Interactive comment on “Atmospheric mercury measurements onboard the CARIBIC passenger aircraft” by F. Slemr et al.

A. Hynes (Referee)

ahynes@rsmas.miami.edu

Received and published: 15 February 2016

So far so good. The issues arise in interpretation of exactly what the corrected mercury signal actually measures when a significant fraction of total mercury is partitioned as RGM or PBM. I appreciate that the authors have tried to provide balance in their assessment of this however I do have some questions/ comments.

The authors state: P.4 line 17 “The arrangement similar to that described by Talbot et al. (2008) was optimized to transmit highly sticky HNO3 (Neumann et al., 1999) and can thus be presumed to pass sticky GOM as well.”

Later: p.7 line 13.: “Talbot et al. (2008) tentatively ascribe their measurements made with a similar inlet system and the Tekran instrument to elemental mercury only. They believe that their inlet system which transmits very sticky HNO3 will also transmit GOM. But they are not sure about the response of Tekran instrument to GOM.”

I would suggest it is unwise to presume anything about the behavior of RGM. In fact Talbot et al. (2008) in “Implications “ note: “At this time we are uncertain if our inlet arrangement quantitatively passes RGM [Talbot et al., 2007].” I don’t find anything about the Tekran response.

I don’t believe that anyone in the mercury community suggests that if RGM gets to the Tekran gold trap it will not be captured, dissociate and be measured as Hg(0). The issue is transmission through the plumbing. I would suggest that assessment of RGM transmission losses is the dominant issue in the mercury community and I disagree with the final statement in this paragraph. “Pyrolyzing of mercury compounds to GEM used by some researchers (e.g. Ambrose et al., 2013, 2015) is thus not necessary to measure GEM + GOM but helps to avoid GOM losses on the way from the pyrolyzer to the gold traps within the instrument.”

I would suggest that that pyrolysis is essential to ensure quantitative measurement of total mercury. I think the consensus view is that PFA tubing will scavenge RGM. Unfortunately this is difficult to quantify and varies with sampling conditions and perhaps even with different samples of tubing.
This discussion about transmission continues in the later part of the paper with authors citing Temme et al (2003) (this citation is not actually listed in the references.) P. 15 line 5. "Our findings are consistent with Temme et al. (2003) who found that GOM is transmitted quantitatively by PFA tubing at low temperatures and humidities encountered in Antarctica, conditions similar to those encountered during the CARIBIC flights at cruise altitude." My reading of Temme et al. suggests that they made measurements with a Tekran 2537 sampling ambient air with no “pretreatment” and speciated Hg using a Tekran speciation system and got good mass balance. They inferred that the Tekran was measuring total mercury i.e. that oxidized mercury was efficiently transmitted through the sampling plumbing under their sampling conditions.

Landis and Stevens (2003) in a comment on Temme et al. noted that: “Our laboratory experiments indicate that RGM is not quantitatively transported through a heated Teflon sampling line. In fact, after running elevated HgCl2 concentrations through a Tekran 2537A at low humidity, we extracted the Teflon tubing from both the sampling line and the internal instrument components and found significant quantities of mercury. In addition, after exposure to elevated HgCl2 concentrations, the instrument (i) had elevated zero air concentrations; (ii) gave false positive responses to mercuryfree zero air injected with O3, elevated humidity, or elevated temperature; and (iii) has significantly elevated baseline standard deviations. The adsorption/desorption behavior of HgCl2 in the inlet line and internal analyzer components varied depending on the exact variables that scientists are using to elucidate atmospheric mercury chemistry (e.g., oxidation potential, meteorological conditions). We strongly recommend that researchers avoid allowing RGM species into the Tekran 2537A instrument by incorporating a Tekran model 1130 gas-phase speciation unit and/or a soda and lime trap into the inlet system.”

Unfortunately, “elevated concentrations” is not quantified in this comment. I can accept that fast flow through a large internal diameter tubing in the CARIBIC inlet has high RGM transmission but that still leaves the concern expressed by Landis and Stevens about the Tekran itself. The issue is not simply that the Tekran will scavenge RGM but that also that RGM deposited on the tubing can be reduced to elemental mercury at a later point in time. If the Tekran is sampling 0.3 ng m-3 of RGM during some sections of stratospheric flights, is deposition in the Tekran or the sample line that connects it to the manifold a problem?

I can only state that my view of this is biased by experience in my own laboratory where we find the both HgCl2 and HgBr2 are efficiently, but highly variably, scavenged by PFA tubing.

The section of the manuscript on “Aerosol collection and mercury analysis by PIXE” is a little confusing to me. The statement (referring to Murphy et al. 2006) “Based on assumptions about the Hg ionization efficiency of their Particle Analysis by Laser Mass Spectrometry (PALMS) instrument, which was not calibrated, they estimate that PM constitutes 5 – 100% of all mercury in the LS.” My reading of Murphy et al. is that they calculated a surface mixing ratio of 1.7pptm (parts per trillion by mass) based on a concentration of 2 ng m-3. Assuming this is preserved at the tropopause they calculate a total aerosol loading of 1200 pptm hence if all mercury was particulate bound it would constitute ~0.1% by mass, or they estimate 0.05% by mole. Mercury constituted ~0.2% of the ion current which is difficult to rationalize given its high ionization potential and leads to the conclusion that almost all mercury is oxidized and condensed onto particles, since elemental mercury would not condense at these temperatures. Since their estimate of 2 ng m-3 would now be accepted as too high it gets even more difficult to rationalize their results. Murphy et al. suggest that if the ionization of mercury was as efficient as sodium the fraction of mercury that is particulate bound could be between 5-30% but the ionization potential of sodium is half of that for mercury so in fact it needs to be much higher.

The failure to observe PBM with the PIXE detector seems consistent with the suggestion of Murphy et al. and the author’s explanation 2. i.e that the oxidized mercury
evaporates as the temperature increases. If this is the case shouldn’t the CARIBIC sampling measure higher concentrations in the lower stratosphere. The authors report 0.3 ng m⁻³ for TGM in the lower stratosphere but shouldn’t this be at least 0.7 ng m⁻³ (based on their statement that TGM is ~ 1 ng m⁻³) even if all mercury is particulate bound, they capture 70% in their inlet and this 70% then evaporates?

Even given these discrepancies, if they are discrepancies, I find that one of the more fascinating observations is the variation in inferred RGM in flight #269 which points to significant inhomogeneity in the species responsible for Hg oxidation (Br atoms?). The original manuscript included a figure for this flight that I suggest should be reinserted. Later they state “In the troposphere at O₃ < 100 ppb GEM and TGM concentration tend to be comparable whereas TGM concentrations tend to be larger than GEM at O₃ > 200 ppb, i.e. in the stratosphere.” However on #269 original figure the ozone mixing ratio seems to vary between 500-600 ppb and I cannot see a correlation between high and low RGM.

A minor editorial point P.8 line 23 I would suggest stating “potential vorticity” rather than just PV and perhaps giving rough numbers i.e PV less than 2 is characteristic of tropospheric air.

Finally I would again congratulate the authors on their achievement with this project and ask if this corrected mercury data set and the ancillary observations are available for distribution?

