Fig. 5, strange characters were eliminated.

Grids in both graphs similar to Fig. 9 would be beneficial here, too.

Fig. 5: both grids added.

P21, L3: ... ± 0.3 °C ...

P21, L3, space added.

P21, L8: ... from 0 °C to -27 °C, see ...

P21, L8 has been changed due to the new measurements.
Automation and Heat Transfer Characterization of Immersion Mode Spectroscopy for Analysis of Ice Nucleating Particles

Charlotte M. Beall¹, M. Dale Stokes¹, Thomas C. Hill², Paul J. DeMott², Jesse T. DeWald³, Kimberly A. Prather¹,⁴

¹Scripps Institution of Oceanography, University of California San Diego, La Jolla, 92037, USA
²Department of Atmospheric Science, Colorado State University, Fort Collins, 80523, USA
³Jacobs School of Engineering, University of California San Diego, La Jolla 92093, USA
⁴Department of Chemistry, University of California San Diego, La Jolla 92093, USA

Correspondence to: Charlotte M. Beall (cbeall@ucsd.edu)

Abstract. Ice nucleating particles (INPs) influence cloud properties and can affect the overall precipitation efficiency. Developing a parameterization of INPs in global climate models has proven challenging. More INP measurements, including studies of their spatial distribution, sources and sinks, and fundamental freezing mechanisms, must be conducted in order to further improve INP parameterizations. In this paper, an immersion mode INP measurement technique is modified and automated using a software-controlled, real-time image stream designed to leverage optical changes of water droplets to detect freezing events. For the first time, heat transfer properties of the INP measurement technique are characterized using a finite-element analysis based heat transfer simulation to improve accuracy of INP freezing temperature measurements. The heat transfer simulation is proposed as a tool that could be used to explain the sources of bias in temperature measurements in INP measurement techniques, and ultimately explain the observed discrepancies in measured INP freezing temperatures between different instruments. The simulation results show that a difference of +8.45 ± 6 °C between the well base temperature and the headspace gas results in an up to 0.63 °C stratification of the aliquot, whereas a difference of +43.20 °C or less results in a thermally homogenous water volume within the error of the thermal probe, ±0.05-2 °C. The results also show that there is a strong temperature gradient in the immediate vicinity of the aliquot, such that without careful placement of temperature probes, or characterization of heat transfer properties of the water and cooling environment, INP measurements can be biased toward colder temperatures. Using the modified immersion mode technique, the Automated Ice Spectrometer (AIS), measurements of the standard test dust illite NX are reported and compared against 6 other immersion mode droplet assay techniques featured in (Hiranuma et al., 2015) that used wet suspensions. AIS measurements of illite NX INP freezing temperatures compare reasonably with others, falling within the 5 °C spread in reported spectra. The AIS and its characterization of heat transfer properties allows higher confidence in accuracy of freezing temperature measurement, higher throughput of sample analysis, and enables disentanglement of the effects of heat transfer rates on sample volumes from time dependence of ice nucleation.

1 Introduction
1.1 Background
Ice nucleating particles (INPs) induce freezing of cloud droplets at temperatures above their homogeneous freezing-point (~38 °C), and at a relative humidity (RH) below the homogeneous freezing RH of aqueous solution droplets at lower temperatures, influencing cold cloud lifetime, phase, as well as their optical and microphysical properties. INPs are comprised of a diverse population of particles, some species of which have complex sources and sinks; developing a parameterization of INPs in global climate models (GCMs) that results in a credible representation of global cloud coverage and the radiative balance remains a challenge (DeMott et al., 2010; Seinfeld et al., 2016; Burrows et al., 2013). In situ observations to close critical knowledge gaps such as the vertical distribution of INPs in the air column, the complex sources and sinks of biological INPs, and INP influence on cloud microphysics are identified as a high priority for the improvement of INP representation in GCMs (Seinfeld et al., 2016; Burrows et al., 2013). One of the largest biases in shortwave reflectivity exists over the Southern Ocean, and this bias may be influenced by poor representation of INPs over primarily oceanic regions (Trenberth and Fasullo, 2010; DeMott et al., 2010). Measurements of INP number concentrations, particularly in remote ocean regions are needed to help develop parameterizations of ice nucleation for use in cloud resolving models and GCMs. To further improve the parameterization of INPs, both field and laboratory measurements are needed to identify drivers of ice nucleation in clouds. Accurately defining the activation temperature of INPs is critical to understanding the influence of INPs on clouds and improving representation of INPs in GCMs because INP freezing temperatures influence cloud phase and lifetime in mixed-phase clouds, or the supersaturation or temperature conditions in which ice clouds can form (DeMott et al., 2003, Cziczo et al., 2013). INP concentrations applied in cloud and climate models must be accurate to within a factor of 10 to avoid biases that lead to significant differences in cloud radiative and microphysical properties (Phillips et al., 2003).

Several instruments and techniques exist, utilizing both online (real-time) and offline (processed post-collection) approaches, for the measurement of INP number concentration and activation temperature across the range of ice nucleation mechanisms. Ice nucleation mechanisms include deposition nucleation, immersion, contact and condensation freezing. However, some simulations find immersion freezing is the dominant ice nucleation mechanism globally from 1000 to 200 hPa (Hoose et al., 2010) hence, most INP measurement techniques target immersion mode freezing. In (Hiranuma et al., 2015), 17 online and offline immersion mode instruments were compared using illite NX as the dust standard. The major differences between the 17 instruments studied are described in detail therein, however in brief, all of the instruments fall into one of two categories: droplet assay techniques, in which INPs are immersed in water and distributed among an array of pico to microliter scale droplets on a substrate and then cooled until frozen, or chamber techniques, in which droplets are passed through a temperature and humidity controlled chamber, where the freezing of droplets and their associated size change is detected with optical particle counters. Each of these techniques pose significant INP measurement challenges due to the rarity of INPs, which represent 1 in 10^6 or fewer of total aerosol particles (Rogers et al., 1998), and mitigation requires large air sample volumes which both limits the temporal sampling resolution, and increases the chance of contamination, which can overwhelm subtle INP signals in the data. Making INP freezing temperature measurements can also present challenges, because sample droplets or crystals cannot be directly probed with thermal sensors throughout the cooling process without
altering the fundamental shape or content of the droplet, and most thermal probes are not small enough to access nano to microliter sized droplets.

In this paper, an offline freezing assay technique for measurement of immersion mode INPs (Hill et al., 2014; Hiranuma et al., 2015) is automated using a software-controlled real-time image stream designed to leverage optical changes of water volume arrays to detect freezing events. The offline freezing assay is an immersion mode technique that is similar to the immersion mode droplet assay, with a difference in the type of substrate used. In both techniques, multiple water volumes are supported on a substrate which is cooled until the water volumes are frozen, and concentrations of INPs as a function of freezing temperature are calculated from fractions of unfrozen droplets per temperature (see Sec. 2.1). In droplet assays, water volumes are distributed on a cold-stage as droplets during measurements. However, in the freezing assay, small aliquots of water, typically around 50 μL each, are distributed in 1.2 mL wells within disposable polypropylene trays. The trays are mounted in aluminum blocks that are cooled during measurements (see Sec. 2.2). Albeit with significant loss of time resolution, droplet or freezing assays provide an offline alternative for INP measurement with fewer aerosol size limitations than online chamber techniques. For regular sampling on any surface site, INP samples may be collected on open-face filters, which reduce sample inlet particle size biases and particle losses.

There are ten current instruments for measuring immersion mode INP concentrations using picoliter to nanoliter droplet or liquid volume arrays on or within cooled surfaces: the Leeds Nucleation by Immersed Particles instrument (NIPI) (Whale et al., 2015), the Bielefeld Ice Nucleation ARraY (BINARY) (Budke and Koop, 2015), the North Carolina State Cold Stage (NC State-CS) (Wright et al., 2013), the University of Colorado Raman Microscope Cold Stage (CU-RMCS) (Baustian et al., 2010; Wise et al. 2010), the Frankfurt Ice Nuclei Deposition Freezing Experiment (FRIDGE) (Klein et al., 2010), the Colorado State University Ice Spectrometer (CSU-IS) (Hiranuma et al. 2015, SI), the LED-based Ice Nucleation Detection Apparatus (LINDA) (Stopelli et al., 2014), the Cryogenic Refrigerator Applied to Freezing Test (CRAFT) (Tobo, 2016). WISDOM (Welzmann Supercooled Droplets Observation on Microarray) (Y. Rudich, personal communication), and the MicroOrifice Uniform Deposit Impactor-Droplet Freezing Technique (MOUDI-DFT) (Mason et al., 2015). Differences between the techniques include: a variety of strategies to minimize the Wegener-Bergeron-Findeisen process, in which frozen droplets near liquid droplets take up water vapour as the liquid droplets shrink, the degree to which RH or evaporation is controlled, number and size of droplets (or samples) accommodated, measurable freezing temperature range, and how freezing events are detected. Almost all of the ten techniques, with the exception of the CSU-IS, use a camera to image the droplets. The NIPI, FRIDGE, and NC-State CS save images at a frequency on the order of 1 image per second, and post-process a stream of images of the droplets with varying levels of automation in the determination of freezing events.

BINARY and LINDA report the use of an algorithm similar to the one described here (see Sec. 2.2) in which changes in the 8-bit mean grey value of a monochrome image, or the intensity of LED light transmitted, respectively, are used to detect the droplet’s phase change. Additionally, the heat transfer properties of the new SIO-AIS (Scripps Institution of Oceanography – Automated Ice Spectrometer) instrument are also characterized through a finite element analysis heat transfer simulation to evaluate the homogeneity of INP sample temperatures and identify optimal locations for the thermal probes. Finally, the
standard test dust used in (Hiranuma et al., 2015) was tested using the instrument, and was compared against the 6 other droplet array immersion mode INP measurement techniques that reported wet suspension measurements of illite NX.

2 Automation of Immersion Mode Ice Spectroscopy

2.1 Theory of Operation

Immersion mode ice spectroscopy measures INP concentrations at specific temperatures of a liquid sample. INP measurements of air samples are made by collecting particles on a filter (or via impinging particles into liquid), immersing the filter in ultrapure water, and shaking particles off of the filter by hand or via an automated rotator (DeMott et al., 2016). The liquid sample is then distributed in microliter aliquots into a clean 96-well disposable polypropylene sample tray. An equal number and volume of aliquots of ultrapure water accompany each sample in the disposable tray as control for contamination from the loading and/or ultrapure water. The sample trays are then inserted into an aluminium block that is cooled until the samples are frozen. The homogenous freezing point of water is -38 °C, but either the 96-well sample tray surface, or impurities present in the water induce freezing at higher temperatures, typically starting at -25 to -27 °C, which limits the lower temperatures for which INP number concentrations may be assessed.Cumulative INP number concentrations per temperature per volume are calculated using the fraction of unfrozen wells per given temperature interval:

\[INP = \frac{-\ln(f)}{V} \quad \text{Eq. (1)} \]

where V is the volume of the sample in each well (Vali, 1971). The fraction of unfrozen wells \(f \) is adjusted for contamination by subtracting the number of frozen ultrapure water wells per temperature interval from both the total number of unfrozen wells and total wells of the sample.

2.2 Physical Design and Automation of the Ice Spectrometer

In previous Ice Spectrometer INP studies, observation of each well freezing event was conducted manually by an operator, which limited the number of samples and wells per sample that could be processed, and required a cooling rate slow enough to accurately observe and manually record each freezing event. In order to increase sample throughput and improve accuracy of INP freezing temperature measurement, the immersion mode ice spectrometer (Hill et al., 2014; Hiranuma, et al. 2015) was redesigned to increase sample cooling rates (see Figs. 1 and 2) and automated using a software-controlled camera that monitors changes in optical properties of water droplets during freezing. In this paper, the new instrument’s max average cooling rate of -0.876 °C min\(^{-1}\), as measured in the coolant bath from room temperature to -33.27 °C, was used for all
measurements and simulations. For the same temperature range, the average cooling rate as measured at the base of the well is the same. We do not investigate the role of cooling rate on freezing, known to influence freezing activation spectra to a much smaller extent than temperature alone (Vali, 2014).

In the new instrument, the Automated Ice Spectrometer (AIS), two aluminium well blocks are fitted inside the coolant bath cavity of a Fisher™ Isotemp™ Refrigerated Bath Circulator and fitted with a sealed splash guard to prevent contamination of the well region by contact with the coolant. Each of the two aluminium blocks has a machined indentation cavity in which the 96-well disposable sample tray is tightly fitted. A plexiglass lid caps the well region to insulate and isolate the air above the wells from room temperature air. A 1.8 m long, 0.64 cm diameter coiled copper tube, connected to an external dry nitrogen supply, lies in the coolant bath beneath the well block in order to cool nitrogen gas that is pumped over the well region at 0.25 Lpm. The cold nitrogen gas purges room temperature air away from the well region to decrease stratification of temperature within the sample volumes. A flow rate of 0.25 Lpm was chosen because it was found empirically to most effectively cool the air above the well region. The nitrogen gas enters the well region slightly warmer than the chilled bath temperature (about +112-5 °C, see Fig. 3) because the gas flows through approximately 15 cm of rubber tubing exposed to the ambient room temperature before being injected beneath the plexiglass cover, and the headspace gas is not perfectly isolated from room air heat. At flow rates less than 0.25 Lpm, room temperature air leaks into the well region, but at significantly higher flow rates, the fast flowing nitrogen gas lifts the acrylic plate causing additional leakage.

A 0.5 Megapixel monochrome camera (Point Grey Blackfly 0.5MP Mono GigE POE) is used to image the wells throughout the cooling process. As depicted in Fig. 4, the camera is controlled with custom National Instruments, LabVIEW software which allows the user to adjust imaging parameters including brightness, exposure, gain, and rotation via a graphical user interface control panel shown in Fig. 5. The refrigerated bath circulator is also controlled by the software and allows the user to either ramp the temperature of the coolant from room temperature to the input target temperature at a constant rate or to “stair-step” the coolant bath temperature at adjustable, incremented time and temperature steps (with the tolerance of the bath circulator thermostat, the starting and stopping temperature as additional input options).

As shown in Figs. 1 and 2, the camera is fixed above the well region at the top of a plastic housing fabricated from white cast acrylic sheet (0.64 cm thick). An adjustable cradle holds the camera and allows aligning of the camera lens (2.8-12 mm Focal Length, Varifocal Video Lens, Edmund Optics) over the centre of the well block. Also fixed within the white housing are two white LED backlights (Edmund Optics), one on either side of the well region, which together provide a stable lighting environment for imaging of the wells and the liquid samples. Once the camera is aligned using the adjustable cradle, the video image is live-streamed via the control software so that two 8x12 grids of 15x15 pixel squares are aligned over all 192 wells. Each 15x15 pixel box corresponds to an individual sample well and the mean intensity of light reflected from each well is recorded.
When droplets freeze, the intensity of the light reflected back to the camera decreases due to the dark background of the inner well block. As in the flowchart depicted in Fig. 43, at each new time step t_i, if the difference between the mean intensity I of the well at t_i and the mean intensity of the well at t_{i-1} is greater than the set pixel change threshold η such that $|I(t_i) - I(t_{i-1})| > \eta$, a freezing event is detected and time, freezing temperature, and location of the well are recorded. The exposure, gain, and pixel change threshold η can be adjusted in the control panel to increase the signal to noise ratio by emphasizing the decrease in mean intensity due to freezing, and minimizing the background variation in mean intensity due to any oscillation of the chiller unit when the coolant circulator is running. Temperature measurements are made with a thermistor imbedded at the base of a well in the sample tray after threading the sensor leads through a small hole drilled in the aluminium block.

3 Simulation of Heat Transfer for Immersion Mode Ice Spectroscopy

3.1 Model design

In order to accurately measure the freezing temperature of INPs in immersion mode spectroscopy, the temperature of each well must be quantified, and the temperature of the sample throughout the volume itself must be homogenous (unstratified). Placing thermistors directly in the sample volume would be ineffective for several reasons including: (1) the probe itself disrupts the structure of the surface of the droplet and could provide a surface for nucleation, (2) heat conducts through the probe into the sample volume and (3) probes can introduce contamination. Also, if a probe is placed in a sacrificial sample well, once the well freezes, latent heat is released and because the thermal properties of ice are different from those of water, the temperature of the frozen well may not be representative of the supercooled liquid wells. Thus, the probe must be placed outside the well volume but in a region of the well block that is thermally homogenous with the sample. Alternatively, if the heat transfer characteristics of the system are resolved, the thermal probe could be placed anywhere in the block where the offset in temperature between the probe’s location and the sample well volume is quantified. The sample volume itself must be thermally homogenous because if the sample volumes were stratified, a freezing event could be triggered in any of the stratified well layers depending on its temperature and the buoyancy of the ice nucleating entity.

In order to address the thermal properties of the aluminium block and well-plate system, a finite element analysis-based heat transfer simulation was developed using the 3D Design Software SolidWorks to investigate the homogeneity of temperature within the 50 microliter sample volumes throughout the cooling process, and to determine the optimal placement and number of thermistors needed to resolve the temperature of each well. As shown in Fig. 6, a 3-D model of the AIS was designed using the dimensions and material properties of the actual instrument components. In finite element analysis heat transfer simulations, a mesh is applied to the modelled object such that, with a given initial temperature and/or heat source at the boundaries, rates of heat transfer and temperature are computed iteratively until solutions converge on the user-defined mesh. Meshing becomes more computationally expensive over curved or complex surfaces, and because the AIS well blocks contain 192 wells each with a curved inner surface, a cut of the upper left quadrant shown in Fig. 6a was made in the
3-D model to reduce computation time. In Fig. 6a, the two aluminium 96-well blocks are shown with the PVC splash guard, and the dashed red-black line in the upper-left corner represents the modelled cut in the well block. Figures 6b and 6c show a close-up of the corner-well block quadrant featured in the model, including the aluminium well block, the polypropylene sample tray, and a 50 microliter sample of water. A pocket of gas between the sample tray and the well block is also modelled due to the slightly imperfect fit of the tray to the well block in the actual instrument. The simplifying modelling cut was justified by making measurements of the horizontal distribution of temperature through the two boundaries of the well region: the nitrogen gas above the well region and the coolant bath, which by design maintains a homogenous temperature throughout the coolant volume. The homogeneity of temperature in the coolant bath was verified using a calibrated thermometer (Checktemp Pocket Thermometer Hanna Instruments, accuracy ± 0.3 °C from -20 to 90 °C). To investigate the horizontal distribution of the temperature of gas across the surface of the well block, 4 thermistors were placed in the 5 cm headspace between the well block surface and the plexiglass lid during repeated cooling processes, and the thermistor temperature was monitored while systematically moving the thermistors through the headspace. The temperature of the nitrogen gas in the headspace was found to be homogenous across the plate within ± 0.3 °C (within the error of the calibrated temperature probe).

The horizontal gradient of temperature is constrained by the homogenous temperature across bottom surface of the well block and a temperature difference of max ± 0.3 °C across the top surface. The vertical gradient of temperature through the well block, disposable sample tray, and sample volume is not practically measurable and requires resolution through heat transfer simulations in order to determine where probes should be placed to measure temperature of the wells. The larger hole on the left side of the sample well in Figs. 6a and 6b is where the thermal probes were placed in the original AIS design.

The mesh used is shown in Fig. 6c and was applied using the SolidWorks standard mesh solver. It is composed of discrete, tetrahedral elements that are connected at the three nodes such that they converge through all components in the modelled system. Generally, an aspect ratio around 1 for each element is ideal, and for the mesh applied in the heat transfer simulations, 996.1% of the mesh elements with an aspect ratio of less than 3, and 0.007% of elements with an aspect ratio greater than 10. Four Jacobian points, or nodes at the midpoint of element sides, were applied to each element to align with curvature more effectively with linear elements, and the mesh took 7-1 minute, 56 seconds to converge.

3.2 Set-up of the heat transfer simulation

The nitrogen and coolant fluid in thermal contact with the sample volumes and well block, respectively, form the thermal boundaries of the simulation. Thus, to quantify the boundary conditions for the heat transfer simulation, temperature measurements were made of the gas temperature above the sample volumes and the coolant temperature during a ramp cooling process, in which the refrigerated bath circulator ran from room temperature to -27 °C at an average cooling rate of -0.876 °C per minute (see Fig. 5). In addition, a hole was drilled into the aluminium block so that a thermistor could be placed directly underneath a sample well.
Once the thermistor was placed in the block, the hole was sealed with acrylic caulk to prevent coolant fluid from entering the well region, and heat sink compound was applied to the thermistor so that it was in thermal contact with the aluminium block and the disposable sample tray. In Fig. 35, the temperature at three locations within the AIS are shown after measurement throughout a “ramp” cooling process from 150 °C to -35 °C: 1) the coolant in contact with the bottom surface of the well block, 2) the gas above the sample volume, or headspace gas, and 3) directly below the sample well. The measurements of temperature of the gas above the sample volume and coolant over 327600s of cooling are applied as boundary conditions in the heat transfer simulation. The larger plot in Fig. 35 shows the warm temperature offset of the headspace gas from the measured temperature at the well base, and the inset plot shows temperature changes in time, at the three locations over the ramp cooling cycle. The headspace gas and coolant temperature data are applied as boundary conditions in the simulation.

Figure 35 shows that the air above the well region is warmest in the simulation range, a maximum of +4.195-28 °C warmer than the well base, despite the chilled nitrogen pumped over the well region because the system is imperfectly insulated from the room temperature environment and because there is a slight warming of the gas before it enters the headspace (as described in Sec. 2.2). An acrylic plate covers the wells as shown in Fig. 1, but the system is not thermally isolated from the environment.

Figure 6d shows each of the components considered in the model: the aluminium well block, the disposable sample tray, the gas pocket in the gap between bottom of the sample tray and the well block, and the 50 microliter sample water volume. The coolant and the headspace gas were considered as variable thermal loads to the system rather than included as components. Two types of heat transfer were considered during the model analysis: conductive and convective. All of the components shown in Fig. 6d are considered to be bonded, or treated as if heat transfer by conduction occurs in a continuous manner. Heat transfer by conduction is computed at each element of the mesh by the following equation:

\[Q_{\text{conduction}} = kA(T_{\text{hot}} - T_{\text{cold}}) \]

Eq. (2)

where \(Q_{\text{conduction}} \) is the rate of heat transfer in Watts, \(k \) is thermal conductivity of the component, \(A \) is the heat transfer area defined by the mesh, and \((T_{\text{hot}} - T_{\text{cold}}) \) is the temperature difference between the two mesh elements considered. Thermal conductivity, \(k \), is determined by the material of the component. Values of \(k \) used in the simulation are shown in Table 1.

At all interfaces where the model is in contact with headspace gas, heat transfer by convection is considered. For heat transfer by convection, Eq. (3) is applied at each element:

\[Q_{\text{convection}} = hA(T_s - T_f) \]

Eq. (3)
where \(Q_{\text{convection}} \) is the rate of heat transfer from a body to a fluid in Watts, \(h \) is the heat transfer coefficient in W/m\(^2\)K, \((T_s - T_f)\) is the difference in temperature between the surface of the body and the fluid. \(A \) is the same as above in Eq. (2).

The convection of both the gas and the water in the model was considered natural convection rather than forced. Typical ranges for the heat transfer coefficient \(h \) for natural convection of air are 5-25 W/m\(^2\)K (Yousef et al., 1982). The model output was insensitive to this range of coefficient variability, and a value of 25 W/m\(^2\)K was used. The range of \(h \) for natural convection of water however is much larger, from 2-3000 W/m\(^2\)K (VDI-Gesellschaft Energietechnik, 2013), so \(h \) was estimated by approximating the wells as two vertical plates, calculating the Nusselt number \(N \), and using \(h = \frac{Nk}{H} \), where \(N \) is the Nusselt number, and \(H \) is the height of the plates. \(N \) was calculated using Eq. (4) for laminar flow (Churchill and Chu, 1975):

\[
N = 0.68 + \left(\frac{0.670Ra^{1/4}}{(1+\left(0.492\Pr^{9/16}\right)^{4/9}} \right)
\]

(\text{Eq. (4)})

\(Ra \) and \(Pr \) are the Rayleigh and Prandtl number (Holman, 2010), respectively, where

\[
Ra = \frac{g\beta(T-T_\infty)D^3}{v^2} \times Pr
\]

(\text{Eq. (5)})

and \(Pr = \frac{v}{\alpha} \).

\(\beta \) is the coefficient of thermal expansion, \(g \) is the acceleration due to gravity, \(T \) is the temperature of the water volume, \(T_\infty \) is the temperature of the air at the surface of the water volume, \(D \) is the diameter of the well as measured at the top of the well of the disposable sample tray, \(v \) is dynamic viscosity, and \(\alpha \) is the thermal diffusivity. Since \(\beta, v, \alpha, \) and \(k \) are temperature dependent properties, and \(h \) is of interest over the supercooled range from 0 to -25 °C, \(N \) and \(h \) were calculated at -5 °C, -15 °C, and -25 °C, using corresponding values of \(\beta, v, \alpha, \) and \(k \) (Kell, 1975; Dehaoui et al., 2015; Benchikh et al., 1985; Biddle et al. 2013), which are shown in Table 2. Thus, \(h \) was estimated to be 161, 191, and 202 W/m\(^2\)K at -5 °C, -15 °C, and -25 °C, respectively. Within the range 161-202 W/m\(^2\)K, the model was insensitive and a constant value of 191 W/m\(^2\)K was used throughout the simulations.

The simulation was run over 3276300 seconds with two different sets of boundary conditions representing the coolant fluid and headspace gas temperatures. In the first simulation, the coolant fluid temperatures from Fig. 35 were applied, but the difference between the temperature of the headspace gas and that of the well base was multiplied by two in order to approximate inefficient cooling of headspace gas. In the second simulation, the gas and coolant temperatures were applied directly from the data spanning the yellow bar coolant fluid and headspace gas temperature in Fig. 35. The first condition has warmer headspace gas temperatures than those that were measured during the cooling process on the actual instrument in Fig. 35. This condition represents a doubling of the warming of the gas after it exits the coolant bath and before it enters the
headspace (as described in Sec. 2.2), and could be considered representative of an instrument with inefficient cooling of the gas above the well region. However, the difference in temperature between the well and headspace gas between the two cases is less than double due to the time delay of heat transfer through the block. For example, the maximum offset between the well and the warmer headspace gas in the second simulation (measured conditions) is +5.7 °C at 960 s, whereas in the first simulation, the maximum offset between the well and the warmer headspace gas is +7 °C at 1080 s.

4 Results
4.1 Simulation results

The results of the heat transfer simulation for the +12 °C gas temperature offset condition and the measured gas and coolant temperature conditions are shown in Figs. 7 and 8. Fig. 7 shows a graphical time series of the heat transfer simulation with the +12 °C temperature doubling of the offset between the chiller-well base and the warmer gas above the well region. The heat distribution is shown in 12 time steps at 410-273 s intervals over a 1320 s simulation, with the coolant fluid cooling from 15-8 °C to -33.25 °C over that period (i.e. -0.8760 °C min⁻¹). At the top of Fig. 7, an isometric view of the well block at 660-1638 s is shown, and to the right is a detailed view of the well. The results show the stratification of temperature in the sample volume itself, ranging from -5 °C to -13.8 °C at the skin of the sample volume, to -14.358 °C at the bottom of the sample volume. These results demonstrate that with a +12 °C offset between the well and the headspace gas, the temperature difference of +6.5 °C between the well and the headspace gas is too large to maintain homogenous temperature within the liquid sample volume which then becomes stratified by 0.56 °C.

The degree of stratification through the duration of the simulation is shown in Fig. S2, reaching a maximum of 0.6 °C. Fig. 8 shows a graphical time series of the heat transfer simulation with the measured AIS headspace gas temperature and coolant bath temperature conditions from Fig. 3. With an offset between the base of the well and the headspace gas temperature of +3.0 °C, stratification has significantly decreased to -0.1 °C from top to bottom of the sample volume, which is within the error of the thermal probe (see Fig. S2).

The results also show that the distribution of heat throughout the well block requires careful placement of the temperature probe such that the temperature of the probe location is accurately indicating the temperature of the sample volume. In each of the simulations, the sample water volume comprises the warmest body in the model assembly. Throughout the modelled assembly, the temperature at the top of the gas pocket underneath the well of the polypropylene disposable tray was the region closest in temperature with the sample water volume, temperature but still colder by as much as -1.8 °C, (within ±0.15 °C). Due to strong temperature gradients between the water sample and the immediately surrounding aluminium block, small variations in probe location can result in disproportionately large temperature offsets from the sample volume. At 1638660 s in the second simulation, which applies the gas and coolant temperature conditions as measured on the AIS (Fig. 3). At 660 s in the second condition applying the measured gas and coolant temperature conditions, the temperature decreases 1.8–4 °C from base of the well of the polypropylene disposable tray through the gas pocket to the aluminium
surface of the well block over a distance of 2.5-mm, resulting in an offset of -1.6 °C between the average temperature of the air pocket and that of the sample volume. This could be caused by the high specific heat of the water volume relative to the aluminium and the insulating thermal properties of the polypropylene tray could be responsible for the strong temperature gradient. In the current design of the AIS, the thermal probe is located in this gas pocket, and the simulation results suggest that at this location there could be up to a -1.824°C cold bias in the INP freezing temperature measurements. Thus, during ramping of the coolant bath from room temperature to -33.27°C at about -0.876°C per minute, there is nowhere to place a probe in the aluminium block where the temperature perfectly matches that of the liquid sample volume (within << 1 °C). The offset in temperature between the probe and the sample temperature should be quantified so that recorded temperatures can be adjusted accordingly.5

In order to verify the simulation output so that offsets found can be applied quantitatively, simulated temperatures were checked against measurements that were independent of the simulation. Since the entire surface of the system was constrained by boundary conditions in the simulation, the measurements from inside of the well block at the well base (shown in Fig. 35) were used for comparison with the simulation output at the same location. Results of the comparison over the 12 time steps of the simulation are shown in Fig. S1. At subzero temperatures, the maximum difference between the measured and simulated temperatures was 0.6 °C at t = 819s, decreasing to values below the error of the thermistor for most of the simulation. ±0.6 °C is assumed to be the uncertainty of the simulation. The measured temperature was consistently slightly warmer than the simulated temperature, possibly because the hole drilled into the aluminium well block was not modelled. In the second simulation using measured boundary conditions, the average temperature of the sample volume was compared with the average temperature of the air pocket in which the thermistor is placed throughout the 3276s simulation (see Fig. S3), in order to quantify the offset between the thermistor and the sample. The air pocket temperatures are consistently colder than the sample volume temperatures, ranging from -1.8 °C to -1.2 °C over the 3276s simulation. Offsets in temperature between the 192 wells along the x and y axis also exist in the AIS and are shown in Fig. S4. Sample volumes in wells near the outer perimeter are up to +2.2 °C warmer than sample volumes near the center of the well block. Detailed analyses of these results—the offsets along the x and y axis over the 3276s simulation—are not used quantitatively shown because there is currently only one thermistor embedded in the well block, so verification of the simulation’s temperature gradient in x and y was not possible without further modifications to the AIS-well block. In the future, additional thermistors embedded within the well block can be used to verify the simulation output so that measurements can be adjusted with offsets due to the gradient in x and y as well as z. However, the maximum offset found between wells in x and y found, +2.2 ° will be represented as error bars in the uncertainty associated with the measurements reported in the following sections. Ideally, any modifications made to the AIS system to fit a thermal probe, such as holes drilled in the aluminium or addition of heat sink compound should also be represented in the model when determining an offset. A slower or stair-step method of cooling, where the temperature of the chiller is set and held for a set amount of time, would increase the region of thermal homogeneity in the well block but it would still be necessary to characterize the heat transfer properties of the system to determine how long the region takes to reach thermal equilibrium.
and where the probe should be optimally placed. Failure to resolve the heat transfer characteristics of an immersion mode system could result in either warmer or colder temperature biases in measurements.

4.2 Automated Ice Spectrometer Performance: comparison with 6 other immersion mode ice nucleation measurement techniques

The accuracy of the Automated Ice Spectrometer (AIS) INP concentration measurements were evaluated using a standard, well-characterized test dust that has previously been used to compare immersion mode ice nucleation measurement techniques, Illiteillite NX (Arginotech, NX nanopowder) (Hiranuma et al., 2015). A suspension of dust and Milli-Q ultrapure water was prepared in a sterile 50 mL centrifuge tube (Corning) using a sample from the same batch of Illiteillite NX used in (Hiranuma et al., 2015) in a study of 17 immersion mode ice nucleation measurement techniques. 20 mg of illite NX was immersed in 500 mL of ultrapure water, resulting in a 4.0 × 10⁻³ weight % solution. Two more dilutions were made by immersing 25 mg of illite NX in 50mL of ultrapure water, and diluting again by factors of 1/10 and 1/100, resulting in solutions of 5.0 × 10⁻² and 5.0 × 10⁻³ wt %, respectively. A final solution was prepared by starting with 300 mg in 50 mL of ultrapure water, then diluting by factors of 1/100 and 1/1000, resulting in a solution of 6.0 × 10⁻⁶ wt %.

For comparison, in (Hiranuma et al., 2015), droplet assays were intercompared using Illiteillite NX suspensions of varying dilutions within the range of 3.1×10⁻⁶ wt % to 1.0 wt %. Higher concentrations of illite NX solution were not measured using the AIS because the automation software requires an optically clear solution to detect freezing events. 50 μL aliquots of the suspension were loaded into 24 wells of the disposable sample tray (Life Science Products™ 96 well PCR plates), and 24 adjacent wells were filled with 50 μL aliquots of Milli-Q water. Prior to loading, the plexiglass lid was cleaned with an isopropyl alcohol based surface cleaner, rinsed three times with Milli-Q and dried with clean compressed air, and nitrogen was pumped over the well region at 0.25 Lpm for 20 minutes to purge the lines of any dust. The loaded and covered sample was then cooled from room temperature to -27 °C (with an average cooling rate of -0.876 °C min⁻¹), at which point the Milli-Q water had frozen in all wells. The experiment was repeated 43 times. Freezing events were detected using the automation software and the time of freezing, well temperature and sample number recorded into an ASCII file for further analysis. Cumulative concentration of INPs per volume per 0.25 °C were calculated using Eq. (1) (Vali, 1971). Although the placement of the temperature probe was as described in Sec. 4.1, no offset to the temperature was applied in the measurements. In order to compare directly with (Hiranuma et al., 2015), cumulative concentrations of INPs were converted into a surface-site density, n,BET. The specifics of the parameterization are in (Hiranuma et al., 2014), but briefly, the parameterizations are based on BET (Brunauer Emmet Teller) (Brunauer et al., 1938) N₂-adsorption-based specific surface area in which the particle surface area is measured based on the quantities of gases that form monolayers on the surface of the particle. The specific surface area (SSA) of the Illiteillite NX sample used in (Hiranuma, 2015) was 124 m²/g and the mass concentration (m), of the Illiteillite NX solutions processed in the AIS ranged from 6.0 x 10⁻⁶ to 5.0 x 10⁻² g/mL. The AIS
measurement results in terms of cumulative INPs per volume were converted to the surface site density, \(n_{s,BET} \) using the mass concentration and specific site density as follows:

\[
n_{s,BET} = \frac{(INPs/mL)}{SSA \cdot m}
\]

Eq. (6)

5

In Fig. 9, the measured Illiteillite NX spectra are shown with the 6 of the 17 total ice nucleation measurement techniques from (Hiranuma et al., 2015). These were similar freezing or droplet assay techniques: the CSU-IS, the NIPI, FRIDGE (in immersion mode), NC-State CS, BINARY, and the CU-RMCS. The 6 instruments made wet suspension-based measurements of Illiteillite NX in ultrapure water rather than dry-particle based measurements, and thus should more directly compare to those of the AIS. Temperature offsets between the thermistor and the sample volumes due to the consistently colder location of the thermistor, \(\pm 19.86 ^\circ C \), and the warmer wells near the perimeter of the well block \(\pm 2.2 ^\circ C \) (see Sec. 4.1) are represented in the error bars on the AIS measurements. The ice nucleation surface site density spectra of the 6 measurements fall within a range of about 5 °C, and the Automated Ice Spectrometer measurements compare favourably to those of the other 6 techniques through its final temperature of \(-25.19 ^\circ C\). However, the AIS measurements fall on the warmer side of the temperature spectrum from \(-10\) to \(-25.15 ^\circ C\). Based on the results of the heat transfer simulations in Sec. 4.1, differences in the cooling process type (stair-step or ramp), location of temperature probe or method of freezing temperature measurement could have strong influences on reported freezing temperatures. These factors might account for some of the 8 °C (or 5 °C for wet suspension droplet assay techniques) spread in spectra reported in (Hiranuma et al., 2015).

5 Discussion

The immersion mode ice spectrometer (original configuration in Hill et al., 2014, and latest design described in Hiranuma et al., 2015) was modified to fit inside a refrigerated circulating coolant bath, and automated using a software controlled camera. Older versions of the immersion mode ice spectrometer were designed with the aluminium well blocks external to the refrigerated circulator bath and the coolant fluid was pumped through heat exchange plates encasing the aluminium well blocks for cooling via external copper tube plumbing. The operator observed and recorded well freezing manually. Modifications to the instrument increased thermal homogeneity across the well block by immersing well blocks directly in the coolant bath. Automation enables more objective and instantaneous recording of well freezing events, and frees the operator from having to constantly monitor sample processing.

The heat transfer properties of the AIS were characterized using finite element analysis heat transfer simulations, with measured temperatures of the well block headspace gas and the coolant bath applied as boundary conditions. Heat transfer by conduction and convection were considered. -While temperature homogeneity across the well block horizontally was not
investigated through the simulation, the temperature across the block was constrained by measurements of the coolant fluid and gas above the well block to be consistent within ± 0.3 °C.

The results of the simulations showed that efficient cooling of the well head space, with a maximum +45.3 °C offset between the base of the well and the headspace gas, or +116 °C between the coolant bath and the headspace gas, is necessary to ensure that the liquid sample volume is unstratified within the error of the thermal probe, within ± 0.295 °C, so that the well freezing temperature is representative of the population INPs in the well. The results also demonstrate a strong temperature gradient from the sample volume to the polypropylene and aluminium immediately surrounding the sample, of up to -1.8 °C in the 2.5mm gap. Thus the temperature measurement in the AIS is highly sensitive to the location of the thermal probe. In the simulation, the only region with a temperature consistent with the sample volume was the top of the gas pocket between the bottom of the polypropylene disposable tray and the aluminium block. However, a thermistor probe cannot physically fit in this small region, so INP freezing temperature measurements are likely biased by the thermistors contact with the aluminium block. An offset between the thermistor location and the sample volume was quantified, first by verifying the simulation output using a thermistor embedded in the well block (see Fig. S1), then using the simulation output to determine the offset to apply to the recorded measurements, a temperature offset could be applied to measurements if an offset can be quantified and is consistent. For other immersion mode droplet assay INP measurement techniques, variation in heat transfer properties and thermal probe placements may result in higher or lower accuracy of INP freezing temperature measurement, but the sensitivity of the temperature gradient within the droplet to the thermal heterogeneity of its cooling environment, as well as that of the temperature measurement to thermal probe placement motivates careful study of the effect of heat transfer properties of the various techniques. The heat transfer simulations applied here could support investigations of bias in temperature measurement for INP measurement techniques, enable higher accuracy in INP freezing temperature measurements, and ultimately help decrease disparities between various instruments. INP concentrations applied in cloud and climate models must be accurate within an order of 10 to avoid propagation of error leading to significantly different cloud properties (Phillips et al., 2003), and as measurements typically show INP concentrations increasing with decreasing temperature in complex multi-exponential functions (Hiranuma et al., 2015), an 8 °C uncertainty in freezing temperature measurement could result in vast differences in model output. Heat transfer simulations could prove particularly useful in studies of the role of varied cooling rates on assessment of ice nucleation activity in different devices due to the stochastic or time-dependent nature of droplet freezing at a given temperature. In such an investigation, it is important to separate the impact of time dependence of the ice nucleating entity from variations due to temperature gradients between the location of the thermal probe and the sample volume.

Fast cooling of samples (>1 °C/min) has been discussed as a potential source of stratification of temperature between the substrate and the droplets, or within the droplets, and conversely, that chilled nitrogen in the headspace might not be necessary to avoid stratification (Tobo, 2016). However, the heat transfer simulation results below show that even with cooling rates below 1 °C min⁻¹, stratification within the sample volume can occur, and that the temperature of nitrogen gas in the headspace may play a significant role in controlling temperature stratification within the droplets.
The performance of the Automated Ice Spectrometer was evaluated using measurements of Illite NX, a well characterized test dust that has been used to intercompare 17 immersion mode INP measurement techniques. Three different dilutions of Illite NX suspension were measured: \(4.0 \times 10^{-3}\), \(5.0 \times 10^{-3}\), and \(5.0 \times 10^{-2}\) wt \%, and \(6.0 \times 10^{-6}\) wt \%. These concentrations fall in the middle to the lower end of the range of suspension concentrations (\(3.0 \times 10^{-6}\) to 1.0 wt \%) measured by the 6 selected droplet assay INP measurement techniques in (Hiranuma, 2015) (see Fig. 9). Measurements of specific site density compare well with the 6 droplet assay techniques from the intercomparison study (Hiranuma et al., 2015), falling on the warmer side of the 5 \(^{\circ}\)C spread in the reported spectra from -10 to -245 \(^{\circ}\)C.

In summary, the Automated Ice Spectrometer:

1. enables entirely autonomous measurement of INP concentrations
2. can measure concentrations of INPs with activation temperatures in the range 0 to -255 \(^{\circ}\)C
3. can process up to 7 samples per hour using 24 wells per sample, over 4 times faster throughput than older versions of the instrument (including time for loading samples)
4. has characterized heat transfer properties so that stratification, both potential temperature offsets from well to well, and between temperature probes and the sample volume, and potential for stratification can be studied

Acknowledgements. We would like to thank Joe Mayer for his invaluable help in constructing the AIS housing and camera mount. Funding to support this research was provided by the Center for Aerosol Impacts on Climate and Environment (CAICE), an NSF Center for Chemical Innovation (CHE-1305427).

References

Table 1: Elements and properties used in heat transfer simulation

<table>
<thead>
<tr>
<th>Components</th>
<th>Material</th>
<th>k^\dagger (W/mK)</th>
<th>$h^{\ddagger\ddagger}$ (W/m²K)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Well block</td>
<td>Aluminum 1060 Alloy</td>
<td>200</td>
<td>25</td>
</tr>
<tr>
<td>Disposable sample tray</td>
<td>Polypropylene</td>
<td>0.117</td>
<td>25</td>
</tr>
<tr>
<td>Gas pocket</td>
<td>Air</td>
<td>0.027</td>
<td>n/a</td>
</tr>
<tr>
<td>Liquid INP sample</td>
<td>Water</td>
<td>0.5</td>
<td>191</td>
</tr>
</tbody>
</table>

† Davis, 1998.
‡‡ Yousef et al., 1982. See Sec. 3.2 for calculation of h for liquid sample.

Note: Both k and h are temperature dependent, but were used as constants in the simulation due to the insensitivity of the simulation between 0 and -30 °C.

Table 2: Constants used in calculation of h, heat transfer coefficient for water in natural convection from -5 to -30 °C

<table>
<thead>
<tr>
<th>Water Temperature T (°C)</th>
<th>Gas Temperature T_∞ (°C)</th>
<th>β^\dagger (K⁻¹) $\times 10^{-6}$</th>
<th>$u^{\ddagger\ddagger}$ (m²/s) $\times 10^{-6}$</th>
<th>α^* (m²/s) $\times 10^{-7}$</th>
<th>k^{**} (W/mK)</th>
<th>h (W/m²K)</th>
</tr>
</thead>
<tbody>
<tr>
<td>-5.0</td>
<td>-1.6</td>
<td>-168.6</td>
<td>2.0026</td>
<td>1.30</td>
<td>0.520</td>
<td>160.8</td>
</tr>
<tr>
<td>-15.0</td>
<td>-10.3</td>
<td>-450.3</td>
<td>3.0707</td>
<td>1.20</td>
<td>0.500</td>
<td>191.0</td>
</tr>
<tr>
<td>-30.0</td>
<td>-23.4</td>
<td>-1400.0</td>
<td>7.9703</td>
<td>1.05</td>
<td>0.450</td>
<td>201.6</td>
</tr>
</tbody>
</table>

† Kell, 1975
‡‡ Dehaoui, 2015
* Benchikh, 1985
** Biddle, 2015
Figure 1: Schematic of Automated Ice Spectrometer (AIS) showing primary components as indicated by labels. Shown on the left is a camera, insulated housing for the camera and lights, LED diffuse lighting, a lid placed over the well blocks, and the chiller unit. Lid refers to the optically clear plexiglass cover, beneath which cold nitrogen gas is injected. Cutaway shows copper coil submerged in coolant that provides pre-chilled nitrogen gas to the space beneath plexiglass lid.
Figure 2: Photo of current Automated Ice Spectrometer system. Housing is manufactured from white-cast acrylic. Fig. 2a shows top-side view indicating camera and its adjustable cradle and access door open showing cooled well plate within. Fig. 2b oblique front view showing AIS housing sitting atop commercial chiller unit (Fisher Scientific Isotemp® Circulator). Tubing shown is the nitrogen gas input line.
Figure 3: Graph of well temperature vs. temperature offset measured between the base of the well and the air above the well as measured with a thermistor probe (orange filled circles). The error bars in the larger plot show the range of temperature offsets corresponding to the ± 0.3 °C calibration error of the temperature standard. From room temperature to -33 °C as measured at the base of the well, the average cooling rate is -0.87 °C min⁻¹. Inset shows cooling performance of the bath coolant, and the temperature within the well and gas above well over 3276s measured by thermistor probes. The average cooling rate at the base of the well during the time period from 0 °C to -27 °C, however is -0.69 °C min⁻¹ because the cooling rate slows as the refrigerated cooling bath approaches its minimum temperature.
Figure 43: Flow chart describing algorithm for detection of freezing events using camera, lights to leverage optical properties of phase change from water to ice. Grey and pink used to indicate the “stair-step” and “ramp” temperature control of the chiller (for details see main text). Green used to indicate imaging section of the algorithm for detection of freezing events.
Figure 5.4: A screenshot of the AIS user computer interface. Chiller controls and well temperature readings on left, video stream of image of wells in middle. The detected freezing events are highlighted in green and displayed to the well matrix diagram on the right.

Figure 5: Graph of well temperature vs. temperature offset measured between the base of the well and the air above the well as measured with a thermistor probe (orange filled circles). The error bars in the larger plot show the range of temperature offsets corresponding to the ±0.3°C calibration error of the temperature standard. From room temperature to −27 °C as measured at the base of the well, the average cooling rate is −0.86 °C min⁻¹. Inset Inset shows cooling performance of the bath coolant, and the temperature within the well and gas above well over 3300 s measured by thermistor probes. The average cooling rate at the base of the well during the time period studied in the heat transfer simulation (from 0 °C to −27 °C, see Figs. 6, 7, and 8) however is −0.693 °C min⁻¹ because the cooling rate slows as the refrigerated cooling bath approaches its minimum temperature.
Figure 6: Schematic of cut in well block made for heat transfer simulation and mesh applied. (a) Well block and cover with black-red dashed line to indicate where cross-section (see Fig. 7 and Fig. 8) in assembly was made for the heat transfer simulations. Black line indicates the section of well block that is featured in (b), (c), and (d) to show all components modeled in the simulations. (b) Isometric, sectional view of the block corner used in the heat transfer simulation. (c) Image of mesh applied using SolidWorks standard mesh solver (see Sec. 3.1 for details). (d) Isometric, flat sectional view of the block corner with labels to indicate materials parameterized in the heat transfer simulations shown in Fig. 7 and Fig. 8.
Figure 7: Graphical time series of the heat transfer simulation. Top shows isometric view of the well block (top left quarter) at $t = 660 \text{ s}$. Top right shows detailed plane view of well at $t = 660 \text{ s}$. Dashed lines indicate temperature of water in the well at 3 points. Colors indicate temperature referenced by the scale below. Twelve time steps at 5 second intervals showing temperature distribution within the well block shown below. The average cooling rate over this specific time period is $-0.876 \degree \text{C s}^{-1}$. Results show the stratification of temperature in the well-sample volume due to warmer air above the well region (see Sec. 3.2 for details).
Figure 8: Graphical time series of the heat transfer simulation. The effects of increasing thermal homogeneity in the cooling environment by efficiently cooling headspace gas on performance of the well block. As in Fig. 7, the top shows isometric view of the well block corner at $t = 1638660$ seconds. Dashed lines indicate temperature of water in the well at 3 points. Colors indicate temperature referenced by the scale below. Twelve time steps at 273440 second intervals showing temperature distribution within the well block shown below. The average cooling rate over this specific time period is -0.8769 °C min$^{-1}$. Results show the lack of the decreased stratification of temperature in the well due to cooler air above the well region (air temperature offset varied approximately $+2$ to -46 °C from the bath coolant temperature as shown in Fig. 35).
Figure 9: Immersion freezing spectra of illite NX particles in terms of $n_{S,BET}(T)$ for comparison of SIO AIS against six other immersion mode techniques reported (see Hiranuma et al., 2015a). $n_{S,BET}$ is used to estimate ice nucleation surface-site density from an N$_2$ adsorption-based specific surface area (Hiranuma et al., 2015a). CSU-IS (500 nm) represents measurements made on illite NX particles that were mobility diameter size-selected, whereas all other measurements reported were of bulk illite NX samples. Four different dilutions of illite NX suspensions were measured by the SIO AIS: 4.0×10^{-3} wt %, 5.0×10^{-3} wt %, 5.0×10^{-2} wt %, and 6.0×10^{-6} wt %. SIO AIS measurements fall on the warm side of the spectra.