Journal cover Journal topic
Atmospheric Measurement Techniques An interactive open-access journal of the European Geosciences Union
Journal topic

Journal metrics

Journal metrics

  • IF value: 3.400 IF 3.400
  • IF 5-year value: 3.841 IF 5-year
    3.841
  • CiteScore value: 3.71 CiteScore
    3.71
  • SNIP value: 1.472 SNIP 1.472
  • IPP value: 3.57 IPP 3.57
  • SJR value: 1.770 SJR 1.770
  • Scimago H <br class='hide-on-tablet hide-on-mobile'>index value: 70 Scimago H
    index 70
  • h5-index value: 49 h5-index 49
Discussion papers
https://doi.org/10.5194/amt-2016-248
© Author(s) 2016. This work is distributed under
the Creative Commons Attribution 3.0 License.
https://doi.org/10.5194/amt-2016-248
© Author(s) 2016. This work is distributed under
the Creative Commons Attribution 3.0 License.

Submitted as: research article 27 Jul 2016

Submitted as: research article | 27 Jul 2016

Review status
This discussion paper is a preprint. A revision of the manuscript for further review has not been submitted.

Validation of COSMIC water vapor data in the upper troposphere and lower stratosphere using MLS, MERRA and ERA-Interim

Ming Shangguan1, Katja Matthes1,2, Wuke Wang1, and Tae-Kwon Wee3 Ming Shangguan et al.
  • 1GEOMAR Helmholtz Centre for Ocean Research Kiel, Kiel, Germany
  • 2Christian-Albrechts-Universität zu Kiel, Kiel, Germany
  • 3University Corporation for Atmospheric Research, Boulder Colorado, USA

Abstract. Water vapor is the most important greenhouse gas in the atmosphere with important implications not only for the Earth’s radiation and energy budget but also for various chemical, physical and dynamical processes in the stratosphere. The Constellation Observing System for Meteorology, Ionosphere and Climate (COSMIC) Radio Occultation (RO) dataset from 2007 through 2013 is used for the first time to study the distribution and variability water vapor in the upper troposphere and lower stratosphere (UTLS). The COSMIC data are compared to the Microwave Limb Sounder (MLS) data, and to two global reanalyses: The Modern-Era Retrospective analysis for Research and Application (MERRA) of the National Aeronautics and Space Administration (NASA); and, the latest reanalysis of the European Center for Medium-range Weather Forecast (ECMWF), the ERA-Interim. The MLS data have been assimilated into the MERRA, whereas the COSMIC data are used for the ERA-Interim. As a result, the MERRA agrees well with the MLS data and so does the ERA-Interim with the COSMIC data. While the monthly zonal mean distributions of water vapor from the four datasets show good agreements in northern mid-latitudes, large discrepancies exist in high southern latitudes and tropics. The MERRA shows overall a consistent seasonal cycle with MLS, but has too strong winter dehydration over the Antarctic, and is very weak in the interannual variations. The ERA-Interim fails to properly represent the winter dehydration over the Antarctic, and shows an unrealistic seasonal cycle in the tropical upper troposphere. The COSMIC data shows a good agreement with the MLS data except for the tropical "taper recorder" signal, where the COSMIC data suggest a faster upward motion than the MLS data. The COSMIC data are able to represent the moisture variabilities associated with the Quasi-Biennial Oscillation and the El Niño-Southern Oscillation.

Ming Shangguan et al.
Interactive discussion
Status: closed (peer review stopped)
Status: closed (peer review stopped)
AC: Author comment | RC: Referee comment | SC: Short comment | EC: Editor comment
Printer-friendly Version - Printer-friendly version Supplement - Supplement
  • RC1: 'Review', Anonymous Referee #1, 23 Aug 2016 Printer-friendly Version
  • RC2: 'RC #3', Anonymous Referee #2, 01 Sep 2016 Printer-friendly Version
Interactive discussion
Status: closed (peer review stopped)
Status: closed (peer review stopped)
AC: Author comment | RC: Referee comment | SC: Short comment | EC: Editor comment
Printer-friendly Version - Printer-friendly version Supplement - Supplement
  • RC1: 'Review', Anonymous Referee #1, 23 Aug 2016 Printer-friendly Version
  • RC2: 'RC #3', Anonymous Referee #2, 01 Sep 2016 Printer-friendly Version
Ming Shangguan et al.
Ming Shangguan et al.
Viewed  
Total article views: 1,246 (including HTML, PDF, and XML)
HTML PDF XML Total BibTeX EndNote
887 320 39 1,246 36 59
  • HTML: 887
  • PDF: 320
  • XML: 39
  • Total: 1,246
  • BibTeX: 36
  • EndNote: 59
Views and downloads (calculated since 27 Jul 2016)
Cumulative views and downloads (calculated since 27 Jul 2016)
Cited  
Saved  
No saved metrics found.
Discussed  
Latest update: 12 Nov 2019
Publications Copernicus
Download
Short summary
A first validation of the COSMIC Radio Occultation (RO) water vapor data in the upper troposphere and lower stratosphere (UTLS) are presented in this paper. The COSMIC water vapor shows a good agreement with the Microwave limb Sounder (MLS) in both the spatial distribution and the seasonal to interannual variations. It is very valuable for studying the water vapor in the UTLS, thanks to its global coverage, all- weather aptitude and high vertical resolution.
A first validation of the COSMIC Radio Occultation (RO) water vapor data in the upper...
Citation