Interactive comment on “Benchmark campaign and case study episode in Central Europe for development and assessment of advanced GNSS tropospheric models and products” by J. Douša et al.

Anonymous Referee #2

Received and published: 18 March 2016

Specifications and characteristics of the Benchmark campaign data set are described in detail. I believe the data set will contribute for both geodesy and meteorology in not only Europe but other countries and regions. However, there are not a few typos, insufficient explanations in body, tables, and figures. I would like authors to carefully polish the article. Followings are for reference.

About the chapter arrangement: (1). It would be nice to move “3 Case study episode in 2013” to after “4. Benchmark data set” and before “5. Initial analysis and reference products” (2) Effects of hydrometeor described in the latter half of the “6. Conclusion” and latter half of the “Appendix B” should be moved to “5 Initial analysis and reference products”.

2.3 Selected spatial and temporal domain P6L3: “in Sect. 0” might be “in Sect. 3.2” P6L4: “Additionally, seven clusters were set for an effective GNSS processing.” It is unclear which areas in figure 1 are the “seven clusters”, and what does “effective processing” mean. Please describe clearly. P6L6: “covered areas hit by” -> “covered areas were hit by”


3.1 Weather analysis, May 2013 P7L7: “daily accumulated precipitation (24-hour) from” -> “daily accumulated precipitation (24-hour) at Prague-Ruzyně (11518) synoptic station from” P7L11: “weak gradient at 500hPa” -> “of what “gradient”?” P7L11-L24: Over-all synoptic characteristics in May are described but no such description is seen for June. P7L21: “On May 31-31,” -> Please check the exact date. P7L25: Figure 4 -> It would be nice if the area of the figure is more focusing on the area of the Benchmark campaign.

3.2 Extreme precipitation events in the Czech Republic, June 2013 P8L7: Figure 5 -> It would be nice if the distance scale and topography of the area are shown. Also, locations of “Sumava mountains”, “Bohemia”, “Plague”, “Vltava”, “Elve” should be pointed in the figure.

4.1 GNSS data P8L27: Figure 6. -> Mark for WVR station is hard to distinguish from that of radiosonde station. P9L3: “processing double-difference” -> It would be nice to add a reference on “double-difference”, for example “Hoffmann-Wellenhof, et al, 2000: GPS theory and practice, 5th rev. ed., Springer-Verlag Wien New York.” P9L5: Table 1 -> Does “Height” mean “Ellipsoidal height” or “Height above sea level (i.e. altitude)”?
P9L6: “All GNSS” -> It would be nice to add brief summary regarding antenna type (Choke ring, ground plane, etc.), and elevation cut off angle.

4.2 E-GVAP operational GNSS products P9L21: “14 analysis centres (and 29 solutions)” -> It would be nice to show the names of 14 centres and 29 solutions in a table. P9L23: “TOUGH (2004)” -> Is it appropriate to use a project name rather than specific author(s) name?

4.4 NWM data and products P10L10: “Table 3” -> There is no information about geopotential height at each vertical layer. How users get geopotential height at each 3D grid point? P10L13: “Vertical resolution” -> “Vertical layers”


5.2 NWM-derived tropospheric parameters P13L11: “German Research Centre for Geosciences (GFZ)” -> “GFZ” P13L26: “compared in the GOP-tropDB” -> It would be nice to explain how to correct height differences between NWM surface and GNSS antenna. PWV and ZTD are highly depend on height of antenna. It brings significant effect for the comparison. P14L2: “a negative mean bias of about 5mm” -> It is important to describe possible reasons for the large negative biases. P14L4: Figure 8 -> Color scale should be identical for both GNSS and NWM. P14L6: “As already seen in k in the local area model” -> What is “k”? P14L8: “good homogeneity” -> The expression is ambiguous. Please describe what it means by “homogeneity.” P14L12: “23 times better horizontal resolution” -> Please explain of which horizontal resolution is “23 times better” than of which resolution. P14L15: “it has not been explained yet.” -> At least, I would like authors to compare reproduced atmospheric fields among GFS, ERA-interim, and ALADIN. Which element field (surface pressure, water vapor, or temperature) is different in GFS from other two models?

5.3 GNSS and NWM tropospheric wet delay maps P14L22: “in Section 0” -> There is no “section 0” in this article.

5.4 Comparison of horizontal gradients from GNSS and NWM P14L29: “zero a priori gradients” -> Please briefly explain this. I can’t understand why “zero a priori gradients” leads “all solutions are considered as independent”? P15L9: “Figure 10” -> The amount of estimated gradients in GNSS analysis seems larger than those in NWM. Is this happened by chance? Did authors statistically compare gradients between GNSS and NWMs?

6 Conclusion P16L23-P17L2: “An initial study – GNSS4SWEC project.” -> This paragraph seems to be a sudden. If authors want to discuss about the effects of hydrometeors, I want authors to discuss it in section 5 in association with difference in IWV (or ZWD) between GNSS analyses and NWMs.

Appendix A: GNSS tropospheric model A. 1 Mapping function coefficients – a, b, c A. 2 Horizontal tropospheric gradients Appendix B: Functional relation between NWM meteorological parameters and GNSS tropospheric model P20L1-P20L16: “For the Benchmark campaign – (%0.4).” -> This paragraph seems to be better discussing in section 5.

P22L13: “TOUGH” -> Is it appropriate to use a project name rather than specific author(s) name?

P24: Table 2. -> Available parameters of German stations are listed as “P, T, Td, RH”. However, “Td” can be calculate using “P, T, and RH”. Is there any reason why “Td” is listed only for Germany sites? P30: Figure 2. “June 4, 2013” -> “June 30, 2013” P32: Figure 4 -> It should be nice if the area of the figure is more focusing on the area of the Benchmark campaign. P33: Figure 5 -> It should be nice if the distance scale and topography of the area are shown. P34: Figure 6. -> Mark for WVR station is hard to distinguish from that of radiosonde station. P36: Figure 8 -> Color scale should be identical for both GNSS and NWM. Figure caption: “two numerical weather models” -> “three numerical weather models”
Please also note the supplement to this comment:
http://www.atmos-meas-tech-discuss.net/amt-2015-395/amt-2015-395-RC2-
supplement.pdf