Controlled nitric oxide production via O(1D)+N2O reactions for use in oxidation flow reactor studies

Andrew Lambe1,2, Paola Massoli1, Xuan Zhang1, Manjula Canagaratna1, John Nowak1,*1, Chao Yan3, Wei Nie4,3, Timothy Onasch1,2, John Jayne1, Charles Kolb1, Paul Davidovits2, Douglas Worsnop1,3, and William Brune5

1Aerodyne Research, Inc., Billerica, Massachusetts, United States
2Chemistry Department, Boston College, Chestnut Hill, Massachusetts, United States
3Physics Department, University of Helsinki, Helsinki, Finland
4Joint International Research Laboratory of Atmospheric and Earth System Sciences, School of Atmospheric Sciences, Nanjing University, Nanjing, China
5Department of Meteorology and Atmospheric Sciences, The Pennsylvania State University, University Park, Pennsylvania, United States

*Current address: Chemistry and Dynamics Branch, NASA Langley Research Center, Hampton, Virginia, United States

Correspondence to: Andrew Lambe (lambe@aerodyne.com), William Brune (whb2@psu.edu)

Abstract.

Oxidation flow reactors that use low-pressure mercury lamps to produce hydroxyl (OH) radicals are an emerging technique for studying the oxidative aging of organic aerosols. Here, ozone (O3) is photolyzed at 254 nm to produce O(1D) radicals, which react with water vapor to produce OH. However, the need to use parts-per-million levels of O3 hinders the ability of oxidation flow reactors to simulate NOx-dependent SOA formation pathways. Simple addition of nitric oxide (NO) results in fast conversion of NOx (NO + NO2) to nitric acid (HNO3), making it impossible to sustain NOx at levels that are sufficient to compete with hydroperoxy (HO2) radicals as a sink for organic peroxy (RO2) radicals. We developed a new method that is well suited to the characterization of NOx-dependent SOA formation pathways in oxidation flow reactors. NO and NO2 are produced via the reaction O(1D) + N2O → 2NO, followed by the reaction NO + O3 → NO2 + O2. Laboratory measurements coupled with photochemical model simulations suggest that O(1D) + N2O reactions can be used to systematically vary the relative branching ratio of RO2 + NO reactions relative to RO2 + HO2 and/or RO2 + RO2 reactions over a range of conditions relevant to atmospheric SOA formation. We demonstrate proof of concept using high-resolution time-of-flight chemical ionization mass spectrometer (HR-ToF-CIMS) measurements with nitrate (NO3-) reagent ion to detect gas-phase oxidation products of isoprene and α-pinene previously observed in NOx-influenced environments and in laboratory chamber experiments.

1 Introduction

Recent atmospheric observations supported by experimental and theoretical studies show that highly oxygenated, extremely low-volatility organic compounds (ELVOC), together with sulfuric acid, are involved in the initial nucleation steps leading to new particle formation (NPF) (Donahue et al., 2013; Riccobono et al., 2014). ELVOC form rapidly in the gas phase via
auto-oxidation processes (Crounse et al., 2013; Rissanen et al., 2014) and tend to condense irreversibly (Ehn et al., 2014). Following NPF, semivolatile organic compounds (SVOC) with higher vapor pressures condense on newly formed aerosols at rates influenced by their volatility (Donahue et al., 2012), ultimately driving nanoparticle growth towards formation of cloud condensation nuclei (CCN) (Pierce et al., 2012; Riipinen et al., 2012). NPF events may produce as much as 50% of global CCN (Merikanto et al., 2009; Yu and Luo, 2009). However, mechanisms that govern the formation of specific ELVOCs and condensation of SVOCs in various source regions are largely unknown.

The extent to which NPF and growth is influenced by natural and anthropogenic emissions separately and together, is still unknown. In some locations, biogenic SOA formation is enhanced by anthropogenic carbonaceous aerosol particles, SO\textsubscript{x} and/or NO\textsubscript{x} (Carlton et al., 2010; Shilling et al., 2013; Xu et al., 2015). At the moment, one can only speculate about some of the possible synergistic or antagonistic chemical mechanisms regulating these processes. For example, anthropogenic emissions can enhance biogenic SOA formation by providing seed particles for condensable biogenic vapors. On the other hand, isoprene can slow down the formation of SOA from other volatile organics, possibly by depleting the local concentration of OH without itself producing significant SOA yields (Pugh et al., 2011). Globally the source strength of anthropogenic SOA is poorly constrained, with an uncertainty of at least a factor of 2 or 3 (Spracklen et al., 2011). Large uncertainties in pre-industrial aerosol emissions and processes further confound our understanding of the direct and indirect effects of anthropogenic aerosol emissions (Carslaw et al., 2014) and the impact of aerosols on climate (Andreae and Gelencsér, 2006).

To date, environmental chamber experiments have generated most of the laboratory SOA yield data used in atmospheric models, especially in simulations of polluted atmospheric conditions with elevated NO\textsubscript{x} concentrations. However, NO\textsubscript{x}-dependent chambers studies are complicated by the need to use multiple OH radical precursors such as hydrogen peroxide (H\textsubscript{2}O\textsubscript{2}) and nitrous acid (HONO) or methyl nitrite (CH\textsubscript{3}ONO) to span the relevant range of NO\textsubscript{x} levels (typically, H\textsubscript{2}O\textsubscript{2} for low-NO\textsubscript{x} conditions and HONO or CH\textsubscript{3}ONO for high-NO\textsubscript{x} conditions) (Ng et al., 2007). Additionally, chambers have relatively low throughput and are limited to residence times of several hours due to chamber deflation and/or loss of particles and oxidized vapors to the chamber walls (Zhang et al., 2014). This restricts environmental chambers to simulating atmospheric aerosol particle lifetimes and SOA yields only up to 1 or 2 days, therefore limiting the study of formation of highly oxygenated SOA characteristic of aged atmospheric organic aerosol PM (Ng et al., 2010) unless very low VOC precursor concentrations are used (Shilling et al., 2009; Pfaffenberger et al., 2013).

Oxidation flow reactors have recently been developed to study SOA formation and evolution over time scales ranging from hours to multiple days of equivalent atmospheric OH exposure. In these reactors, O\textsubscript{3} is photolyzed at 254 nm to produce O(1\,D) radicals, which react with water vapor to produce OH radicals. OH concentrations are typically 108 cm-3 or greater. Under these conditions, atmospheric photochemical aging timescales up to ~10 days can be simulated at flow tube residence times of a few minutes or less. Recent experimental studies suggest that flow reactor-generated SOA particles have compositions similar to SOA generated in smog chambers (Bruns et al., 2015; Lambe et al., 2015) and in the atmosphere (Tkacik et al., 2014; Ortega et al., 2016; Palm et al., 2016). Modeling studies suggest that flow reactors can simulate tropospheric oxidation reactions with minimal experimental artifacts (Li et al., 2015; Peng et al., 2015, 2016). A limitation of flow reactors is the need to use parts-per-million levels of O\textsubscript{3}, hindering the possibility to efficiently simulate NO\textsubscript{x}-dependent SOA formation pathways. Simple
addition of NO to flow reactors, while possible (Liu et al., 2015), cannot sustain NO\textsubscript{x} mixing ratios at levels that are sufficient to compete with hydroperoxy (HO\textsubscript{2}) radicals as a sink for organic peroxy (RO\textsubscript{2}) radicals due to fast conversion of NO\textsubscript{x} to nitric acid (HNO\textsubscript{3}). Here, we present a new method well suited to the characterization of NO\textsubscript{x}-dependent SOA formation pathways in oxidation flow reactors. We validate the concept using high-resolution time-of-flight chemical ionization mass spectrometer measurements (HR-ToF-CIMS) to detect gas-phase oxidation products of isoprene and α-pinene that have been observed in NO\textsubscript{x}-influenced environments and laboratory chamber experiments.

2 Experimental

Experiments were conducted using an Aerodyne Potential Aerosol Mass (PAM) oxidation flow reactor, which is a horizontal 13.3 L aluminum cylindrical chamber (46 cm long × 22 cm ID) operated in continuous flow mode (Kang et al., 2007; Lambe et al., 2011a). The average residence time was 80 s. The relative humidity (RH) in the reactor was controlled in the range of 3–35 % at 22°C, corresponding to H\textsubscript{2}O mixing ratios of approximately 0.07 - 1%. The irradiance in the reactor was measured using a photodiode (TOCON-C6, sglux Gmbh). The gas-phase SOA precursors used in these studies include two biogenic compounds (isoprene, α-pinene) that were prepared in compressed gas cylinders and introduced to the reactor at controlled rates using a mass-flow controller. Mixing ratios of the gas-phase precursors entering the reactor were 36 ppb for isoprene (diluted from 1000 ppm in N\textsubscript{2}, Matheson) and 15 ppb for α-pinene (diluted from 150 ppm in N\textsubscript{2}, Matheson). These mixing ratios are a factor of 3 to 10 lower than mixing ratios that are typically required to induce homogenous nucleation of condensible oxidation products in related oxidation flow reactor studies (Lambe et al., 2011b).

2.1 OH radical and NO\textsubscript{x} generation

OH radicals were produced in the reactor via the reaction O(1D) + H\textsubscript{2}O → 2OH, with O(1D) radicals produced from the reaction \overset{O_3 + h\nu}{\longrightarrow} O_3 + O(1D). O\textsubscript{3} (~5 ppm) was generated outside the flow reactor by O\textsubscript{2} irradiation at 185 nm using a mercury fluorescent lamp (GPH212T5VH, Light Sources, Inc.). O(1D) was produced by photolysis of O\textsubscript{3} at 254 nm inside the reactor using two mercury fluorescent lamps (GPH436T5L, Light Sources, Inc). A fluorescent dimming ballast was used to regulate current applied to the lamps. To vary [OH] inside the reactor, I\textsubscript{254} was varied by changing the dimming voltage applied to the ballast between 1.6 and 10 VDC. At these conditions, I\textsubscript{254} ranged from approximately (0.064 – 3.2) × 1015 ph cm-2 sec. The highest I\textsubscript{254} value was calculated from the internal surface area of the reactor and the lamp output at maximum intensity (e.g. 10 VDC) specified by the manufacturer. Lower I\textsubscript{254} values were calculated from the measured irradiance at lower dimming voltage relative to the measured irradiance and manufacturer-specified lamp output at 10 VDC.

NO and NO\textsubscript{2} were produced via the reaction N\textsubscript{2}O + O(1D) → 2NO, followed by the reaction NO + O\textsubscript{3} → NO\textsubscript{2}. N\textsubscript{2}O (99.5\%) was introduced from a compressed gas cylinder at flow rates ranging from 0 to 648 cm3 min-1, corresponding to mixing ratios of 0% to 5.6% at the carrier gas flow rates that were used. Using N\textsubscript{2}O as the NO\textsubscript{x} precursor has the following advantages over the simple addition of NO to the carrier gas. First, due to continuous production of O(1D) from O\textsubscript{3} photolysis inside the reactor (along with minor consumption of N\textsubscript{2}O), the spatial distribution of NO and NO\textsubscript{2} is more homogenous.
Second, attainable steady-state mixing ratios of NO from N\textsubscript{2}O + O(1D) reactions (ppb levels) are orders of magnitude higher than simple NO injection (sub-ppt levels) as inferred from photochemical model simulations described below in Sect. 2.3. Third, photolysis of N\textsubscript{2}O at 185 nm (if used) provides an additional source of O(1D) from the reaction N\textsubscript{2}O + h\nu \rightarrow N\textsubscript{2} + O(1D).

We assume background [NO] < 0.05 ppb in the reactor based on separate [NO] measurements and calculate additional NO formed from N\textsubscript{2}O + O(1D) reactions using the model described in Sect. 2.3.

NO\textsubscript{3} radicals, which are produced as a byproduct of NO\textsubscript{2} + O\textsubscript{3} or HNO\textsubscript{3} + OH reactions, can potentially convolute interpretation of results if the relative oxidation rates of isoprene/\alpha-pinene by OH and NO\textsubscript{3} are comparable. For results presented in Sects. 3.2 and 3.3, calculated OH, O\textsubscript{3} and NO\textsubscript{3} exposures combined with published OH, O\textsubscript{3} and NO\textsubscript{3} rate constants (Atkinson, 1986, 1991) suggest that the relative contribution of NO\textsubscript{3} to isoprene and \alpha-pinene oxidation ranges from approximately 0 to 4% and 0 to 40%, respectively, as a function of [N\textsubscript{2}O]. Thus, reaction rates of \alpha-pinene with OH, O\textsubscript{3} and NO\textsubscript{3} may be comparable under a subset of experimental conditions. Potential implications are discussed in more detail in Sect. 3.3.

2.2 Chemical ionization mass spectrometer (CIMS) measurements

Mass spectra of isoprene and \alpha-pinene gas-phase oxidation products were obtained with an Aerodyne high-resolution time-of-flight mass spectrometer (Bertram et al., 2011) coupled to an atmospheric pressure interface with a nitrate ion chemical ionization source (NO\textsubscript{3}−-HRTof-CIMS, hereafter abbreviated as “NO\textsubscript{3}−-CIMS”) (Eisele and Tanner, 1993; Ehn et al., 2012). Nitrate (NO\textsubscript{7}−) and its higher order clusters (e.g. HNO\textsubscript{3}NO\textsubscript{3}) generated from x-ray ionization of HNO\textsubscript{3} were used as the reagent due to the selectivity to highly oxidized organic compounds, including species that contribute to SOA formation (Ehn et al., 2014; Krechmer et al., 2015). Isoprene and \alpha-pinene oxidation products were detected as adducts with NO\textsubscript{3}− or HNO\textsubscript{3}NO\textsubscript{3}−. CIMS data were analyzed using the Tofware software package (Tofwerk AG, Aerodyne Research, Inc.) implemented in IGOR Pro 6 (Wavemetrics, Inc.). The output of the PAM oxidation flow reactor was sampled at 10.5 L min−1 through a 2’ length of 0.75” OD stainless steel tubing inserted directly into the rear feedthrough plate of the reactor.

2.3 Photochemical modeling

We used a photochemical model Li et al. (2015); Peng et al. (2015) implemented in MATLAB (Mathworks) to calculate concentrations of radical/oxidant species produced in the reactor. Model input parameters included pressure, temperature, [H\textsubscript{2}O], [O\textsubscript{3}], [N\textsubscript{2}O], I\textsubscript{254}, mean residence time, and the input mixing ratios of isoprene and \alpha-pinene. Differential equations used to describe the radical/oxidant chemistry were integrated at 5 millisecond time steps. The following reactions and associated kinetic rate constants (Sander et al., 2000, 2006) were implemented to describe NO\textsubscript{x} chemistry in the reactor:
\[
\begin{align*}
N_2O + h\nu & \rightarrow N_2 + O(1^D) \quad \text{(R1)} \\
N_2O + O(1^D) & \rightarrow 2NO \quad \text{(R2)} \\
N_2O + O(1^D) & \rightarrow N_2 + O_2 \quad \text{(R3)} \\
NO + OH & \rightarrow \text{HONO} \quad \text{(R4)} \\
\text{NO} + \text{HO}_2 & \rightarrow \text{OH} + \text{NO}_2 \quad \text{(R5)} \\
\text{NO} + \text{O}_3 & \rightarrow \text{NO}_2 + \text{O}_2 \quad \text{(R6)} \\
\text{NO}_2 + O & \rightarrow \text{NO} + \text{O}_2 \quad \text{(R7)} \\
\text{NO}_2 + \text{O}_3 & \rightarrow \text{NO}_3 + \text{O}_2 \quad \text{(R8)} \\
\text{NO}_3 + O & \rightarrow \text{NO}_2 + \text{O}_2 \quad \text{(R9)} \\
\text{HONO} + \text{OH} & \rightarrow \text{H}_2\text{O} + \text{NO}_2 \quad \text{(R10)} \\
\text{NO}_2 + \text{NO}_3 + \text{M} & \rightleftharpoons \text{N}_2\text{O}_5 + \text{M} \quad \text{(R11)} \\
\text{NO} + \text{NO}_3 & \rightarrow 2\text{NO}_2 + \text{O}_2 \quad \text{(R12)} \\
\text{NO}_2 + \text{OH} + \text{M} & \rightarrow \text{HNO}_3 + \text{M} \quad \text{(R13)} \\
\text{NO}_2 + \text{HO}_2 + \text{M} & \rightarrow \text{HNO}_4 + \text{M} \quad \text{(R14)} \\
\text{N}_2\text{O}_5 + \text{H}_2\text{O} & \rightarrow 2\text{HNO}_3 \quad \text{(R15)} \\
\text{HNO}_4 + \text{OH} & \rightarrow \text{products} \quad \text{(R16)} \\
\text{HNO}_3 + \text{OH} & \rightarrow \text{H}_2\text{O} + \text{NO}_3 \quad \text{(R17)} \\
\text{NO}_3 + \text{NO}_3 & \rightarrow 2\text{NO}_2 + \text{O}_2 \quad \text{(R18)}
\end{align*}
\]

Calculated OH exposures (product of mean OH concentration and residence time) ranged from \(1.7 \times 10^{10}\) to \(2.1 \times 10^{12}\) molec cm\(^{-3}\) sec or approximately 3 hours to 16 days of equivalent atmospheric exposure at \([\text{OH}] = 1.5 \times 10^6\) cm\(^{-3}\) (Mao et al., 2009). Steady-state \([\text{NO}]\) and \([\text{HO}_2]\) ranged from 0 to 13.5 ppb and 0.01 to 2.1 ppb, respectively, depending on \([\text{N}_2\text{O}], [\text{H}_2\text{O}], [\text{O}_3]\) and \(I_{254}\). We assumed \(\pm 25\%\) uncertainty in the calculated OH exposure and \(\pm 60\%\) uncertainty in other model outputs (Peng et al., 2015). For ratios of model outputs with independent \(\pm 60\%\) uncertainties (e.g. \(\text{NO}:\text{HO}_2\)), propagated uncertainties of \(\pm 85\%\) were assumed. Addition of \(\text{N}_2\text{O}\) at the highest mixing ratios that were used suppressed \([\text{OH}]\) because \(\text{N}_2\text{O}\) competes with \(\text{H}_2\text{O}\) as a sink for \(O(1^D)\). Potential consequences of OH suppression are discussed where applicable in Sects. 3.2 and 3.3.
3 Results and Discussion

3.1 Optimal reactor operating conditions for O(1D) + N2O + reactions

To investigate optimal operating conditions for NO2 generation, we implemented the model described in Sect. 2.3 over I254, [O3], and [H2O] values ranging from 3.2×10^{13} to 6.4×10^{15} ph cm$^{-2}$ sec$^{-1}$, 0.5 to 50 ppm, and 0.07 to 2.3% at 22°C, respectively, as a function of [N2O] = 0 to 5%. These values span the nominal range of operating conditions that can be achieved with the PAM reactor. To facilitate independent evaluation of the effects of [O3] and I254 on [NO], we restricted our analysis to conditions that use only 254 nm photolysis. Using both 185 and 254 nm photolysis provides additional sources of O(1D) and OH from N2O and H2O photolysis at 185 nm, respectively, at the expense of independent control of [O3] and I254.

Figure 1 shows the modeled steady-state [NO] in the reactor as a function of [N2O] = 0 to 5%, assuming a mean residence time of 80 sec, [H2O] = 1%, and [O3] = 5 ppm. In addition, Figs. S1 - S3 in the Supplement show modeled NO:HO2 and OH:NO3 ratios as a function of input [N2O], with I254, [O3], and [H2O] each varied individually while other input conditions are fixed. The following observations that are evident from Figs. 1 and S1 - S3 were used to constrain the optimal oxidant conditions. First, at fixed [O3], [H2O], and [N2O], increasing I254 increases [O(1D)] and consequently [NO]. Second, at fixed I254, [H2O], and [N2O], decreasing [O3] increases [OH] by increasing NO2 formation from NO + O3 reactions, and consequently NO3 formation from NO2 + O3 reactions. At lower [N2O], increasing [O3] increases [NO] because greater NO production from higher [O(1D)] offsets greater NO loss from reaction with O3. On the other hand, at higher [N2O], greater O3 loss from reaction with NO2 offsets greater NO production from higher [N2O]. Third, at fixed I254, [O3], and [N2O], increasing [H2O] increases [OH] by increasing OH production from H2O + O(1D) reactions. The relative importance of these operating conditions is situationally dependent on the relative OH, O3, and NO3 rate constants of the target species and photochemical age. To demonstrate proof of principle, we present NO3⁻-CIMS spectra of isoprene and α-pinene oxidation products in the following sections.

3.2 NO3⁻-CIMS spectra of isoprene oxidation products

Figure 2 shows NO3⁻-CIMS mass spectra of products generated from the oxidation of isoprene (C5H8) that cluster with NO3⁻ ions to form NO3⁻-species adducts. Ion signals are plotted as a function of mass-to-charge ratio (m/Q). NO3 adduct formation is a relatively low-energy process that does not result in fragmentation of the analyte (Eisele and Tanner, 1993; Kurtén et al., 2011). Thus, the measured ion signals are directly related to the chemical formula of individual species that are generated in the reactor. Ion signals corresponding to isoprene oxidation products shown in Fig. 2 were colored based on classification in ion groups containing 4-5 carbon atoms with zero (C4−5H4−12O3−8), one (C5H7−11O3−8NO3), and two (C5H10O2−4(NO3)2) nitrogen atoms, where we assumed that nitrogen atoms were associated with nitrate functional groups and not heterocyclic compounds. We also assume that nitrate functional groups are formed from RO2 + NO reactions (Sect. 2.1).

To generate spectra shown in Fig. 2, the reactor was operated at I254 = 6.4×10^{13} and 3.2×10^{15} ph cm$^{-2}$ sec$^{-1}$, [H2O] = 1%, and [N2O] = 0 and 3%. As shown in Figs. S4 and S5, corresponding OH exposures ranged from $(1.7 - 2.0) \times 10^{10}$ (Fig. 2a and b) and $(0.52 - 2.1) \times 10^{12}$ molec cm$^{-3}$ sec (Fig. 2c and d), respectively. At low OH exposure, the OH suppression at “high
NO$_x$” relative to “low NO$_x$” was comparatively minor (15%), whereas at high OH exposure, the OH suppression at “high NO$_x$” relative to ‘low NO$_x$’ was larger (75%). At the “high-NO$_x$” OH exposure of 5.2 × 1011 molec cm$^{-3}$ sec, isoprene can react with OH up to 52 times in the reactor. This presumably exceeds the number of OH reactions (followed by RO$_2$ + NO reactions) that are necessary to fragment or condense oxidation products to the point where they are no longer detected with NO$_3^-$-CIMS. Thus, it is unlikely that OH suppression at “high OH” and “high NO$_x$” significantly affected the NO$_3^-$-CIMS spectra shown in Fig. 2.

3.2.1 NO$_3^-$-CIMS spectral features observed at “low NO$_x$” conditions

C$_{4-5}$H$_{4-12}$O$_{3-8}$ ions comprised 93% and 97% of the signals at low and high OH exposure, respectively (inset pie charts in Figs. 2a and Fig. 2c). The C$_5$H$_{7-11}$O$_{3-8}$NO$_3$ signals that were observed here may be due to background NO$_x$ in the reactor (Sect. 2.1). The signal at m/Q = 230, C$_5$H$_{12}$O$_6$ (NO$_3^-$ omitted for brevity here and elsewhere), was the largest signal detected at both low and high OH exposures at “low-NO$_x$” conditions. This species is likely a second-generation oxidation product that contains two hydroxyl (OH) and two peroxide (OOH) functional groups (Krechmer et al., 2015; St Clair et al., 2016) and is typically associated with isoprene SOA formation and growth under “low-NO$_x$” conditions. (Liu et al., 2016) Signals in Figs. 2c-d are approximately 10 times higher than in Figs. 2a-b because additional OH exposure produces higher yields of multi-generation oxidation products that are detected with NO$_3^-$-CIMS.

Previously-identified multi-generation isoprene oxidation products such as C$_5$H$_{10}$O$_5$, C$_5$H$_{12}$O$_5$, and C$_5$H$_{10}$O$_6$ (Surratt et al., 2006; Krechmer et al., 2015; St Clair et al., 2016) were also detected at significant intensity under low-NO$_x$ conditions. When the OH exposure was increased by a factor of 100 from 2.0 × 1010 to 2.1 × 1012 molec cm$^{-3}$ sec, the signal at C$_5$H$_{12}$O$_6$ increased by a factor of 10 and the signal at m/Q = 246, C$_5$H$_{12}$O$_7$, increased by a factor of 5. At high OH exposure, C$_5$H$_{12}$O$_7$ was the second-largest peak in the spectrum. These highly oxygenated isoprene oxidation products are likely also important in SOA formation processes. We note that C$_5$H$_{10}$O$_7$ is a proposed third-generation, tri-hydroperoxy carbonyl product of isoprene + OH in the absence of NO$_x$ (Peeters et al., 2014).

We hypothesize two reasons for the prominence of C$_5$H$_{10}$O$_7$, C$_5$H$_{12}$O$_7$, and C$_5$H$_{10}$O$_8$ in our spectra. First, NO$_3^-$ is more selective to highly oxidized species than other reagent ions (Surratt et al., 2006; Liu et al., 2016). Second, higher OH exposures were achieved in the reactor than in environmental chambers. For example, the spectra shown in Figs. 2a and 2b were obtained at integrated OH exposures of 1.7 × 1010 and 2.1 × 1012 molec cm$^{-3}$ sec, respectively, compared to an OH exposure of 8.6 × 109 molec cm$^{-3}$ sec in the environmental chamber NO$_3^-$-CIMS measurements conducted by Krechmer et al. (2015).

3.2.2 NO$_3^-$-CIMS spectral features observed at “high NO$_x$” conditions

Following addition of N$_2$O at ~3% mixing ratio, the NO$_3^-$-CIMS spectra changed significantly at low and high OH exposures (Figs. 2b and d). The signals of C$_{4-5}$H$_{4-12}$O$_{3-8}$ oxidation products decreased, and the signals of C$_5$H$_{7-11}$O$_{3-8}$NO$_3$ and C$_5$H$_{10}$O$_{2-4}$(NO$_3$)$_2$ oxidation products increased. At low OH exposure, C$_5$H$_{7-11}$O$_{3-8}$NO$_3$ and C$_5$H$_{10}$O$_{2-4}$(NO$_3$)$_2$ signals constituted 24% and 8% of the NO$_3^-$-CIMS signals, respectively (Fig. 2b). The largest signal in this spectrum was m/Q = 259, C$_5$H$_{11}$O$_4$NO$_3$. This compound is likely a second-generation oxidation product that contains two hydroxyl functional groups.
and one nitrate functional group (Xiong et al., 2015). A series of additional C₅H₉₁₁O₃−₈NO₃ ions is also detected. The signal observed at m/Q = 288, C₅H₁₀O₂(NO₃)₂, is likely a second-generation oxidation product that contains two hydroxyl and two nitrate functional groups (Xiong et al., 2015). Other ion signals potentially associated with dinitrate species included m/Q = 304, C₅H₁₀O₃(NO₃)₂, and m/Q = 320, C₅H₁₀O₄(NO₃)₂. Related signals were detected at m/Q = 351 and 367, which we assume represent (HNO₃NO₃⁻)C₅H₁₀O₂(NO₃)₂ and (HNO₃NO₃⁻)C₅H₁₀O₃(NO₃)₂ because we are not aware of other feasible (NO₃⁻)C₅ adducts at these mass-to-charge ratios.

At high OH exposure, the same C₅H₇₋₁₁O₃₋₄NO₃ and C₅H₁₀O₂₋₄(NO₃)₂ species observed at low OH exposure were detected, but at higher concentrations and at higher dinitrate:nitrate. This is presumably due to higher NO:NO₂ achieved at higher I₂₅₄ and fixed [N₂O] (Figs. 1, S1, S4-S5). C₅H₇₋₁₁O₃₋₄NO₃ and C₅H₁₀O₂₋₄(NO₃)₂ signals made up 30% and 56%, respectively, of the NO₃⁻-CIMS spectrum shown in Fig. 2d, where C₅H₁₀O₂(NO₃)₂ was the largest signal that is detected.

3.3 NO₃⁻-CIMS spectra of α-pinene oxidation products

Figure 3 shows NO₃⁻-CIMS mass spectral results of products generated from the oxidation of α-pinene (C₁₀H₁₆). Ion signals corresponding to α-pinene oxidation products were colored based on classification in C₅H₆₋₉O₅₋₇, C₆₋₉H₈₋₁₄O₆₋₁₂, C₁₀H₁₄₋₁₅O₅₋₁₄, and C₁₉₋₂₀H₂₈₋₃₂O₉₋₁₈ ion groups containing zero nitrogen atoms; C₅H₇₋₉O₃NO₃, C₆₋₉H₈₋₁₅O₅₋₁₀NO₃, and C₁₀H₁₅₋₁₇O₄₋₁₅NO₃ ion groups containing one nitrogen atom; and a C₁₀H₁₆₋₁₈O₀₋₇(NO₃)₂ ion group containing two nitrogen atoms. As was the case with isoprene oxidation products, we assumed nitrogen atoms present in α-pinene oxidation products were associated with nitrate functional groups formed from RO₂ + NO reactions.

To generate spectra shown in Fig. 3, the reactor was operated at I₂₅₄ = 2.8 × 10¹⁵ ph cm⁻² sec⁻¹, [H₂O] = 0.07%, and [N₂O] = 0 and 3.2%. In this experiment, lower [H₂O] was used to minimize [OH] and facilitate closer comparison with spectra from previous NO₃⁻-CIMS studies of α-pinene + O₃ oxidation products generated at “low-NOₓ” conditions (Ehn et al., 2012, 2014). As shown in Fig. S6, corresponding OH and O₃ exposures ranged from (0.19 – 1.8) × 10¹¹ molec cm⁻³ sec and (7.2-9.5) × 10¹⁶ molec cm⁻³ sec for the low- and high-NOₓ conditions, respectively.

To first order, at OH and O₃ exposures of 2.1 × 10¹⁰ and 7.4 × 10¹⁵ molec cm⁻³ sec that are attained at [N₂O] = 3.2%, α-pinene should react once with each oxidant in the gas phase. Thus, at the highest [N₂O] values used, yields of second-generation (or later) α-pinene + OH oxidation products detected with the NO₃⁻-CIMS were minimized relative to α-pinene + O₃ first-generation oxidation products, as desired (Jokinen et al., 2015). However, a potential consequence of using O¹(D) + N₂O reactions to study the NOₓ-dependence of chemical systems similar to those examined by Ehn et al. (2012, 2014) is that RO₂ may be produced from α-pinene + NO₃ reactions in addition to α-pinene + O₃ or α-pinene + OH reactions (Sect. 2.1 and Fig. S6).

3.3.1 NO₃⁻-CIMS mass spectral features observed at “low NOₓ” conditions

Of the signal detected at “low-NOₓ” conditions (Fig. 3a), C₅H₆₋₉O₅₋₇, C₆₋₉H₈₋₁₄O₆₋₁₂, C₁₀H₁₄₋₁₅O₅₋₁₄, and C₁₉₋₂₀H₂₈₋₃₂O₉₋₁₈ ion groups comprised 6%, 23%, 54%, and 5%, respectively. The C₁₀ monomers and C₁₉₋₂₀ dimers compounds that were observed are often associated with atmospheric new particle formation events (Ehn et al., 2014). The prominent C₁₀H₁₄₋₁₅O₇₋₉...
ion signals detected at m/Q = 308, 310, 324, 326, 340 and 342 in our measurements were dominant signals in previous laboratory and field experiments influenced by the ozonolysis of α-pinene emissions (Ehn et al., 2010, 2012, 2014; Jokinen et al., 2015). Other ion signals that were observed correspond to C_{5-9} species that were generated following carbon-carbon bond cleavage of the C_{10} carbon backbone (Ehn et al., 2012). The remaining ~13% of the signal was classified into C_{5}H_{7}O_{6-11}NO_{3}, C_{6-9}H_{9-15}O_{5-10}NO_{3}, and C_{10}H_{15-17}O_{4-15}NO_{3} ion groups and may be due to background NO_{x} in the reactor (Sect. 2.1).

3.3.2 NO_3^−-CIMS mass spectral features observed at “high NO_{x}” conditions

As was the case with NO_3^−-CIMS spectra of isoprene oxidation products, the addition of N_{2}O to the reactor significantly changed the mass spectrum of α-pinene oxidation products (Fig. 3b). At [N_{2}O] = 3.2%, organic nitrates and dinitrates comprised 65% of the total ion signal (Fig. 3b inset). We observed reduction in C_{6-9}H_{8-14}O_{6-12}, C_{10}H_{14-18}O_{5-14}, and C_{19-20}H_{28-32}O_{9-18} ion signals, along with increases in C_{5}H_{6-8}O_{5-7}, C_{5}H_{7}O_{3-8}NO_{3}, C_{6-9}H_{9-15}O_{2-7}NO_{3}, C_{10}H_{15-17}O_{1-11}NO_{3} and C_{10}H_{16-18}O_{9-7}(NO_{3})_{2} signals. The C_{10} dinitrates may originate from two α-pinene + OH reactions followed by two RO_{2} + NO reactions, but may also include contributions from one α-pinene + NO_{3} reaction followed by one RO_{2} + NO reaction. The largest ion signal in Fig. 3b was observed at m/Q = 240, C_{5}H_{6}O_{7}. The largest organic nitrate signals in this spectrum were at m/Q = 329, C_{6}H_{13}O_{6}NO_{3}, followed by C_{10}H_{15}O_{6}NO_{3} (m/Q = 355), C_{10}H_{16}O_{3}(NO_{3})_{2} (m/Q = 354), and C_{10}H_{15}O_{3}NO_{3} (m/Q = 339).

3.4 Transition from RO_{2}+HO_{2} to RO_{2}+NO-dominant regimes observed in isoprene and α-pinene oxidation products

Figures 4 and 5 shows normalized signals of the representative groups of isoprene and α-pinene oxidation products as a function of increasing NO:HO_{2}. For each group of compounds, signals obtained at a specific NO:HO_{2} were normalized to the maximum observed signal. NO:HO_{2} is correlated with the relative branching ratios of RO_{2} + HO_{2} and RO_{2} + NO reactions that govern the distribution of oxidation products observed in Figs. 2 and 3. As is evident from Figs. 4 and 5, different ion families were characterized by different trends as a function of NO:HO_{2}. The normalized signals of C_{4-5} (isoprene), C_{6-10} (α-pinene) and C_{19-20} (α-pinene) species decreased monotonically with increasing NO:HO_{2}. In Fig. 5, the abundance of C_{19-20} dimers decreased significantly faster than the C_{6-10} species. Because dimers are products of RO_{2} + RO_{2} self-reactions, their yield is quadratic with respect to [RO_{2}] and therefore was more affected by competing RO_{2} + NO reactions than species formed from RO_{2} + HO_{2} reactions.

The normalized signals of C_{5} (isoprene) and C_{10} (α-pinene) organic nitrates reached their maximum values at NO:HO_{2} ≈ 1 prior to decreasing. Maximum signals of C_{6-9} organic nitrates (α-pinene) were obtained at NO:HO_{2} = 2.4, and maximum signals of C_{5} (isoprene) and C_{10} (α-pinene) dinitrates were obtained at NO:HO_{2} = 5.2 and 6.4. The formation of dinitrates was favored when RO_{2} + NO >> RO_{2} + HO_{2}, as expected, and regardless of whether RO_{2} was formed from oxidation of α-pinene by OH, O_{3} or NO_{3}. We hypothesize that NO:HO_{2} >> 1 favored RO_{2} + NO fragmentation reactions that led to formation of smaller, more volatile C_{5}H_{6-8}O_{5-7} and C_{5}H_{7}O_{3-8}NO_{3} α-pinene oxidation products (Atkinson, 2007; Chacon-Madrid and Donahue, 2011), whose signals continuously increased with increasing NO:HO_{2}, along with other products not detected with
NO\textsubscript{3}^-\text{-CIMS}. This pathway apparently competed with NO\textsubscript{x}-influenced auto-oxidation processes that led to formation of C\textsubscript{5} isoprene dinitrates, C\textsubscript{6}-C\textsubscript{10} \(\alpha\)-pinene nitrates and C\textsubscript{10} \(\alpha\)-pinene dinitrates.

Isoprene oxidation products such as C\textsubscript{5}H\textsubscript{9}O\textsubscript{4}NO\textsubscript{3} and C\textsubscript{5}H\textsubscript{11}O\textsubscript{4}NO\textsubscript{3} contain one peroxide and one nitrate functional group, and C\textsubscript{5}H\textsubscript{9}O\textsubscript{2}NO\textsubscript{3} contains two peroxide and one nitrate functional group. The formation of these species, as well as C\textsubscript{6−10} \(\alpha\)-pinene-derived organic nitrates, was favored at NO:HO\textsubscript{2} \(\approx\) 1-2 where the relative rates of RO\textsubscript{2} + NO and RO\textsubscript{2} + HO\textsubscript{2} reactions were similar. This correlation suggests that the C\textsubscript{6−10} \(\alpha\)-pinene organic nitrates detected with NO\textsubscript{3}^-\text{-CIMS} contained a combination of peroxide and nitrate functional groups, whereas C\textsubscript{5} (isoprene) and C\textsubscript{10} (\(\alpha\)-pinene) dinitrates contained fewer functional groups that were specifically formed from RO\textsubscript{2} + HO\textsubscript{2} reactions.

4 Atmospheric Implications

The use of O(1D) + N\textsubscript{2}O reactions in oxidation flow reactors facilitates systematic control of NO:HO\textsubscript{2} over the range of “RO\textsubscript{2} + HO\textsubscript{2} dominant” to “RO\textsubscript{2} + NO dominant” conditions. Further, this is accomplished with the use of a single OH radical precursor (O\textsubscript{3}) that has previously hindered characterization of NO\textsubscript{x}-dependent chemistry in oxidation flow reactors. Our results suggest that this method can be used to identify molecular tracers for processes influenced by RO\textsubscript{2} + NO and/or RO\textsubscript{2} + NO\textsubscript{2} reactions. For example, C\textsubscript{5}H\textsubscript{7−11}O\textsubscript{3−8}NO\textsubscript{3} compounds formed from the oxidation of isoprene were detected in air masses influenced by mixed isoprene and anthropogenic emissions (Lee et al., 2016). Similarly, C\textsubscript{10}H\textsubscript{15}O\textsubscript{5−8}NO\textsubscript{3} compounds formed from the oxidation of \(\alpha\)-pinene were detected in air masses influenced by \(\alpha\)-pinene emissions that were subsequently oxidized by O\textsubscript{3} in the presence of NO (Yan et al., 2016).

This method will be used in future work to investigate the influence of NO\textsubscript{x} on physicochemical properties of secondary organic aerosols such as hygroscopicity and refractive indices over an atmospherically relevant range of NO:HO\textsubscript{2}. Care should be taken to use experimental conditions that minimize the relative contributions of unwanted NO\textsubscript{3}-initiated oxidation chemistry, particularly when using species such as \(\alpha\)-pinene that are highly reactive to NO\textsubscript{3}. While potential formation of dinitrates from \(\alpha\)-pinene + NO\textsubscript{3} reactions at high-NO conditions was not the primary goal of this experiment, we note that this chemical fingerprint has been observed in ambient measurements (Yan et al., 2016) and thus represents an additional application of O(1D) + N\textsubscript{2}O reactions in future work. Additionally, studies that require multiple days of equivalent atmospheric OH oxidation at NO:HO\textsubscript{2} \(\gg\) 1 should consider implementing 185 nm photolysis of H\textsubscript{2}O and N\textsubscript{2}O to provide additional sources of O(1D) and OH that may decrease OH suppression due to competing O(1D) + H\textsubscript{2}O and O(1D) + N\textsubscript{2}O reactions.

Acknowledgements. This research was supported by the Atmospheric Chemistry Program of the U.S. National Science Foundation under grants AGS-1536939, AGS-1537446 and AGS-1537009 and by the U.S. Office of Science (BER), Department of Energy (Atmospheric Systems Research) under grants DE-SC0006980 and DE-SC0011935. A. T. Lambe thanks Conner Daube (ARI) for help with supporting measurements as well as Gabriel Isaacman-VanWertz (MIT), Jesse Kroll (MIT), Zhe Peng (UC Boulder), and Jose Jimenez (UC Boulder) for helpful discussions.
References

Figure 1. Modeled steady-state [NO] as a function of [N₂O] input to the PAM oxidation flow reactor at \(I_{254} = 0.032 \times 10^{15}, 0.64 \times 10^{15}\) and \(6.4 \times 10^{15}\) ph cm\(^{-2}\) sec, \([H_2O] = 1\%\), \([O_3] = 5\ ppm\), mean residence time = 80 sec. Error bars represent ± 60% uncertainty in modeled [NO] (Peng et al., 2015).
Figure 2. NO$_3^-$-CIMS mass spectra of isoprene oxidation products generated at [H$_2$O] = 1%, [O$_3$] = 5 ppm, mean residence time = 80 sec: (a) I$_{254}$ = 6.4×1013 ph cm$^{-2}$ sec$^{-1}$, [N$_2$O] = 0%; (b) I$_{254}$ = 6.4×1013 ph cm$^{-2}$ sec$^{-1}$, [N$_2$O] = 3.3 %; (c) I$_{254}$ = 3.2×1015 ph cm$^{-2}$ sec$^{-1}$, [N$_2$O] = 0 %; (d) I$_{254}$ = 3.2×1015 ph cm$^{-2}$ sec$^{-1}$, [N$_2$O] = 2.9 %. Colors are based on classification in C$_4$−5H$_4$−12O$_3$−8, C$_5$H$_7$−11O$_3$−8NO$_3$, and C$_5$H$_{10}$O$_2$−4(NO$_3$)$_2$ ion groups, with fractional contributions indicated in inset pie charts (brown outline = organonitrate). “O$_x$” indicate number of oxygen atoms in labeled ions (not including oxygen atoms in nitrate functional groups).
Figure 3. NO$_3^-$-CIMS mass spectra of α-pinene oxidation products generated at [H$_2$O] = 0.07%, [O$_3$] = 5 ppm, mean residence time = 80 sec: (a) I$_{254}$ = 2.8×1015 ph cm$^{-2}$sec$^{-1}$, [N$_2$O] = 0 %; (b) I$_{254}$ = 2.8×1015 ph cm$^{-2}$sec$^{-1}$, [N$_2$O] = 3.2 %. Colors are based on classification in C$_5$H$_6$-8O$_5$-7, C$_6$-9H$_8$-14O$_6$-12, C$_{10}$H$_{14}$-18O$_5$-14, C$_{19}$-20H$_{28}$-32O$_9$-18, C$_5$H$_2$O$_3$NO$_3$ C$_6$-9H$_5$-15O$_2$-7NO$_3$ C$_{10}$H$_{15}$-17O$_{11}$NO$_3$ C$_{10}$H$_{16}$-18O$_{11}$NO$_3$, and C$_{10}$H$_{12}$-19O$_{11}$NO$_3$ ion groups. Fractional contributions of each species type indicated in inset pie charts (brown outline = organonitrate). “O$_x$” labels indicate number of oxygen atoms in corresponding signals (not including oxygen atoms in nitrate functional groups).
Figure 4. Normalized signals of $C_{4-5}H_{4-12}O_{3-8}$, $C_{5}H_{7-11}O_{3-8}NO_{3}$, and $C_{5}H_{10}O_{2-4}(NO_{3})_{2}$ isoprene oxidation products as a function of modeled NO:HO$_2$. For each of the species classes, signals were normalized to the maximum signal. Representative error bars indicate ± 1σ uncertainty in NO$_3^-$-CIMS signals and ± 85% uncertainty in NO:HO$_2$.
Figure 5. Normalized signals of (a) $C_{5}H_{6-8}O_{5-7}$, $C_{6-9}H_{8-14}O_{6-12}$, $C_{10}H_{14-18}O_{5-14}$, $C_{19-20}H_{28-32}O_{9-18}$ and (b) $C_{5}H_{7}O_{3-8}NO_{3}$, $C_{6-9}H_{9-15}O_{2-7}NO_{5}$, $C_{10}H_{15-17}O_{11-11}NO_{3}$, and $C_{10}H_{16-18}O_{0-7}(NO_{3})_{2}$ α-pinene oxidation products as a function of modeled NO:HO$_{2}$. For each of the species classes, signals were normalized to the maximum signal. Representative error bars indicate $\pm 1\sigma$ uncertainty in NO$^{-3}$-CIMS signals and $\pm 85\%$ uncertainty in modeled NO:HO$_{2}$.