Abstract.

Oxidation flow reactors that use low-pressure mercury lamps to produce hydroxyl (OH) radicals are an emerging technique for studying the oxidative aging of organic aerosols. Here, ozone (O₃) is photolyzed at 254 nm to produce O(¹D) radicals, which react with water vapor to produce OH. However, the need to use parts-per-million levels of O₃ hinders the ability of oxidation flow reactors to simulate NOₓ-dependent SOA formation pathways. Simple addition of nitric oxide (NO) results in fast conversion of NOₓ (NO + NO₂) to nitric acid (HNO₃), making it impossible to sustain NOₓ at levels that are sufficient to compete with hydroperoxy (HO₂) radicals as a sink for organic peroxy (RO₂) radicals. We developed a new method that is well suited to the characterization of NOₓ-dependent SOA formation pathways in oxidation flow reactors. NO and NO₂ are produced via the reaction O(¹D) + N₂O → 2NO, followed by the reaction NO + O₃ → NO₂ + O₂. Laboratory measurements coupled with photochemical model simulations suggest that O(¹D) + N₂O reactions can be used to systematically vary the relative branching ratio of RO₂ + NO reactions relative to RO₂ + HO₂ and/or RO₂ + RO₂ reactions over a range of conditions relevant to atmospheric SOA formation. We demonstrate proof of concept using high-resolution time-of-flight chemical ionization mass spectrometer (HR-ToF-CIMS) measurements with nitrate (NO₃⁻) reagent ion to detect gas-phase oxidation products of isoprene and α-pinene previously observed in NOₓ-influenced environments and in laboratory chamber experiments.

1 Introduction

Recent atmospheric observations supported by experimental and theoretical studies show that highly oxidized molecules (HOM), together with sulfuric acid, are involved in the initial nucleation steps leading to new particle formation (NPF)
HOM form rapidly in the gas phase via auto-oxidation processes (Crounse et al., 2013; Rissanen et al., 2014) and tend to condense irreversibly (Ehn et al., 2014). Following NPF, semivolatile organic compounds (SVOC) with higher vapor pressures condense on newly formed aerosols at rates influenced by their volatility (Donahue et al., 2012), ultimately driving nanoparticle growth towards formation of cloud condensation nuclei (CCN) (Pierce et al., 2012; Riipinen et al., 2012). NPF events may produce as much as 50% of global CCN (Merikanto et al., 2009; Yu and Luo, 2009). However, mechanisms that govern the formation of specific HOM and condensation of SVOCs in various source regions are largely unknown.

The extent to which NPF and growth is influenced by natural and anthropogenic emissions, separately and together, is still unknown. In some locations, biogenic SOA formation is enhanced by anthropogenic carbonaceous aerosol particles, SO$_x$ and/or NO$_x$ (Carlton et al., 2010; Shilling et al., 2013; Xu et al., 2015). At the moment, one can only speculate about some of the possible synergistic or antagonistic chemical mechanisms regulating these processes. For example, anthropogenic emissions can enhance biogenic SOA formation by providing seed particles for condensable biogenic vapors. On the other hand, isoprene can slow down the formation of SOA from other volatile organics, possibly by depleting the local concentration of OH without itself producing significant SOA yields (Pugh et al., 2011). Globally the source strength of anthropogenic SOA is poorly constrained, with an uncertainty of at least a factor of 2 or 3 (Spracklen et al., 2011). Large uncertainties in pre-industrial aerosol emissions and processes further confound our understanding of the direct and indirect effects of anthropogenic aerosol emissions (Carslaw et al., 2014) and the impact of aerosols on climate (Andreae and Gelencsér, 2006).

To date, environmental chamber experiments have generated most of the laboratory SOA yield data used in atmospheric models, especially in simulations of polluted atmospheric conditions with elevated NO$_x$ concentrations. However, NO$_x$-dependent chambers studies are complicated by the need to use multiple OH radical precursors such as hydrogen peroxide (H$_2$O$_2$) and nitrous acid (HONO) or methyl nitrite (CH$_3$ONO) to span the relevant range of NO$_x$ levels (typically, H$_2$O$_2$ for low-NO$_x$ conditions and HONO or CH$_3$ONO for high-NO$_x$ conditions) (Ng et al., 2007). Additionally, chambers have relatively low throughput and are limited to residence times of several hours due to chamber deflation and/or loss of particles and oxidized vapors to the chamber walls (Zhang et al., 2014). This restricts environmental chambers to simulating atmospheric aerosol particle lifetimes and SOA yields only up to 1 or 2 days, therefore limiting the study of formation of highly oxygenated SOA characteristic of aged atmospheric organic aerosol PM (Ng et al., 2010) unless very low VOC precursor concentrations are used (Shilling et al., 2009; Pfaffenberger et al., 2013).

Oxidation flow reactors have recently been developed to study SOA formation and evolution over time scales ranging from hours to multiple days of equivalent atmospheric OH exposure. In these reactors, O$_3$ is photolyzed at 254 nm to produce O(1D) radicals, which react with water vapor to produce OH radicals. OH concentrations are typically 108 cm$^{-3}$ or greater. Under these conditions, atmospheric photochemical aging timescales up to ~10 days can be simulated at flow tube residence times of a few minutes or less. Recent experimental studies suggest that flow reactor-generated SOA particles have compositions similar to SOA generated in smog chambers (Bruns et al., 2015; Lambe et al., 2015) and in the atmosphere (Tkacik et al., 2014; Ortega et al., 2016; Palm et al., 2016). Modeling studies suggest that flow reactors can simulate tropospheric oxidation reactions with minimal experimental artifacts (Li et al., 2015; Peng et al., 2015, 2016). A limitation of flow reactors is the need
to use parts-per-million levels of O₃, hindering the possibility to efficiently simulate NOₓ-dependent SOA formation pathways. Simple addition of NO to flow reactors, while possible (Liu et al., 2015), cannot sustain NOₓ mixing ratios at levels that are sufficient to compete with hydroperoxy (HO₂) radicals as a sink for organic peroxy (RO₂) radicals due to fast conversion of NOₓ to nitric acid (HNO₃) via the reactions NO + O₃ → NO₂ and NO₂ + OH → HNO₃. Here, we present a new method well suited to the characterization of NOₓ-dependent SOA formation pathways in oxidation flow reactors. By utilizing O(¹D) radicals that are generated from O₃ photolysis, we add N₂O to generate NO via the reaction O(¹D) + N₂O → 2NO with no additional method modifications. We validate the concept using high-resolution time-of-flight chemical ionization mass spectrometer measurements (HR-ToF-CIMS) to detect gas-phase oxidation products of isoprene and α-pinene that have been observed in NOₓ-influenced environments and laboratory chamber experiments.

2 Experimental

Experiments were conducted using an Aerodyne Potential Aerosol Mass (PAM) oxidation flow reactor, which is a horizontal 13.3 L aluminum cylindrical chamber (46 cm long × 22 cm ID) operated in continuous flow mode (Kang et al., 2007; Lambe et al., 2011a). The average residence time was 80 s. The relative humidity (RH) in the reactor was controlled in the range of 3–35 % at 22°C, corresponding to H₂O mixing ratios of approximately 0.07 - 1%. The irradiance in the reactor was measured using a photodiode (TOCON-C6, sglux Gmbh). The gas-phase SOA precursors used in these studies include two biogenic compounds (isoprene, α-pinene) that were prepared in compressed gas cylinders and introduced to the reactor at controlled rates using a mass-flow controller. Mixing ratios of the gas-phase precursors entering the reactor were 36 ppb for isoprene (diluted from 1000 ppm in N₂, Matheson) and 15 ppb for α-pinene (diluted from 150 ppm in N₂, Matheson). These mixing ratios are a factor of 3 to 10 lower than mixing ratios that are typically required to induce homogenous nucleation of condensable oxidation products in related oxidation flow reactor studies (Lambe et al., 2011b). Minimizing precursor mixing ratios also decreases the rate of RO₂ self-reactions relative to RO₂ + HO₂ and RO₂ + NO reactions. This is a goal for most laboratory experiments that is not specific to the method proposed here. However, this goal takes on added importance when RO₂ can be formed via OH, O₃ and/or NO₃ oxidation using this method as discussed in Section 2.1.

2.1 OH radical and NOₓ generation

OH radicals were produced in the reactor via the reaction O(¹D) + H₂O → 2OH, with O(¹D) radicals produced from the reaction O₃ + hν → O₃ + O(¹D). O₃ (~1-5 ppm) was generated outside the flow reactor by O₂ irradiation at 185 nm using a mercury fluorescent lamp (GPH212T5VH, Light Sources, Inc.). O(¹D) was produced by photolysis of O₃ at 254 nm inside the reactor using two or four mercury fluorescent lamps (GPH436T5L, Light Sources, Inc). A fluorescent dimming ballast was used to regulate current applied to the lamps. To vary [OH] inside the reactor, I₂₅₄ was varied by changing the dimming voltage applied to the ballast between 1.6 and 10 VDC. At these conditions, I₂₅₄ ranged from approximately (0.064 – 3.2) × 10¹⁵ ph cm⁻² sec. The highest I₂₅₄ value was calculated from the internal surface area of the reactor and the lamp output at maximum
intensity (e.g. 10 VDC) specified by the manufacturer. Lower I_{254} values were calculated from the measured irradiance at lower dimming voltage relative to the measured irradiance and manufacturer-specified lamp output at 10 VDC.

NO and NO\textsubscript{2} were produced via the reaction \(N_2O + O(^1D) \rightarrow 2\text{NO}\), followed by the reaction \(\text{NO} + \text{O}_3 \rightarrow \text{NO}_2\). \(N_2O\) (99.5\%) was introduced from a compressed gas cylinder at flow rates ranging from 0 to 648 cm\(^3\) min\(^{-1}\), corresponding to mixing ratios of 0\% to 5.6\% at the carrier gas flow rates that were used. Using \(N_2O\) as the \(\text{NO}_x\) precursor has the following advantages over the simple addition of NO to the carrier gas. First, due to continuous production of \(N_2O\) mixing ratios of 0\% to 5.6\% at the carrier gas flow rates that were used. Using \(N_2O\) as the \(\text{NO}_x\) precursor has the following advantages over the simple addition of NO to the carrier gas. First, due to continuous production of \(N_2O\), the spatial distribution of NO and \(\text{NO}_2\) is more homogenous. Second, attainable steady-state mixing ratios of NO from \(N_2O + O(^1D)\) reactions (ppb levels) are orders of magnitude higher than simple NO injection (sub-ppt levels) as inferred from photochemical model simulations described below in Sect. 2.3. Third, photolysis of \(N_2O\) at 185 nm (if used) provides an additional source of \(O(^1D)\) from the reaction \(N_2O + h\nu \rightarrow N_2 + O(^1D)\).

We assume background [NO] < 0.05 ppb in the reactor based on separate [NO] measurements and calculate additional NO formed from \(N_2O + O(^1D)\) reactions using the model described in Sect. 2.3. Gradients in \([O(^1D)]\) due to its reaction with \(H_2O\) and \(N_2O\) may alter spatial distributions of \(O_x\), \(\text{HO}_x\) and \(\text{NO}_x\) in the reactor. To first order, gradients in \([O(^1D)]\) decrease both \([\text{HO}_2]\) and [NO] to a similar extent, keeping the relative rates of \(\text{RO}_2\) + \(\text{HO}_2\) and \(\text{RO}_2\) + NO termination pathways the same.

In most cases, oxidation of VOCs by \(O_3\) is slower than oxidation by OH radical, even with parts per million levels of \(O_3\) present (Peng et al., 2016). \(\text{NO}_3\) radicals, which are produced as a byproduct of \(\text{NO}_2 + O_3\) or \(\text{HNO}_3 + \text{OH}\) reactions, can potentially convolute interpretation of results if the relative oxidation rates of isoprene/\(\alpha\)-pinene by OH and \(\text{NO}_3\) are comparable. For results presented in Sects. 3.3 and 3.4, calculated OH, \(O_3\) and \(\text{NO}_3\) exposures combined with published OH, \(O_3\) and \(\text{NO}_3\) rate constants (Atkinson, 1986, 1991; Grosjean and Grosjean, 1996) suggest that the relative contribution of \(\text{NO}_3\) to isoprene and \(\alpha\)-pinene oxidation ranges from approximately 0\% to 4\% and 0\% to 60\%, respectively, as a function of \([N_2O]\). Thus, reaction rates of \(\alpha\)-pinene with OH, \(O_3\) and \(\text{NO}_3\) may be comparable under a subset of experimental conditions. Potential implications are discussed in more detail in Sections 3.3.4 and 3.4.4.

2.2 \(\text{NO}_x\) and chemical ionization mass spectrometer (CIMS) measurements

In one set of experiments, [NO] and [NO\textsubscript{2}] were measured downstream of the reactor with a Thermo Scientific Model 42i chemiluminescent analyzer and an Aerodyne Cavity Attenuated Phase Shift (CAPS) \(\text{NO}_2\) analyzer, which measures \(\text{NO}_2\) absorption at \(\lambda = 450\) nm (Kebabian et al., 2008). During these experiments, the following operating conditions were used: \(I_{254} = 4 \times 10^{15}\) ph cm\(^{-2}\) sec\(^{-1}\), \([O_3]\) = 1 ppm, \([H_2O]\) = 0.07\% and 1\%, \([N_2O]\) = 0 to 3\%. These conditions assess a subset of the attainable operating conditions for comparison with outputs of the photochemical model described in Section 2.3. The measured \(\text{NO}_2\) mixing ratio was decreased by 10 ppb due to absorption by 1 ppm \(O_3\) at 450 nm in the absence of \(\text{NO}_2\). The measured NO mixing ratio was scaled by a factor of 3.2 for depletion downstream of the reactor due to 1.2 sec reaction time with 1 ppm \(O_3\) in the sample line, assuming \(k_{O_3}^{\text{NO}} = 1.8 \times 10^{-14}\) cm\(^3\) molec\(^{-1}\) sec\(^{-1}\) and pseudo-first order conditions (Atkinson et al., 2004). Additional NO depletion inside the chemiluminescent analyzer (\(~47\%\) at 1 ppm \(O_3\)) was accounted for in a separate experiment where known mixing ratios of NO (50 ppb) and \(O_3\) (0 to 6.9 ppm) were added at the inlet of the
instrument (Fig. S1). Because the combined NO depletion in the sample line and the chemiluminescent analyzer is significantly higher at higher \([O_3]\) (e.g. \(\sim 90\%\) at \([O_3] = 2\) ppm and \(\sim 99.6\%\) at \([O_3] = 5\) ppm), accurate experimental characterization of \([NO]\) is more difficult above \([O_3] \sim 1\) ppm.

In another set of experiments, mass spectra of isoprene and \(\alpha\)-pinene gas-phase oxidation products were obtained with an Aerodyne high-resolution time-of-flight mass spectrometer (Bertram et al., 2011) coupled to an atmospheric pressure interface with a nitrate ion chemical ionization source (\(\text{NO}_3^-\)-HRToF-CIMS, hereafter abbreviated as “\(\text{NO}_3^-\)-CIMS”) (Eisele and Tanner, 1993; Ehn et al., 2012). Nitrate (\(\text{NO}_3^-\)) and its higher order clusters (e.g. \(\text{HNO}_3\text{NO}_3\)) generated from x-ray ionization of \(\text{HNO}_3\) were used as the reagent due to the selectivity to highly oxidized organic compounds, including species that contribute to SOA formation (Ehn et al., 2014; Krechmer et al., 2015). Isoprene and \(\alpha\)-pinene oxidation products were detected as adducts with \(\text{NO}_3^-\) or \(\text{HNO}_3\text{NO}_3^-\). CIMS data were analyzed using the Tofware software package (Tofwerk AG, Aerodyne Research, Inc.) implemented in IGOR Pro 6 (Wavemetrics, Inc.). The output of the PAM oxidation flow reactor was sampled at 10.5 \(\text{Lmin}^{-1}\) through a 2’ length of 0.75” OD stainless steel tubing inserted directly into the rear feedthrough plate of the reactor.

Ambient \(\text{NO}_3^-\)-CIMS measurements were conducted during the Southern Oxidant and Aerosol Study (SOAS) at the forest site in Centreville, AL (June 1 - July 15, 2013). At this site, emissions were dominated by local biogenic volatile organic compounds (BVOC) with occasional influence from nearby anthropogenic sources (Hansen et al., 2003). The mixing of biogenic and anthropogenic emissions at the forest site promotes the formation of organic nitrates via oxidation of BVOC in the presence of \(\text{NO}_x\) (Lee et al., 2016).

2.3 Photochemical modeling

We used a photochemical model (Li et al., 2015; Peng et al., 2015) implemented in MATLAB (Mathworks) to calculate concentrations of radical/oxidant species produced in the reactor. Model input parameters included pressure, temperature, \([\text{H}_2\text{O}], [\text{O}_3], [\text{N}_2\text{O}], I_{254}\), mean residence time, and the input mixing ratios of isoprene and \(\alpha\)-pinene. Differential equations used to describe the radical/oxidant chemistry were integrated at 5 millisecond time steps. The following reactions and associated kinetic rate constants (Sander et al., 2000, 2006) were implemented to describe \(\text{NO}_x\) chemistry in the reactor:
\[\text{N}_2\text{O} + \text{h\nu} \rightarrow \text{N}_2 + \text{O}^{(1\text{D})} \] \hspace{1cm} (R1)
\[\text{N}_2\text{O} + \text{O}^{(1\text{D})} \rightarrow 2\text{NO} \] \hspace{1cm} (R2)
\[\text{N}_2\text{O} + \text{O}^{(1\text{D})} \rightarrow \text{N}_2 + \text{O}_2 \] \hspace{1cm} (R3)
\[\text{NO} + \text{OH} + \text{M} \rightarrow \text{HONO} + \text{M} \] \hspace{1cm} (R4)
\[\text{NO} + \text{HO}_2 \rightarrow \text{OH} + \text{NO}_2 \] \hspace{1cm} (R5)
\[\text{NO} + \text{O}_3 \rightarrow \text{NO}_2 + \text{O}_2 \] \hspace{1cm} (R6)
\[\text{NO}_2 + \text{O} \rightarrow \text{NO} + \text{O}_2 \] \hspace{1cm} (R7)
\[\text{NO}_2 + \text{O}_3 \rightarrow \text{NO}_3 + \text{O}_2 \] \hspace{1cm} (R8)
\[\text{NO}_3 + \text{O} \rightarrow \text{NO}_2 + \text{O}_2 \] \hspace{1cm} (R9)
\[\text{HONO} + \text{OH} \rightarrow \text{H}_2\text{O} + \text{NO}_2 \] \hspace{1cm} (R10)
\[\text{NO}_2 + \text{NO}_3 + \text{M} \rightleftharpoons \text{N}_2\text{O}_5 + \text{M} \] \hspace{1cm} (R11)
\[\text{NO} + \text{NO}_3 \rightarrow 2\text{NO}_2 + \text{O}_2 \] \hspace{1cm} (R12)
\[\text{NO}_2 + \text{OH} + \text{M} \rightarrow \text{HNO}_3 + \text{M} \] \hspace{1cm} (R13)
\[\text{NO}_2 + \text{HO}_2 + \text{M} \rightarrow \text{HNO}_4 + \text{M} \] \hspace{1cm} (R14)
\[\text{N}_2\text{O}_5 + \text{H}_2\text{O} \rightarrow 2\text{HNO}_3 \] \hspace{1cm} (R15)
\[\text{HNO}_3 + \text{OH} \rightarrow \text{H}_2\text{O} + \text{NO}_3 \] \hspace{1cm} (R16)
\[\text{NO}_3 + \text{NO}_3 \rightarrow 2\text{NO}_2 + \text{O}_2 \] \hspace{1cm} (R17)

The model also includes simplified RO\textsubscript{2} chemistry, which is incorporated using the reactions listed below (IUPAC, 2013). The addition of these reactions constrain the effects of added isoprene or \(\alpha\)-pinene (species “X” below) on steady-state [OH], [HO\textsubscript{2}] and [NO]. Second-generation organic radical products of initial organic radical reactions (“RPHO”, “RPO\textsubscript{2}”, “RPO”) are not reacted further in the model.
OH + X → RO₂ + H₂O (R18)
RO₂ + NO → RO + NO₂ (R19)
RO₂ + HO₂ → ROOH + O₂ (R20)
ROOH + OH → RO₂ + H₂O (R21)
ROOH + OH → RPHO + OH + H₂O (R22)
RO₂ + OH → RPO₂ + H₂O (R23)
RO₂ + RO₂ → ROOR (R24)
RO + O₂ → RPO + HO₂ (R25)
RO₂ + NO + M → RO₂NO + M (R26)
RO + NO + M → RONO + M (R27)
RO + NO₂ + M → RONO₂ + M (R28)

Calculated OH exposures (product of mean OH concentration and residence time) ranged from 1.7 × 10¹⁰ to 2.1 × 10¹² molec cm⁻³ sec or approximately 3 hours to 16 days of equivalent atmospheric exposure at [OH] = 1.5 × 10⁶ cm⁻³ (Mao et al., 2009). Steady-state [NO] and [HO₂] ranged from 0 to 13.5 ppb and 0.01 to 2.1 ppb, respectively, depending on [N₂O], [H₂O], [O₃] and I₂54. We assumed ±25% uncertainty in the calculated OH exposure and ±60% uncertainty in other model outputs (Peng et al., 2015). For ratios of model outputs with independent ±60% uncertainties (e.g. NO:HO₂), propagated uncertainties of ±85% were assumed. Addition of N₂O at the highest mixing ratios that were used suppressed [OH] because N₂O competes with H₂O as a sink for O(¹D). Potential consequences of OH suppression are discussed where applicable in Sects. 3.3 and 3.4.

3 Results and Discussion

3.1 Comparison of measured and modeled [NO] and [NO₂] values following O(¹D) + N₂O and NO + O₃ reactions

Figure 1 compares modeled NO mixing ratios obtained following 80 sec residence time in the reactor at the operating conditions described in Sect.2.2. The corresponding integrated OH exposures are approximately 2.6 × 10¹¹ and 2.4 × 10¹² molec cm⁻³ sec, respectively, in the absence of added N₂O. Symbols are colored by [N₂O] which ranged from 0 to 3%. Measured [NO] ranged from 0 to 10.4 ppb and increased with increasing [N₂O], as expected, at both [H₂O] = 0.07% and 1%. The mean ratio of modeled-measured [NO] was 0.94 ± 0.19 at [H₂O] = 0.07% and 3.85 ± 2.33 at [H₂O] = 1%.

NO₂, which is formed by the NO + O₃ reaction, is more straightforward to measure under these conditions because NO₂ reacts approximately 500 times slower than NO with O₃. Thus, a comparison of modeled and measured [NO₂] provides additional method evaluation with less uncertainty than [NO] measurements. Figure 2 compares corresponding modeled and measured NO₂ mixing ratios obtained during the same experiments described in Figure 1. As expected, [NO₂] increased...
with increasing [N₂O] because of faster NO + O₃ reaction rate from increasing [NO]. At [H₂O] = 0.07%, measured [NO₂] ranged from 0 to 291 ppb, whereas at [H₂O] = 1%, measured [NO₂] ranged from 0 to 59 ppb. [NO₂] was lower in the latter case because additional OH was formed from O(^1D) + H₂O reactions (Section 2.1), which increased the rate of the OH + NO₂ reaction. The mean ratio of modeled-measured [NO₂] was 0.72 ± 0.39 at [H₂O] = 0.07% and 1.05 ± 0.50 at [H₂O] = 1%. These results, combined with results shown in Figure 1, suggest that an uncharacterized H₂O- or HNO₃-related artifact negatively biased the measured [NO] values at [H₂O] = 1%, and that the photochemical model described in Section 2.3 may be used to evaluate a wider range of reactor operating conditions. The model also constrains mixing ratios of radical species such as HO₂ that are difficult to measure directly or require additional measurement techniques (Mauldin et al., 1999; Sanchez et al., 2016).

3.2 Optimal reactor operating conditions for O(^1D) + N₂O + reactions

To investigate optimal operating conditions for NOₓ generation, we implemented the model described in Sect. 2.3 over operating conditions I₂54 = 3.2×10¹³ to 6.4×10¹⁵ ph cm⁻² sec⁻¹, [O₃] = 0.5 to 50 ppm, and [H₂O] = 0.07 to 2.3% at 22°C, respectively, as a function of [N₂O] = 0 to 5%. These values span the nominal range of operating conditions that can be achieved with the PAM reactor. To facilitate independent evaluation of the effects of [O₃] and I₂54 on [NO], we restricted our analysis to conditions that use only 254 nm photolysis. Using both 185 and 254 nm photolysis provides additional sources of O(^1D) and OH from N₂O and H₂O photolysis at 185 nm, respectively, at the expense of independent control of [O₃] and I₂54.

Figure 3 shows the modeled steady-state [NO] in the reactor as a function of [N₂O] = 0 to 5%, assuming a mean residence time of 80 sec, [H₂O] = 1%, and [O₃] = 5 ppm. In addition, Figs. S1 - S3 in the Supplement show modeled NO:HO₂ and OH:NO₃ ratios as a function of input [N₂O], with I₂54, [O₃], and [H₂O] each varied individually while other input conditions are fixed. The following observations that are obtained from Figs. 3 and S1 - S3 were used to identify the optimal operating conditions:

1. At fixed [O₃], [H₂O], and [N₂O], [O(^1D)] and [NO] increase with increasing I₂54 (Figs. 3 and S1).

2. At fixed I₂54, [H₂O], and [N₂O], increasing O₃ increases the production and loss rates of NO from N₂O + O(^1D) and NO + O₃ reactions, respectively. The relative importance of NO + OH, NO + O₃, and NO + NO₃ reactions, which depend on [N₂O] and [O₃], further influence [NO]:

 - At [N₂O] ≈ 1%, increasing [O₃] from 0.5 to 5 ppm increases [NO] because the reaction rate of NO + OH decreases relative to NO + O₃ (Fig. S2a).

 - At [N₂O] > 1%, increasing [O₃] from 5 to 50 ppm decreases [NO] because the reaction rate of NO + NO₃ increases relative to NO + O₃ (Fig. S2a).

3. At fixed I₂54, [H₂O], and [N₂O], increasing [O₃] decreases [NO]:[HO₂] and [OH]:[NO₃] by increasing NO₂ and NO₃ formation from NO + O₃ and NO₂ + O₃ reactions.
4. At fixed I_{254}, [O_3], and [N_2O], increasing [H_2O] increases [OH]:[NO_3] by increasing OH production from H_2O + O(^1D) reactions (Fig. S3).

The relative importance of these operating conditions is situationally dependent on the relative OH, O_3, and NO_3 rate constants of the target species and photochemical age. To demonstrate proof of principle, we present NO_3^−-CIMS spectra of isoprene and α-pinene oxidation products in the following sections.

3.3 NO_3^−-CIMS spectra of isoprene oxidation products

Figure 4 shows NO_3^−-CIMS mass spectra of products generated from the oxidation of isoprene (C_5H_8) that cluster with NO_3^− ions to form NO_3^−-species adducts. Ion signals are plotted as a function of mass-to-charge ratio (m/Q). NO_3 adduct formation is a relatively low-energy process that does not result in fragmentation of the analyte (Eisele and Tanner, 1993; Kurtén et al., 2011). Thus, the measured ion signals are directly related to the chemical formulas of individual species that are generated in the reactor. Ion signals corresponding to isoprene oxidation products shown in Fig. 4 were colored based on classification in ion groups containing 2-5 carbon atoms with zero (Fig. 4a and 4c; calculated > 82% of isoprene reacted) and (0.52 – 2.1) × 10^{12} molec cm^{-3} sec (Fig. 4b and 4d; calculated ~ 100% of isoprene reacted), respectively. At low OH exposure, the OH suppression at “high NO_x” relative to “low NO_x” was comparatively minor (15%), whereas at high OH exposure, the OH suppression at “high NO_x” relative to ‘low NO_x” was larger (75%). At the “high-NO_x” OH exposure of 5.2 × 10^{11} molec cm^{-3} sec, isoprene can react with OH up to 52 times in the reactor. This presumably exceeds the number of OH reactions (followed by RO_2 + NO reactions) that are necessary to fragment or condense oxidation products to the point where they are no longer detected with NO_3^−-CIMS. Thus, it is unlikely that OH suppression at “high OH” and “high NO_x” significantly affected the NO_3^−-CIMS spectra shown in Fig. 4.

To generate spectra shown in Fig. 4, the reactor was operated at I_{254} = 6.4 × 10^{13} and 3.2 × 10^{15} ph cm^{-2} sec^{-1}, [H_2O] = 1%, and [N_2O] = 0 and 3%. As shown in Figs. S4 and S5, corresponding OH exposures ranged from (1.7 – 2.0) × 10^{10} (Fig. 4a and 4c; calculated > 82% of isoprene reacted) and (0.52 – 2.1) × 10^{12} molec cm^{-3} sec (Fig. 4b and 4d; calculated ~ 100% of isoprene reacted), respectively. At low OH exposure, the OH suppression at “high NO_x” relative to “low NO_x” was comparatiively minor (15%), whereas at high OH exposure, the OH suppression at “high NO_x” relative to ‘low NO_x” was larger (75%). At the “high-NO_x” OH exposure of 5.2 × 10^{11} molec cm^{-3} sec, isoprene can react with OH up to 52 times in the reactor. This presumably exceeds the number of OH reactions (followed by RO_2 + NO reactions) that are necessary to fragment or condense oxidation products to the point where they are no longer detected with NO_3^−-CIMS. Thus, it is unlikely that OH suppression at “high OH” and “high NO_x” significantly affected the NO_3^−-CIMS spectra shown in Fig. 4.

To aid interpretation of results shown in Fig. 4, Fig. 5 summarizes several known isoprene + OH reaction pathways that are terminated by reactions of RO_2 with HO_2, NO, or NO_2. As will be discussed in the following sections, these pathways yield multigenerational oxidation products with chemical formulas corresponding to the major ions that are plotted in Fig. 4.
3.3.1 NO$_3^-$-CIMS spectral features observed at “low NO$_x$” conditions

C$_{4-5}$H$_{1-12}$O$_{3-8}$ ions comprised 93% and 97% of the signals at low and high OH exposure (Figs. 4a and Fig. 4c, respectively). The C$_{5}$H$_{7-11}$NO$_{6-11}$ signals that were observed here may be due to background NO$_x$ in the reactor (Sect. 2.1). The signal at m/Q = 230, C$_{5}$H$_{12}$O$_{6}$ (NO$_3^-$ omitted for brevity here and elsewhere), was the largest signal detected at both low and high OH exposures at “low-NO$_x$” conditions. Figure 5 suggests this species is a second-generation oxidation product generated from two reactions with OH and two RO$_2$ + HO$_2$ termination reactions (Krechmer et al., 2015; St. Clair et al., 2016) and is typically associated with isoprene SOA formation and growth under “low-NO$_x$” conditions. (Liu et al., 2016) Signals in Figs. 4b and 4d are approximately 10 times higher than in Figs. 4a and 4c because additional OH exposure produces higher yields of multi-generation oxidation products that are detected with NO$_3^-$-CIMS.

Previously-identified multi-generation isoprene oxidation products such as C$_{5}$H$_{10}$O$_{5}$, C$_{5}$H$_{12}$O$_{5}$, and C$_{5}$H$_{10}$O$_{6}$ (Surratt et al., 2006; Krechmer et al., 2015; St. Clair et al., 2016) were also detected at significant intensity under low-NO$_x$ conditions. These species are formed after two reactions with OH, one RO$_2$ + HO$_2$ termination reaction and one RO$_2$ + RO$_2$ termination reaction (Fig. 5). When the OH exposure was increased from 2.0×10^{10} to 2.1×10^{12} molec cm$^{-3}$ sec, the signal at C$_{5}$H$_{12}$O$_{6}$ increased by a factor of 10 and the signal at m/Q = 246, C$_{5}$H$_{12}$O$_{7}$, increased by a factor of 5. At high OH exposure, C$_{5}$H$_{12}$O$_{7}$ was the second-largest peak in the spectrum. These highly oxygenated isoprene oxidation products are likely also important in SOA formation processes. C$_{5}$H$_{10}$O$_{7}$ is a proposed tri-hydroperoxy carbonyl product formed after one reaction with OH, two hydrogen shifts and one RO$_2$ + HO$_2$ termination reaction as shown in Fig. 5 (Peeters et al., 2014).

We hypothesize two reasons for the prominence of C$_{5}$H$_{10}$O$_{7}$, C$_{5}$H$_{12}$O$_{7}$, and C$_{5}$H$_{10}$O$_{8}$ in our spectra. First, NO$_3^-$ is more selective to highly oxidized species than other reagent ions (Surratt et al., 2006; Liu et al., 2016). Second, higher OH exposures were achieved in the reactor than in environmental chambers. For example, the spectra shown in Figs. 4a and 4b were obtained at integrated OH exposures of 1.7×10^{10} and 2.1×10^{12} molec cm$^{-3}$ sec, respectively, compared to an OH exposure of 8.6×10^{9} molec cm$^{-3}$ sec in the environmental chamber NO$_3^-$-CIMS measurements conducted by Krechmer et al. (2015).

3.3.2 NO$_3^-$-CIMS spectral features observed at “high NO$_x$” conditions

Following addition of N$_2$O at ~3% mixing ratio, the NO$_3^-$-CIMS spectra changed significantly at low and high OH exposures (Figs. 4b and 4d). The signals of C$_{4-5}$H$_{1-12}$O$_{3-8}$ oxidation products decreased, although the C$_{4}$H$_{4,6,8}$O$_{4-7}$: C$_{5}$H$_{6,8,10,12}$O$_{3-8}$ ratio increased, presumably due to decomposition of alkoxy (RO) radicals generated from C$_{5}$ RO$_2$ + NO reactions into C$_4$ products. The C$_{2-3}$H$_{3,5}$NO$_5$ (peroxy acetyl nitrate and peroxy propionyl nitrate), C$_{5}$H$_{7,9,11}$NO$_{6-11}$ and C$_{5}$H$_{10}$N$_{2}$O$_{8-10}$ signals increased. At low OH exposure, C$_{2-3}$H$_{3,5}$NO$_5$, C$_{5}$H$_{7,9,11}$NO$_{6-11}$ and C$_{5}$H$_{10}$N$_{2}$O$_{8-10}$ signals constituted 2%, 38% and 7% of the NO$_3^-$-CIMS signals, respectively (Fig. 4c). The largest signal in this spectrum was m/Q = 259, C$_{5}$H$_{11}$NO$_7$. Fig. 5 suggests this compound is a second-generation oxidation product that is formed after two reactions with OH, one RO$_2$ + NO termination reaction and one RO$_2$ + HO$_2$ termination reaction (Xiong et al., 2015). The signal observed at m/Q = 288, C$_{5}$H$_{10}$N$_{2}$O$_{8}$, is a second-generation oxidation product that is formed after two reactions with OH and two RO$_2$ + NO termination reactions (Fig. 5) (Xiong et al., 2015). Other ion signals associated with dinitrate species included m/Q =
304, C₅H₁₀N₂O₉, and m/Q = 320, C₅H₁₀N₂O₁₀. Related signals were detected at m/Q = 351 and 367 (not shown), which we assume represent (HNO₃NO₃⁻)C₅H₁₀N₂O₈ and (HNO₃NO₃⁻)C₅H₁₀N₂O₉ because we are not aware of other feasible (NO₅⁻)C₅ adducts at these mass-to-charge ratios.

At high OH exposure, the same C₅H₇,₉,₁₁NO₆₋₁₁ and C₅H₁₀N₂O₈₋₁₀ species observed at low OH exposure were detected, but at higher concentrations and at higher dinitrate:nitrate. This is presumably due to higher NO:HO₂ achieved at higher I₂₅ and fixed [N₂O] (Figs. 3, S2, S5-S6). C₂₋₃H₃,₅NO₅, C₅H₇,₉,₁₁NO₆₋₁₁ and C₅H₁₀N₂O₈₋₁₀ signals made up 0.3%, 33% and 56%, respectively, of the NO₅⁻-CIMS spectrum shown in Fig. 4d, where C₅H₁₀N₂O₈ was the largest signal that is detected.

To demonstrate our ability to mimic atmospheric NOₓ-dependent photochemistry, Figures 4e and 4f show C₄H₄,₆,₈O₄₋₇, C₅H₆,₈,₁₀,₁₂O₃₋₈, C₂₋₃H₃,₅NO₅, C₅H₇,₉,₁₁NO₆₋₁₁, and C₅H₁₀N₂O₈₋₁₀ ion signals detected in NO₅⁻-CIMS spectra at the SOAS ground site in Centre, Alabama, USA. The spectra shown were obtained on 25 Jun 2013 (0730-1100) and 4-5 Jul 2013 (1200 – 0000) which represented periods with sustained “high” and “low” NO mixing ratios of 0.53 ± 0.17 ppb and 0.024 ± 0.025 ppb, respectively, measured at the site. Figures 4a, 4c and 4e indicate that adding N₂O to the reactor increases the similarity between the composition of isoprene oxidation products generated at lower photochemical age in the reactor (Figs. 4a and 4c) and under “low-NO” ambient conditions (Fig. 4e). Likewise, Figures 4b, 4d and 4f indicate that adding N₂O to the reactor increases the similarity between the composition of isoprene oxidation products generated at higher photochemical age in the reactor (Figs. 4b and 4d) and at “high-NO” ambient conditions (Fig. 4f). (HNO₃NO₃⁻)C₅H₁₀N₂O₈₋₉ adducts were also observed in Fig. 4f (not shown).

3.3.3 Influence of acylperoxy nitrates from RO₂ + NO₂ reactions

Acylperoxy nitrates (APNs) may be generated from reactions of aldehydic, biogenic VOC oxidation products with OH followed by RO₂ + NO₂ termination reactions, e.g. LaFranchi et al. (2009). Peroxy acetyl nitrate (PAN, C₂H₃NO₅) and propionyl peroxy nitrate (PPN, C₃H₅NO₅), are minor components (<2%) of the spectra shown in Figs. 4c - 4f. A comparison of Figs. 4c and 4e suggests that yields of PAN and PPN are not enhanced in the reactor compared to atmospheric conditions. Additional APNs may be generated following the OH oxidation of methacrolein, a first-generation isoprene oxidation product. Methacroyloyl peroxy nitrate (MPAN, C₄H₅NO₅) is a second-generation oxidation product formed after one methacrolein + OH reaction and one RO₂ + NO₂ termination reaction (Orlando et al., 1999). C₄-hydroxynitrate-PAN (C₄H₆N₂O₉) is a third-generation oxidation product formed through the methacrolein channel after three reactions with OH, two RO₂ + NO termination reactions and one RO₂ + NO₂ termination reaction (Surratt et al., 2010). Neither C₄H₅NO₅ nor C₄H₆N₂O₉ were detected in the laboratory and ambient NO₅⁻-CIMS spectra shown in Figs. 4c - 4f. Either these compounds were oxidized or thermally decomposed prior to detection, or their signals were below detection limit. C₄H₇NO₅, which is formed after one methacrolein + OH reaction and one RO₂ + NO termination reaction (Surratt et al., 2010), was detected (Fig. 5). Taken together, these observations suggest that yields of APNs were not significantly enhanced in the reactor compared to atmospheric conditions.
3.3.4 Influence of isoprene + NO$_3^-$ reactions

Based on the calculated isoprene + OH and isoprene + NO$_3^-$ reaction rates (Figs. S5-S6) we assume that isoprene + NO$_3^-$ reactions were a minor influence on the NO$_3^-$-CIMS spectra shown in Figs. 4c and 4d. This assumption is further supported by the similarity between laboratory and ambient NO$_3^-$-CIMS spectra, the latter of which was obtained during the daytime and thus with minimal NO$_3^-$ exposure (0730 - 1100 for “high-NO” spectra shown in Fig. 4f). Specific operating conditions different than those used in this study could increase the relative influence of isoprene + NO$_3^-$ reactions. In this hypothetical situation, enhanced yields of C$_5$H$_7$NO$_5$, C$_5$H$_8$N$_2$O$_8$ and C$_5$H$_{10}$N$_2$O$_8$ might occur following two reactions with NO$_3^-$ (Rollins et al., 2009). In addition, C$_5$H$_{10}$N$_2$O$_9$ may be generated from one isoprene + NO$_3^-$ reaction followed by one RO$_2$ + HO$_2$ termination reaction (Schwantes et al., 2015). All four of these ions are detected in the spectra shown in Fig. 4, although C$_5$H$_8$N$_2$O$_8$ (not shown in Fig. 4) is present at 0.5% of the intensity of C$_5$H$_{10}$N$_2$O$_8$. If C$_5$H$_8$N$_2$O$_8$: C$_5$H$_{10}$N$_2$O$_8$ is significantly different under NO$_3^-$-dominated conditions, this ratio could distinguish the relative rates of isoprene + OH and isoprene + NO$_3^-$ reactions. Otherwise, it is not clear that the expected product distributions are significantly different whether isoprene is oxidized by OH or NO$_3$ in the presence of NO$_x$.

3.4 NO$_3^-$-CIMS spectra of α-pinene oxidation products

Figure 6 shows NO$_3^-$-CIMS mass spectra of products generated from the oxidation of α-pinene (C$_{10}$H$_{16}$). Ion signals corresponding to α-pinene oxidation products were colored based on classification in C$_{5}$H$_{6,8}$O$_{5-7}$, C$_{6-9}$H$_{8,10,12,14}$O$_{6-12}$, C$_{10}$H$_{14,16,18}$O$_{5-14}$, and C$_{19-20}$H$_{28,30,32}$O$_{9-18}$ ion groups containing zero nitrogen atoms; C$_{2-3}$H$_{3,5}$NO$_{5}$, C$_{5}$H$_{7}$NO$_{6-11}$, C$_{6-9}$H$_{9,11,13,15}$NO$_{5-10}$, and C$_{10}$H$_{15,17}$NO$_{4-14}$ ion groups containing one nitrogen atom; and a C$_{10}$H$_{16,18}$N$_2$O$_{6-13}$ ion group containing two nitrogen atoms. As was the case with isoprene oxidation products, we assumed nitrogen atoms present in α-pinene oxidation products were associated with nitrate functional groups formed from RO$_2$ + NO or RO$_2$ + NO$_2$ reactions. Additionally, we again assumed the NO$_3^-$-CIMS had the same sensitivity to all species that were detected, and that HNO$_3$ generated in the reactor did not alter the relative selectivity of the CIMS to different classes of oxidation products. Because the oxidation pathways leading to α-pinene-derived HOM are significantly more complex than those leading to isoprene-derived HOM, the analogous figure to Fig. 5 for α-pinene-derived HOM is beyond the scope of this paper.

To generate spectra shown in Fig. 6, the reactor was operated at I$_{254}$ = 2.8 × 1015 ph cm$^{-2}$sec$^{-1}$, [H$_2$O] = 0.07%, and [N$_2$O] = 0 and 3.2%. In this experiment, lower [H$_2$O] was used to minimize [OH] and facilitate closer comparison with spectra from previous NO$_3^-$-CIMS studies of α-pinene + O$_3$ oxidation products generated at “low-NO$_x$” conditions (Ehn et al., 2012, 2014). As shown in Fig. S7, corresponding OH and O$_3$ exposures ranged from (0.19 – 1.8) × 1011 molec cm$^{-3}$ sec and (7.2-9.5) × 1016 molec cm$^{-3}$ sec for the low- and high-NO$_x$ conditions, respectively. To first order, at OH and O$_3$ exposures of 2.1 × 1010 and 7.4 × 1015 molec cm$^{-3}$ sec that are attained at [N$_2$O] = 3.2%, α-pinene should react once with each oxidant in the gas phase. Thus, at the highest [N$_2$O] used, yields of second-generation (or later) α-pinene + OH oxidation products detected with the NO$_3^-$-CIMS were minimized relative to α-pinene + O$_3$ first-generation oxidation products, as desired (Jokinen et al., 2015). However, a potential consequence of using O(1D) + N$_2$O reactions to study the NO$_x$-dependence of chemical systems similar
to those examined by Ehn et al. (2012, 2014) is that RO₂ may be produced from α-pinene + NO₃ reactions in addition to α-pinene + O₃ or α-pinene + OH reactions (Sect. 2.1 and Fig. S7).

3.4.1 NO₃⁻-CIMS mass spectral features observed at “low NOₓ” conditions

C₅H₆.O₅−7, C₆−₉H₈.10.12.14O₆−12, C₁₀H₁₄.16.18O₅−14, and C₁₉−₂₀H₂₈.₃₀.₃₂O₉−₁₈ ion groups comprised 5%, 36%, 46%, and 4% of the signal detected at “low-NOₓ” conditions (Fig. 6a), assuming equal CIMS sensitivity and transmission to all detected species. The C₁₀ monomers and C₁₉−₂₀ dimers compounds that were observed are often associated with atmospheric new particle formation events (Ehn et al., 2014). The prominent C₁₀H₁₄.₁₆O₇−₉ signals detected at m/Q = 308, 310, 324, 326, 340 and 342 in our measurements were dominant signals in previous laboratory and field experiments influenced by the ozonolysis of α-pinene emissions (Ehn et al., 2010, 2012, 2014; Jokinen et al., 2015). Other signals that were observed correspond to C₅−₉ species that were generated following carbon-carbon bond cleavage of the C₁₀ backbone (Ehn et al., 2012). The remaining ~10% of the signal was classified into C₂−₉H₅NO₅, C₅H₇NO₆−₁₁, C₆−₉H₉.₁₁.₁₃.₁₅NO₅−₁₀, and C₁₀H₁₅.₁₇NO₄−₁₄ ion groups and may be due to background NOₓ in the reactor (Sect. 2.1).

3.4.2 NO₃⁻-CIMS mass spectral features observed at “high NOₓ” conditions

As was the case with NO₃⁻-CIMS spectra of isoprene oxidation products, the addition of N₂O to the reactor significantly changed the mass spectrum of α-pinene oxidation products (Fig. 6b). At [N₂O] = 3.2%, organic nitrates and dinitrates comprised 65% of the total ion signal. We observed reduction in C₆−₉H₈.₁₀.₁₂.₁₄O₆−₁₂, C₁₀H₁₄.₁₆.₁₈O₅−₁₄, and C₁₉−₂₀H₂₈.₃₀.₃₂O₉−₁₈ signals, along with increases in C₅H₆.₈O₅−₇, C₅H₇O₆−₁₁, C₆−₉H₉.₁₁.₁₃.₁₅NO₅−₁₀, C₁₀H₁₅.₁₇NO₄−₁₄ and C₁₀H₁₆.₁₈N₂O₆−₁₃ signals. The C₁₀ dinitrates may originate from two α-pinene + OH reactions followed by two RO₂ + NO reactions, but may also include contributions from one α-pinene + NO₃ reaction followed by one RO₂ + NO reaction. The largest signal in Fig. 6b was observed at m/Q = 240, C₅H₆O₇. The largest organic nitrate signals in this spectrum were at m/Q = 329, C₈H₁₃NO₉, followed by C₁₀H₁₅NO₉ (m/Q = 355), C₁₀H₁₆.₁₈N₂O₉ (m/Q = 354), and C₁₀H₁₅NO₈ (m/Q = 339).

Figure 6c shows C₅H₆O₅−₇, C₆−₉H₈.₁₀.₁₂.₁₄O₆−₁₂, C₁₀H₁₄.₁₆.₁₈O₅−₁₄, C₁₉−₂₀H₂₈.₃₀.₃₂O₉−₁₈, C₂−₉H₅NO₅, C₅H₇NO₆−₁₁, C₆−₉H₉.₁₁.₁₃.₁₅NO₅−₁₀, C₁₀H₁₅.₁₇NO₄−₁₄, and C₁₀H₁₆.₁₈N₂O₆−₁₃ signals detected with NO₃⁻-CIMS at the Centreville site during the SOAS campaign. The spectra shown here were obtained during the sampling period shown in Fig. 4f and, given the large number of compounds, may include contributions from HOM precursors other than α-pinene. A comparison of Figs. 6a-6c indicates that adding N₂O to the reactor increases the similarity between the composition of α-pinene oxidation products generated in the reactor and under “high-NO” ambient conditions, especially in regards to the enhanced C₅H₆O₅−₇, C₆−₉H₉.₁₁.₁₃.₁₅NO₅−₁₀, C₁₀H₁₅.₁₇NO₄−₁₄, and C₁₀H₁₆.₁₈N₂O₆−₁₃ signals.

3.4.3 Detection of acylperoxy nitrates from RO₂ + NO₂ reactions

Figs. 6b and 6c indicate that PAN (m/Q = 183, C₂H₃NO₅) and PPN (m/Q = 197, C₃H₅NO₅) are formed at lower yields (<0.4%) than were observed with isoprene (Fig. 4c and 4d), suggesting that PAN and PPN formation from reaction of α-pinene-
derived–RO2 with NO2 are not enhanced in the reactor compared to atmospheric conditions. C9H13NO6 and C10H15NO6–8 are APNs generated following OH oxidation of pinonaldehyde, a major first-generation oxidation product of α-pinene, with termination by RO2 + NO2 reaction (Eddingsaas et al., 2012). All four compounds are detected in the reactor and ambient NO3−-CIMS spectra shown in Figs. 6b and 6c, with C10H15NO6–8 signals among the largest in the spectra. If these signals represent APNs, they appear to be important in both laboratory and atmospheric conditions.

3.4.4 Influence of α-pinene + NO3 reactions

Our calculations suggest that α-pinene + NO3 reactions compete with α-pinene + OH reactions at the experimental conditions used to generate the NO3−-CIMS spectrum shown in Fig. 6b (Fig. S7). If this were the case, enhanced yields of C10H15NO6 are anticipated from α-pinene + NO3 reaction to generate pinonaldehyde, followed by pinonaldehyde + NO3 reaction and RO2 + NO2 termination (Perraud et al., 2010; Nah et al., 2016) Other minor α-pinene + NO3 products detected with CIMS include C10H15NO5, C9H13NO6, C10H16N2O7, and C10H15NO9 (Nah et al., 2016). We hypothesize that if α-pinene + NO3 reactions influence the spectrum shown in Fig. 6b, C10H15NO6 : C10H15NO8 should be higher in Fig. 6b than in Fig. 6c.

Instead, the C10H15NO6 : C10H15NO8 ratio was 0.12 in the reactor and 0.28 at the Centreville site during a daytime period (0730 - 1100) with presumably negligible NO3 influence.

Dinitrates (C10H16,18N2O6–13) shown in Fig. 6b may originate from two α-pinene + OH reactions followed by two RO2 + NO terminations, or one α-pinene + NO3 reaction followed by one RO2 + NO termination. Given comparable calculated OH and NO3 reaction rates under these conditions (Fig. S7e), we hypothesize that the majority of dinitrate signals should originate from α-pinene + NO3 reactions if their yields are not oxidant-dependent. If this were the case, C10H16,18N2O6–13 : C10H15,17NO4–14 should be larger in Fig. 6b than in Fig. 6c. However, C10H16,18N2O6–13 : C10H15,17NO4–14 was 0.23 in the reactor and 0.61 at the Centreville site. Thus, while the calculated α-pinene + NO3 oxidation rate is significant (Fig. S7e), it is not clear that α-pinene + NO3 oxidation products significantly affect the spectrum shown in Fig. 6b. This may be due to significantly lower organic nitrate yields from α-pinene + NO3 than from α-pinene + OH reactions in the presence of NO (Fry et al., 2014; Rindelaub et al., 2015).

3.5 Transition from RO2+HO2 to RO2+NO-dominant regimes observed in isoprene and α-pinene oxidation products

Figures 7 and 8 shows normalized signals of the representative groups of isoprene and α-pinene oxidation products as a function of increasing NO:HO2, which may be influenced by NO + HO2, NO + RO2 and HO2 + RO2 reactions in the reactor. For each group of compounds, signals obtained at a specific NO:HO2 were normalized to the maximum observed signal. NO:HO2 is correlated with the relative branching ratios of RO2 + HO2 and RO2 + NO reactions that govern the distribution of oxidation products observed in Figs. 4 and 6. As is evident from Figs. 7 and 8, different ion families were characterized by different trends as a function of NO:HO2. The normalized signals of C4–5 (isoprene), C6–10 (α-pinene) and C19–20 (α-pinene) species decreased monotonically with increasing NO:HO2. In Fig. 8, the abundance of C19–20 dimers decreased significantly faster
than the C_{6−10} species. Because dimers are products of RO_{2} + RO_{2} self-reactions, their yield is quadratic with respect to [RO_{2}] and therefore was more affected by competing RO_{2} + NO reactions than species formed from RO_{2} + HO_{2} reactions.

The normalized signals of C_{5} (isoprene) and C_{10} (α-pinene) organic nitrates reached their maximum values at NO:HO_{2} ≈ 1 prior to decreasing. Maximum signals of C_{6−9} organic nitrates (α-pinene) were obtained at NO:HO_{2} = 2.4, and maximum signals of C_{5} (isoprene) and C_{10} (α-pinene) dinitrates were obtained at NO:HO_{2} = 5.2 and 6.4. The formation of dinitrates was favored when RO_{2} + NO >> RO_{2} + HO_{2}, as expected, and regardless of whether RO_{2} was formed from oxidation of α-pinene by OH, O_{3} or NO_{3}. We hypothesize that NO:HO_{2} >> 1 favored RO_{2} + NO → RO + NO_{2} fragmentation reactions that led to formation of smaller, more volatile C_{5}H_{6−8}O_{5−7} and C_{5}H_{7}NO_{6−11} α-pinene oxidation products (Atkinson, 2007; Chacon-Madrid and Donahue, 2011), whose signals continuously increased with increasing NO:HO_{2}, along with other products not detected with NO_{3}−CIMS. This pathway apparently competed with RO_{2} + NO → RO_{2}NO reactions that led to formation of C_{5} isoprene dinitrates, C_{6−C_{10} α-pinene nitrates and C_{10} α-pinene dinitrates.

Isoprene oxidation products such as C_{5}H_{9}NO_{7} and C_{5}H_{11}NO_{7} contain one peroxide and one nitrate functional group, and C_{5}H_{9}NO_{8} contains two peroxides and one nitrate functional group. The formation of these species, as well as C_{6−10} α-pinene-derived organic nitrates, was favored at NO:HO_{2} ≈ 1-2 where the relative rates of RO_{2} + NO and RO_{2} + HO_{2} reactions were similar. This correlation suggests that the C_{6−10} α-pinene organic nitrates detected with NO_{3}−CIMS contained a combination of peroxide and nitrate functional groups, whereas C_{5} (isoprene) and C_{10} (α-pinene) dinitrates contained fewer functional groups that were specifically formed from RO_{2} + HO_{2} reactions.

4 Atmospheric Implications

The use of O(^{1}D) + N_{2}O reactions facilitates systematic control of NO:HO_{2} over the range of “RO_{2} + HO_{2} dominant” to “RO_{2} + NO dominant” conditions. Further, this is accomplished with the use of a single OH radical precursor (O_{3}) that has previously hindered characterization of NO_{x}-dependent chemistry in oxidation flow reactors. Our results suggest that this method can be used to identify molecular tracers for processes influenced by RO_{2} + NO and/or RO_{2} + NO_{2} reactions (Figs. 4 and 6). This method will be used in future work to investigate the influence of NO_{x} on physicochemical properties of secondary organic aerosols such as hygroscopicity and refractive indices over an atmospherically relevant range of NO:HO_{2}. Care should be taken to use experimental conditions that minimize the relative contributions of unwanted NO_{3}-initiated oxidation chemistry – for example, [O_{3}] >> 5 ppm and [H_{2}O] << 1% (Figs. S2 and S3) – particularly when using species such as α-pinene that are highly reactive to NO_{3}. While potential formation of dinitrates from α-pinene + NO_{3} reactions at high-NO conditions was not the primary goal of this experiment, we note that this chemical fingerprint has been observed in ambient measurements (Yan et al., 2016) and thus represents an additional application of O(^{1}D) + N_{2}O reactions in future work. Additionally, studies that require multiple days of equivalent atmospheric OH oxidation at NO:HO_{2} >> 1 should consider implementing 185 nm photolysis of H_{2}O and N_{2}O to provide additional sources of O(^{1}D) and OH that may decrease OH suppression due to competing O(^{1}D) + H_{2}O and O(^{1}D) + N_{2}O reactions.
Acknowledgements. This research was supported by the Atmospheric Chemistry Program of the U.S. National Science Foundation under grants AGS-1536939, AGS-1537446 and AGS-1537009 and by the U.S. Office of Science (BER), Department of Energy (Atmospheric Systems Research) under grants DE-SC0006980 and DE-SC0011935. A. T. Lambe thanks Gabriel Isaacman-VanWertz and Jesse Kroll (Massachusetts Institute of Technology) for helpful discussion, Zhe Peng and Jose Jimenez (University of Colorado - Boulder) for preliminary input on method operation with added \(\lambda = 185 \) nm radiation, and Karsten Baumann and Eric Edgerton (Atmospheric Research and Analysis, Inc.) for the use of ambient NO measurements during the SOAS campaign.
References

Spracklen, D. V., Jimenez, J. L., Carslaw, K. S., Worsnop, D. R., Evans, M. J., Mann, G. W., Zhang, Q., Canagaratna, M. R., Allan, J.,
Atmospheric Chemistry and Physics, 11, 12 109–12 136, 2011.

and Wennberg, P. O.: Kinetics and Products of the Reaction of the First-Generation Isoprene Hydroxy Hydroperoxide (ISOPOOH) with

Surratt, J., Murphy, S., Kroll, J., Ng, N., Hildebrandt, L., Sorooshian, A., Szmigielski, R., Vermeylen, R., Maenhaut, W., and Claeys, M.:
Chemical composition of secondary organic aerosol formed from the photooxidation of isoprene, The Journal of Physical Chemistry A,

Surratt, J. D., Chan, A. W. H., Eddingsaas, N. C., Chan, M., Loza, C. L., Kwan, A. J., Hersey, S. P., Flagan, R. C., Wennberg, P. O.,
and Seinfeld, J. H.: Reactive intermediates revealed in secondary organic aerosol formation from isoprene, Proceedings of the National

A. P., Crounse, J. D., Nguyen, T. B., Wennberg, P. O., Misztal, P. K., Goldstein, A. H., Guenther, A. B., Koss, A. R., Olson, K. F.,
isoprene hydroxynitrates in the southeastern United States and implications for the fate of NOx, Atmospheric Chemistry and Physics,

Xu, L., Guo, H., Boyd, C. M., Klein, M., Bougiatioti, A., Cerully, K. M., Hite, J. R., Isaacman-VanWertz, G., Kreisberg, N. M., Knote, C.,
of anthropogenic emissions on aerosol formation from isoprene and monoterpenes in the southeastern United States, Proceedings of the

Yan, C., Nie, W., Äijälä, M., Rissanen, M. P., Canagaratna, M. R., Massoli, P., Junninen, H., Jokinen, T., Sarnela, N., Häme, S. A. K.,
ization of highly oxidized multifunctional compounds in a boreal forest environment using positive matrix factorization, Atmospheric
Chemistry and Physics, 16, 12 715–12 731, 2016.

Yu, F. and Luo, G.: Simulation of particle size distribution with a global aerosol model: contribution of nucleation to aerosol and CCN
number concentrations, Atmospheric Chemistry and Physics, 9, 7691–7710, 2009.

Figure 1. Scatter plot comparing measured and modeled [NO] at 80 sec residence time in the PAM oxidation flow reactor, $I_{254} = 4 \times 10^{15}$ ph cm$^{-2}$ sec$^{-1}$, $[O_3] = 1$ ppm, $[H_2O] = 0.07$ and 1%, $[N_2O] = 0$ to 3%. Symbols are colored by $[N_2O]$, with 1:2, 1:1 and 2:1 lines shown for reference. Error bars represent $\pm 60\%$ uncertainty in model outputs (Peng et al., 2015) and $\pm 40\%$ precision in replicate [NO] measurements at fixed $[N_2O]$.

\[\text{modeled [NO] (ppb)} \]

\[\text{measured [NO] (ppb)} \]

\[[O_3] = 1 \text{ ppm} \]

\[[H_2O] = 0.07\% \]

\[[N_2O] = 0 \text{ to } 3\% \]
Figure 2. Scatter plot comparing measured and modeled [NO₂] at 80 sec residence time in the PAM reactor, I_{254} = 4 \times 10^{15} \text{ ph cm}^{-2} \text{ sec}^{-1}, [O_3] = 1 \text{ ppm}, [H_2O] = 0.07 \text{ and } 1\% \text{, } [N_2O] = 0 \text{ to } 3\%. Symbols are colored by [N_2O], with 1:2, 1:1 and 2:1 lines shown for reference. Error bars represent \pm 60\% uncertainty in model outputs (Peng et al., 2015) and \pm 20\% precision in replicate [NO] measurements at fixed [N_2O].
Figure 3. Modeled steady-state [NO] as a function of [N$_2$O] input to the PAM reactor at $I_{254} = 0.032 \times 10^{15}$, 0.64×10^{15} and 6.4×10^{15} ph cm$^{-2}$ sec$^{-1}$, [H$_2$O] = 1%, [O$_3$] = 5 ppm, mean residence time = 80 sec. Error bars represent ± 60% uncertainty in modeled [NO] (Peng et al., 2015).
Figure 4. NO$_3^-$-CIMS mass spectra of isoprene oxidation products generated in the PAM reactor at [H$_2$O] = 1%, [O$_3$] = 5 ppm, mean residence time = 80 sec: (a) I$_{254}$ = 6.4 × 1013 ph cm$^{-2}$ sec$^{-1}$, [N$_2$O] = 0%; (b) I$_{254}$ = 3.2 × 1015 ph cm$^{-2}$ sec$^{-1}$, [N$_2$O] = 0 %; (c) I$_{254}$ = 6.4 × 1013 ph cm$^{-2}$ sec$^{-1}$, [N$_2$O] = 3.3 %; (d) I$_{254}$ = 3.2 × 1015 ph cm$^{-2}$ sec$^{-1}$, [N$_2$O] = 2.9 %. NO$_3^-$-CIMS mass spectra of the same compounds detected at the SOAS ground site in Centreville, Alabama, USA during (e) “low-NO” and (f) “high-NO” conditions (see text for additional details; C$_5$H$_6$O$_5$− ions removed from SOAS spectra due to larger contributions from α-pinene + OH oxidation products (Fig. 6). “C$_x$” or “O$_x$” indicates number of carbon or atoms in labeled ions (not including oxygen atoms in nitrate functional groups).
Figure 5. Simplified reaction scheme summarizing known isoprene + OH reaction pathways yielding multigeneration oxidation products. Four peroxy radical (RO$_2$) isomers are generated following initial OH addition to isoprene: 1,2-RO$_2$, 4,3-RO$_2$, 1,4-RO$_2$, 4,1-RO$_2$. The 1,2-RO$_2$ and 4,3-RO$_2$ isomers follow the same reaction pathways, yielding chemical formulas with green text that were detected with NO$_3^-$-CIMS. The 4,1-RO$_2$ isomer yields C$_5$H$_{10}$O$_7$, also detected with NO$_3^-$-CIMS. Chemical formulas with red text may be generated through the methacrolein (MACR) channel but were not detected with NO$_3^-$-CIMS.
Figure 6. NO$_3^-$-CIMS mass spectra of α-pinene oxidation products generated in the PAM reactor at $[\text{H}_2\text{O}] = 0.07\%$, $[\text{O}_3] = 5$ ppm, mean residence time = 80 sec: (a) $I_{254} = 2.8 \times 10^{15}$ ph cm$^{-2}$sec$^{-1}$, $[\text{N}_2\text{O}] = 0 \%$; (b) $I_{254} = 2.8 \times 10^{15}$ ph cm$^{-2}$sec$^{-1}$, $[\text{N}_2\text{O}] = 3.2 \%$. (c) NO$_3^-$-CIMS mass spectra of the same compounds detected at the SOAS ground site in Centreville, Alabama, USA during “high-NO” conditions shown in Fig. 4f (note: C$_5$H$_7$NO$_6$−11 signals in SOAS spectra also contributed from isoprene + OH oxidation products). “C$_x$” or “O$_x$” labels indicate number of oxygen atoms in corresponding signals (not including oxygen atoms in nitrate functional groups).
Figure 7. Normalized NO$_3^-$-CIMS signals of C$_4$H$_{4,6,8}$O$_{4-7}$, C$_5$H$_{6,8,10,12}$O$_{3-8}$, C$_5$H$_{7,9,11}$NO$_{6-11}$, and C$_5$H$_{10}$N$_2$O$_{8-10}$ isoprene oxidation products generated in the PAM reactor at $I_{254} = 3.2 \times 10^{15}$ ph cm$^{-2}$ sec$^{-1}$, [H$_2$O] = 1%, [O$_3$] = 5 ppm, mean residence time = 80 sec as a function of modeled NO:HO$_2$. For each of the species classes, signals were normalized to the maximum signal. Proposed structures for C$_5$H$_{12}$O$_6$, C$_5$H$_{11}$NO$_7$, and C$_5$H$_{10}$N$_2$O$_8$ signals are shown as representative compounds for each species class (Fig. 5). Representative error bars indicate ± 1σ uncertainty in NO$_3^-$-CIMS signals and ± 85% uncertainty in NO:HO$_2$.
Figure 8. Normalized NO$_3^-$-CIMS signals of (a) C$_5$H$_6$.O$_{5-7}$, C$_6$-9H$_{8,10,12,14}$.O$_{6-12}$, C$_{10}$.H$_{14,16,18}$.O$_{5-14}$, C$_{19-20}$.H$_{28,30,32}$.O$_{9-18}$ and (b) C$_5$H$_7$.NO$_{6-11}$, C$_6$-9H$_{9,11,13,15}$.NO$_{5-10}$, C$_{10}$.H$_{15,17}$.NO$_{4-14}$, and C$_{10}$.H$_{16,18}$.N$_2$.O$_{6-13}$ α-pinene oxidation products generated in the PAM reactor at I$_{254} = 2.8 \times 10^{15}$ ph cm$^{-2}$ sec$^{-1}$, [H$_2$O] = 0.07%, [O$_3$] = 5 ppm, mean residence time = 80 sec as a function of modeled NO:HO$_2$. For each of the species classes, signals were normalized to the maximum signal. Representative error bars indicate ± 1σ uncertainty in NO$_3^-$-CIMS signals and ± 85% uncertainty in modeled NO:HO$_2$.