Author reply to the short comments by Steve Sargent of the manuscript
amt-2015-201

“Optimization of a gas sampling system for measuring eddy-covariance fluxes of H₂O and CO₂”

by S. Metzger et al.

We thank Mr. Sargent for his valuable feedback on this manuscript. In below text we outline how we addressed the comments and revised the manuscript. The comments by the reviewer are indicated with an asterix (*) and are recited in italics, followed by our reply. In our replies we use **bold italic face font** to highlight corresponding changes in the revised manuscript. The revised manuscript in its entirety is also appended below.

General comments

* The paper seems generally too long and a bit disorganized. I offer three general suggestions to improve overall readability: 1) There are several sections that intermingle introduction, methods, results and summary. In many cases this leads to redundancy, but in others, specific information is hard to find because it is not in the expected section.

We agree with this assessment, and have now revised the manuscript substantially to reduce and simplify the reading:

- Reduced and streamlined Results and Discussion section
- Moved details into Materials and Methods section
- Removed non-essential information throughout the text
- Re-written Summary and Conclusions to be simple and concise

* 2) Discussion of preliminary testing and analysis of prototypes going back to 2008 adds little insight, and dilutes the more important evaluation of the design elements tested in this study. CFD is mentioned a few times, without providing details or results. This provides little useful support for the conclusions of this paper, and could be omitted. Discussion of the laboratory water ingress tests could also be omitted or significantly edited.

We respectfully disagree with such an assessment. The manuscript does not discuss the early prototypes of the analyser, intake tube, rain cap and other components developed and tested before 2008. The manuscript addresses designs substantially similar or identical to the final versions of the system components. Such discussion is quite important in order to understand the evolution of system component design, as some of the poorly performing components were tested and discarded specifically as a result of the tests conducted starting in 2008.
In the manuscript, we mentioned CFD experiments for two main reasons:

(i) to corroborate that actual live direct high-frequency tests have always shown lower frequency response than the model, likely because of significant difficulties in setting up perfect square wave or its proxy;

(ii) to explain how we found the better design for the latest rain cap

Both of these reasons seem important enough to mention CFD in the manuscript. However, both are also not strong enough to provide the entire methodology and detailed results from the modelling.

The manuscript has been consistently and rightfully criticised by most of the reviewers for excessive length, and we would prefer to keep detailed CFD discussion out. Yet we still feel it is important to mention to the reader CFD as an additional evidence on why direct lab and field tests tend to underestimate frequency response, and to explain how we arrived to the present cap.

Below we show figure and data for the three cups (old, intermediate and new) to assure the reviewer that such tests were indeed conducted and provided important guidance to rain cap design and to a frequency tests experiment design.

![Figure showing three cups](image)

Water ingress is a critical part of system performance, and a key criteria for accepting or rejecting the component. It should be discussed in the manuscript in detail in our view.

* 3) The “NEON requirements under evaluation” cited throughout the paper are presented in the supplemental material, with no explanation of their origin. If these requirements have been reviewed/approved/published, an appropriate publication should be cited. If the publication of this paper is intended to constitute peer review of these requirements, then this should be clearly stated. A brief review of these requirements shows that some are not strictly possible (4.1626), are redundant (4.2006), or simply restate the manufacturer’s recommendations (4.1618). In general the detailed nature of many of these requirements seem to simply describe the hardware that has already been selected, rather than to guide the infrastructure design based on scientific goals. Where the requirements have not been met, they have been dismissed (page 11012, lines 8 through 23). The readability of this paper could be improved by removing these references to NEON requirements.

To address this comment, as well as comments from other reviewers on restructuring the use of NEON requirements, we have revised the manuscript as follows:

- The main text has been reduced by moving the description of NEON requirements into a table, and by shortening references to NEON requirements.
- Applicable references for each requirement have been added to the table.
- The full list and verbatim of NEON requirements is still available in the supplement.

We would also like to clarify with regard to the origin and purpose of the NEON design requirements:

- All requirements have been derived in a cascade from “grand challenge questions” over “scientific requirements” to “technical requirements” (Schimel et al., 2011). To keep the manuscript at a reasonable length, this hierarchy was not introduced.
- The designs of physical infrastructure and data processing follow independent requirements (e.g., NEON.TIS.4.1626, NEON.TIS.4.2006).
- All requirements can either be discretely implemented (e.g., NEON.TIS.4.1618) or are strictly quantitatively testable to within the tolerances of an experiment (e.g., NEON.TIS.4.1626).
- Lastly, requirements that cannot currently be met are not being “dismissed”, but “waived”, meaning they are being re-evaluated in the presence of new sensor technology.

Laboratory Frequency Response Testing

* The laboratory frequency response testing suffers from several errors. It is not clear to what extent these errors are mistakes in the presentation of the material in the paper, nonstandard usage of common terms, or actual errors in the analysis.

We respectfully disagree with such an assessment. We have addressed each specific comment below.

* The first error, on page 10991 line 15 states: “. . .the Fourier Transform of the actual time series’ time derivative is the system transfer function (Truax, 1999).” This is not correct. The Fourier transform of the derivative of a step function does give the transfer function, but this is not true for a square wave. A text on signals, communication, or control theory, or a math text that introduces the Fourier transform might be a more appropriate reference.

We do agree that our phrasing of this sentence was not particularly clear due to an effort to keep the description concise, and keep lengthy engineering discussions of standard test procedures out of the manuscript (which is already rightfully criticised by reviewers for an excessive length). We have now replaced this sentence with a clearer and more detailed paragraph. We have also provided additional references as suggested by Mr. Sargent.

However, we disagree conceptually with this comment, and particularly with an implied assessment of an error in the tests. Below we provide few engineering details that are out of scope of the manuscript, but may be helpful in clarifying this and the following few responses.

The basis of this objection seems to be related to the relative contribution of the square wave to the Fourier transform, versus the contribution of the actual system response to the Fourier transform. In general, the Fourier result is the convolution of the two individual components in frequency domain. In this sense, his comment is strictly correct. However, the real life
experiments are designed such that the response of the system (the rounded parts of the response square wave) has sufficient time to settle before the next edge of the probe square wave occurs. In the frequency domain, this pushes the square wave components closer together, eventually converging to an impulse function at $f=0$ in the limit as the square wave frequency approaches zero. Thus, if the system response is much shorter than half the square wave period, the convolution of the probe square wave with the system response can be neglected. Please see relevant reference to Lathi (1992) and Dorf and Bishop (2008) for further details.

While one can use a square wave to generate the data, each “edge” of the square wave can be considered a step function. The square wave had both “rising” and “falling” edges, but each transition can be considered a step function. The half-period of the square wave can intentionally be chosen to be much longer than the system transient response time. Then one can measure the response of the system to this series of step functions (generated by a “slow” square wave input).

The Fourier transform of the derivative of the system response to this step input is the system impulse response, and also the system Transfer Function (based on core assumptions of a LTI = Linear and Time Invariant mathematical system model). One would like to measure the impulse response of the system directly, but it is experimentally difficult to create a gas concentration “impulse”, so one has to resort to generating a simpler step-input and then doing more data processing of the step response to approximate the impulse response.

One advantage to using a square wave is that one gets many “step functions” inputs to the system, and then can do some “averaging” of the system responses for a number of step inputs.

So one does not analyse square wave input data, but rather analyses the short portion of that square wave input which could be considered a step input function. The good discussion on this is presented in Section 11.6 of Kaiser (2004).

Again, we have now replaced this sentence with a clearer and more detailed paragraph, and provided three additional references:

I am confused by the usage of the terms “transfer function” and “power spectra” in this paper. The transfer function is defined as a ratio of input to output, normally meaning amplitude spectra, not power spectra. This is correctly introduced on page 10989, line 26, but the term “power spectra” is then used incorrectly in page 10990 line 2 (and throughout the paper). It is not clear whether the transfer functions presented in this paper are given as ratios of amplitude spectra or power spectra. This should be corrected throughout, to conform to the normal convention. If the intent is to use the term “transfer function” to mean a ratio of power spectra, this nonstandard usage should be clearly emphasized.
Directly after the first mention of “...transfer function...” in the manuscript (Sect. 2.1.3), the use of power spectra is defined “...Using power spectra to quantify transfer functions, the output variance or covariance is reduced to 50% or −3 dB of its input at the half-power frequency $f_{50\%}$...”. While varying definitions and procedures might be used in different fields of science and engineering, this follows standard micrometeorological practice as e.g. defined and used by Foken et al. (2012); Fratini et al. (2012); Ibrom et al. (2007).

* A related issue is the half-power frequency, also known as the cutoff frequency, corner frequency, or bandwidth. This is normally defined as the frequency where the transfer function falls to the square root of 1/2 (0.707), not 50%. It is not clear whether the half-power points presented in this paper are correct or not. It appears that the transfer functions given in fig 6 may be the (correct) ratio of amplitude spectra, but that the “half-power frequencies” given in figure 7 appear to be the (incorrect) 0.50 point on these transfer functions. I encourage the authors to conform to the conventional usage of the half-power frequency.

The −3 dB and −6 dB points correspond to a power ratio of 0.50 and 0.25, and an amplitude ratio of 0.71 and 0.50, respectively (e.g., https://en.wikipedia.org/wiki/Decibel). As the manuscript explicitly defines $f_{50\%}$ as “half-power” frequency (and not “half-amplitude” frequency), the applicable values are −3 dB and a power ratio of 0.50. This follows standard micrometeorological practice as e.g. defined and used by Foken et al. (2012); Fratini et al. (2012); Ibrom et al. (2007), but varying definitions and procedures might be used in different fields of science and engineering.

* The equation given for the transfer function (equation 6) is the square of the function normally used for a transfer function. It would, of course, be correct if the “transfer function” is based on power spectra, but this would be nonstandard usage of the term (and should be highlighted). A more helpful reference for this transfer function might be Moore (1986), (see his equation 2), or any text that introduces first-order, linear time-invariant (LTI) systems.

As clarified above, the transfer function is calculated based on power spectra, following the definition in concurrent micrometeorological literature. As a result, our Eq. 6 is identical in presentation to Eq. 4.21 in Foken et al. (2012). Again, varying definitions and procedures might be used in other fields of science and engineering.

* Another serious mistake involves equation 7 through 10, and begins at page 10993 line 5: “Resistor-capacitor theory...” These equations are not correct, and all of the analysis based on these equations is invalid. An example of a more appropriate reference is (see equation 9): W.J. Massmann, A simple method for estimating frequency response corrections for eddy covariance systems, Ag For Met 104 (2000), pp 185-198.

We respectfully disagree with such an assessment, and would like to provide a brief explanation for each term in order to demonstrate the applicability of Eq. (7)–(10). Also here, definitions based on standard literature have been used:

Eq. (10) has been re-cast from the relationship between half-power frequency $f_{50\%}$ (unit Hz), time constant τ_n (unit s) and number pi π (unitless) for a single, first-order resistor (R) - capacitor
low pass filter with index n (e.g., Foken et al., 2012; Fratini et al., 2012; Williams and Taylor, 2006):

$$f_{5\%} = \frac{1}{2\pi} = \frac{1}{2\pi t_n}$$

This characterizes e.g. an individual rain cap, filter or tube. Next, these single, first-order RC low pass filter elements are combined. Eq. (9) provides a first-order approximation for this purpose, which for $n = 2$ can also be expressed as (e.g., Williams and Taylor, 2006):

$$f_h = \frac{1}{2\pi \sqrt{R_1 C_1 R_2 C_2}} = \frac{1}{2\pi \sqrt{t_1 t_2}}$$

This yields the harmonic frequency f_h (unit Hz), i.e. the frequency at which the combined system tends to oscillate in the absence of any driving or damping force. However, with an increasing number of first-order RC low pass filters also their combined dampening effect increases. This is accounted for in Eq. (8), which relates f_h to the half-power frequency $f'_{50\%}$ (units Hz) of the combined system (e.g., Williams and Taylor, 2006). Lastly, additional infrastructure parts such as connectors are needed to physically combine the different elements, each with their own but unknown dampening properties. Their combined effect is expressed in regression Eq. (7), relating the theoretically determined $f'_{50\%}$ to the actually observed half-power frequency of the combined system $f_{50\%}$ (units Hz). The 92% explained variation and high statistical significance (p value $= 6.338 \times 10^{-8}$) of this regression also prove the ability of Eqs. (7)–(10) to appropriately reflect the experiment:

In the attempt to keep the manuscript reasonably concise, and because the respective references are provided therein, we have not included these additional explanations in the revised manuscript.

* Equations 7 through 10 are used throughout this paper. The negative frequencies shown in figure 4 are the most obvious examples of incorrect analysis, but all results and discussion based on these equations is incorrect.
We respectfully disagree, and are not sure how Mr. Sargent has come to this conclusion. Regarding the applicability of Eq. (7)–(10), please see our detailed reply to the previous comment. The negative frequencies in Fig. 4 are specifically discussed in Sect. 3.1.3 “It should be noted that for the two slowest filters AC-1.0 and PF-0.1, we determined $f_{50\%} < 0$, which is not physically feasible. However, the magnitude of underestimation falls within the standard error of regression Eq. (7).” The tolerance in regression Eq. (7) is inherited from the laboratory tests, which is also discussed in Sect. 3.1.3 “These tolerances were also apparent from a slightly better frequency response for the combination of tube, FW-2.0 filter and NL rain cap ($f_{50\%} = 12.0$ Hz) compared to the setup omitting the FW-2.0 filter ($f_{50\%} = 11.9$ Hz).”

* Page 1103 line 26: “The frequency response of the combination of all elements in an enclosed IRGA EC system is shown in Fig. 2. . .” This statement is misleading, because the results in figure 2 do not include the IRGA itself. This should be clarified. In order to clarify, we changed the sentence in the revised manuscript to: “The frequency response of the combination of all GSS elements is shown in Fig. 2 (bottom right panel).”

* I thank the authors for providing raw data in the supplement. The lab test CO2 fast data set is well labelled and organized. I’ve processed these files as a step-response test using these simple steps: 1) Extract 8 s (400 samples) centered on the first rising edge. 2) Calculate the derivative. 3) Calculate the amplitude spectrum. 4) Divide the spectrum by the first point (at 0 Hz, representing the mean of the time series). This data set seems to have very good signal-to-noise ratios, with no evidence of offset or drift over time. This makes any filtering, averaging, detrending, or apodization unnecessary. I’ve calculated the transfer functions for individual GSS components by dividing the individual transfer functions by that of the IRGA with no GSS (similar to your equation 4, but with no additional normalization required). I’ve compared these transfer functions to simple mixing-volume models, with reasonable results: 1) The effect of the rain caps match a first-order LTI model (ideal mixing volume) with the time constant approximately equal to the physical residence time. 2) The combined effect of the tube and filter follows Massman’s equation 9. 3) The combined effect of the rain caps with the tube and filter also follows Massman’s equation 9.

The authors would like to thank Mr. Sargent for the detailed analysis of our data and corroboration of the results. While de-trending or apodization might not be necessary for this particular dataset under controlled laboratory conditions, it becomes necessary with the field data. In order to minimize differences in the results related to data processing, where possible we have chosen identical treatments for laboratory and field data.

* Unfortunately, on page 10991, lines 9 through 14, the authors dismiss this (correct) step-function approach. I would encourage the authors to revisit the analysis of the lab frequency response data, and I am happy to provide more details of my analysis if desired.

We are not sure what approach is in question here. We used standard methodologies as described in the manuscript.
Laboratory measurements of pressure drop

* This test is interesting and useful. A minor suggestion: it is very difficult to distinguish all of the curves in figure 3. It would be helpful to see a table of pressure drop at some example flow.

We thank Mr Sargent for the constructive suggestion. We have now added information on the pressure drop from top four filters to the Results and Discussion section and provided range of pressure drops for other remaining filters.

Field Frequency Response tests

* I applaud the authors for investigating water frequency response as a function of tube heating and relative humidity, etc. This is very difficult to characterize, but very important.

Thank you.

* The paragraph beginning on page 11007 line 22 states that “...aliasing...was not observed.” The bandwidth setting indicates the LI-7500 was configured to respond to frequencies above 5 Hz, and an inspection of figure 6 makes it appear there must have been some signal all the way to 5 Hz (and presumably, beyond). This would seem to guarantee there was aliasing in the LI-7500. Perhaps this could be clarified.

We agree with Mr. Sargent that signal was present down to 5 Hz, and that aliasing is theoretically possible with a bandwidth set to greater than the Nyquist frequency. However, the LI-7500 internal signal processing is not known in detail, and in fact no aliasing was observed in direct comparison to four other gas analysers (Burns et al., 2014):

In response to the request by Mr. Sargent and other reviewers to make the revised manuscript more concise and better structured, we have condensed all corresponding information from the Results and Discussion section into the Materials and Methods section.
This paragraph also briefly addresses the problem that the LI-7500 is exposed to significant air temperature fluctuations that are partially damped by the LI-7200 GSS. Dismissing this problem by relating it to turbulent flux seems irrelevant. The LI-7500 H2O spectrum was used to normalize the LI-7200 H2O spectrum to derive a transfer function. If the two analysers measure different signals, this transfer function will be affected.

We agree that the effects of temperature fluctuations (in general, WPL-effects, Webb et al., 1980) on the mass/number density and derived transfer functions warrant further discussion. These WPL-effects are fully present in the case of the LI-7500, but dampened in case of the LI-7200. From the figure in response to the previous comment, it can be seen that LI-7500 H2O spectra show larger variance compared to those from LI-7200. The difference is approximately one-half order and one order of magnitude in power for frequencies below and above 0.05 Hz, respectively. Per Eq. (5) in the manuscript, both spectra are normalized to the same spectral power below 0.2 Hz, and a difference of approximately one-half order of magnitude in power remains at higher frequencies.

This difference indeed results not only from attenuation of the H2O dry mole fraction in the LI-7200, but simultaneous attenuation of the WPL-effects, thus resulting in a combined transfer function. However, even when considering the entire spectrum, the WPL-effects are comparatively small (<10%, Mauder and Foken, 2006), and the resulting transfer function will be dominated by the attenuation of the H2O dry mole fraction itself. Conversely, the approach avoids strong assumptions e.g. on peak location and spectral shape required when utilizing theoretical reference power spectra. To summarize: While the presented approach has a tendency to yield conservative transfer functions (lower half-power frequencies), the results agree well not only (i) with the laboratory findings, but also (ii) with field test results employing different assumptions on data processing (Fratini et al., 2015).

In response to the request by Mr. Sargent and other reviewers to make the revised manuscript more concise and better structured, we have moved this paragraph from the Results and Discussion section into the Materials and Methods section, and clarify: “While the LI-7500 measured the full effect of temperature fluctuations on density, these were dampened in case of the LI-7200. In particular for H2O these effects were comparatively small (<10%), and the resulting transfer function was dominated by the attenuation of the dry mole fraction itself.”

*A related issue is the statement in the caption for figure 6, indicating only data with sensible heat flux > 50 were used. It would seem more appropriate to screen data to use time periods with low sensible heat flux and/or high latent heat flux. Perhaps the authors could comment on this, and the body of the paper would seem a more appropriate place than the figure caption.

Sensible heat flux > 50 W m−2 was chosen to have strong enough fluxes in both open-path and enclosed models for confident statistics independently of latent heat flux. When fluxes are low, spectra and cospectra would be weak and noisy, not sufficient for constructing confident transfer functions, and especially for teasing out small differences between two spectral shapes.
* Page 11007 line 11 compares the system transfer function (with $f_{50\%}$ incorrectly defined) to the laboratory result which characterized the GSS only (the IRGA frequency response was normalized out). This is not a valid comparison.

Following standard micrometeorological practice, $f_{50\%}$ is defined on the basis of power spectra, which is explained in detail in response to earlier comments. The LI-7200 power spectra are normalized by those of the LI-7500, both of which relying on a quasi-identical sampling cell. For the field tests the effect of the sampling cell itself is thus offset analogously to the laboratory tests, where all power spectra are divided by the reference power spectra of the LI-7200 alone. Consequently, results from laboratory and field both characterize the GSS only, and are directly comparable. In order to clarify the comparison in question we have revised the manuscript: “Since LI-7200 and LI-7500 rely on a quasi-identical sampling cell, the effect of the sampling cell itself is offset analogously to the laboratory tests, and both types of tests characterize the GSS only.”

* The paragraph beginning on page 11008 line 18 discusses the CO2 frequency response, but there seem to be no results given for CO2. Perhaps the authors could comment on this.

The CO2 frequency response was consistently outperforming the one of H2O (“…un-attenuated at frequencies \leq1 Hz under all RH conditions…”), and did not provide additional constraints on overall system performance. In order to keep the manuscript at a reasonable length, detailed results for CO2 have thus been omitted, as mentioned in the same paragraph (“data not shown”).

Summary and Conclusions

* Page 11011, line 20: the paper states: “To our knowledge, this is the first study to show that large rain caps can limit overall system frequency response.” I don’t understand this claim, given the fact that in eight places this paper cites De Ligne, et al. (2014) which clearly states this conclusion.

In the revised manuscript, the previous formulation “To our knowledge, this is the first study to show…” was removed. However, Metzger et al. (2014) pre-dating De Ligne et al. (2014) by 3 months establishes the relevant priority dates.

* Also, now that these researchers have published their results in AMTD, a reference should be added: Technical note: Dimensioning IRGA gas sampling system: laboratory and field Experiments M. Aubinet, et al. Atmos. Meas. Tech. Discuss., 8, 10735–10754, 2015 www.atmos-meas-tech-discuss.net/8/10735/2015/ doi:10.5194/amtd-8-10735-2015

Aubinet et al. (2015) has been included in the revised manuscript and is mentioned over 10 times throughout.

References

Revised manuscript
Optimization of an enclosed gas analyser sampling system for measuring eddy-covariance fluxes of H$_2$O and CO$_2$

S. Metzger1,2, G. Burba3, S. P. Burns4,5, P. D. Blanken4, J. Li3, H. Luo1,2, and R. C. Zulueta1

1National Ecological Observatory Network, Fundamental Instrument Unit, Boulder, Colorado, USA
2University of Colorado, Institute for Arctic and Alpine Research, Boulder, Colorado, USA
3LI-COR Biosciences, Research and Development, Environmental Division, Lincoln, Nebraska, USA
4University of Colorado, Department of Geography, Boulder, Colorado, USA
5National Center for Atmospheric Research, Mesoscale and Microscale Meteorology Laboratory, Boulder, Colorado, USA

Correspondence to: S. Metzger (smetzger@neoninc.org)
Abstract

Several initiatives are currently emerging to observe the exchange of energy and matter between the earth’s surface and atmosphere standardized over larger space and time domains. For example, the National Ecological Observatory Network (NEON) and the Integrated Carbon Observing System (ICOS) will be set to provide the ability of unbiased ecological inference across eco-climatic zones and decades by deploying highly scalable and robust instruments and data processing. In the construction of these observatories, enclosed infrared gas analysers are widely employed for eddy-covariance applications. While these sensors represent a substantial improvement compared to their open- and closed-path predecessors, remaining high-frequency attenuation varies with site properties and gas sampling systems, and requires correction. Here, we show that components of the gas sampling system substantially contributes to can substantially contribute to such high-frequency attenuation, which can be minimized by careful but their effects can be significantly reduced by careful system design. From laboratory tests we determine the frequency at which signal attenuation reaches 50\% for individual parts of the gas sampling system. For different models of rain caps and particulate filters, this frequency falls into ranges of 2.5–16.5 Hz for CO$_2$, 2.4–14.3 Hz for H$_2$O, and 8.3–21.8 Hz for CO$_2$, 1.4–19.9 Hz for H$_2$O, respectively. A short and thin stainless steel intake tube was found to not limit frequency response, with 50\% attenuation occurring at frequencies well above 10 Hz for both H$_2$O and CO$_2$. From field tests we found that heating the intake tube and particulate filter continuously with 4 W was effective, and reduced the occurrence of problematic relative humidity levels (RH > 60\%) by 50\% in the infrared gas analyser cell. No further improvement of H$_2$O frequency response was found for heating in excess of 4 W. These laboratory and field tests were reconciled using resistor-capacitor theory, and NEON’s final gas sampling system was developed on this basis. The design consists of the stainless steel intake tube, a pleated mesh particulate filter, and a low-volume rain cap in combination with 4 W of heating and insulation. In comparison to the original design, this reduced the high-frequency attenuation for H$_2$O by $\approx 3/4$, and the remaining cospectral correction...
did not exceed 3%, even at a very high relative humidity (95%). This standardized design can be used across a wide range of eco-climates and site layouts, and maximizes practicability due to minimal flow resistance and maintenance needs. Furthermore, due to minimal high-frequency spectral loss, it supports the routine application of adaptive correction procedures, and enables more largely automated data processing across sites.

1 Introduction

The ecological research community long ago identified the need for integrated research programs that focus on understanding the underlying ecological processes and the impacts on biological diversity due to global change (Lubchenco et al., 1991). The need for a research infrastructure that would span both temporal and spatial scales from regional-to-continental scale was re-emphasized when the National Research Council issued the “Grand Challenges of Environmental Science” (National Research Council, 2001). Several large research infrastructure projects have been designed and initiated to address these challenges including the US National Ecological Observatory Network (NEON), Europe’s Integrated Carbon Observation System (ICOS), and Australia’s Terrestrial Ecosystem Research Network (TERN).

NEON has adopted a requirements-based approach to guide its science and infrastructure design. Such approach decomposes the overarching science goals (e.g. Grand Challenges) into a hierarchy of objective design statements (Schimel et al., 2011). Those design statements capture the scope of the system, as well as how it will perform. Combined with input from the scientific community, these statements also serve as the specification specifications for selecting observation methods and instrumentation, and are constitute the basis for verifying and validating system performance. However, while instrumentation itself may meet specified requirements, the integration into an automatable system is may be challenging particularly for more complex systems such as NEON’s eddy covariance (EC) measurements.
The EC technique is used worldwide across numerous ecosystems to directly measure the exchange of momentum, energy and atmospheric trace gases between the earth’s surface and atmosphere (Aubinet et al., 2012; Baldocchi et al., 1988; Swinbank, 1951). A typical EC system consists of a fast-response 3-D sonic anemometer for wind measurements, and an infrared gas analyser (IRGA) for \(\text{H}_2\text{O} \) and \(\text{CO}_2 \) measurements, often with fundamental response times of \(\leq 0.1 \text{s} \). However, additional infrastructure such as the IRGA gas sampling system (GSS) can decrease frequency response. As a result, in extreme cases for water vapour the required high-frequency spectral corrections can exceed several \(10^2 \) reach 40–200 %, in particular for water vapour of the observation (e.g., Ammann et al., 2006; Fratini et al., 2012; Ibrom et al., 2007). Active testing and research on optimizing GSS subsystems and system components have been underway at NEON (see Metzger et al., 2014) and ICOS (see De Ligne et al., 2015). These studies indicate that substantial improvements to the IRGA system frequency response could be made by re-examining its the GSS and components therein. Therefore, the objective of this study is thus to produce an optimal combination of IRGA and GSS that: (i) maximizes system practicability, and (ii) minimizes high-frequency spectral losses. In this endeavour, quantitative NEON requirements were used to evaluate the feasibility and degree to which these objectives were achieved, and the findings are of general interest for designing an IRGA-GSS: The overarching goal for such system is to permit unbiased, operational deployment and data processing across more comprehensive time and space domains for addressing the “Grand Challenges of Environmental Science”.

NEON selected an enclosed IRGA design (LI-7200; LI-COR Biosciences, Lincoln, NE, USA) due to: (i) instantaneous high-frequency, synchronized temperature and pressure compensation readings removing the need for density post-corrections, and allowing significantly shorter tube length (Burba et al., 2010, 2012; Webb et al., 1980), (ii) improved resulting improvement in frequency response compared to closed-path IRGAs (e.g., Burba et al., 2010, 2012; Fratini et al., 2012; Ibrom et al., 2007), and (iii) improved data coverage and lower maintenance compared to open-path IRGAs. We tested Here, combinations of the LI-7200 and GSS components (intake tube, particulate filter, rain cap) were
tested in both the laboratory and in the field. Focused laboratory tests were performed to determine the general suitability of individual GSS components and their combinations. These tests addressed water ingress, pressure drop, as well as and high-frequency spectral loss. Subsequently, comprehensive field tests were performed at the Niwot Ridge US-NR1 AmeriFlux site (see http://ameriflux.ornl.gov/fullsiteinfo.php?sid=34) in July 2013 and July 2014. These tests covered a wide range of weather conditions including condensing humidity, and addressed the settings for intake tube and particulate filter heating, as well as IRGA-GSS integral integrated IRGA-GSS performance.

In Sect. 2 we introduce the laboratory and field tests, each accompanied by a description of the test objective, i.e. and the NEON requirement to be evaluated. In Sect. 3 we present the test results, and discuss whether a specified requirement can be was achieved. Lastly, in Sect. 4, we summarize our findings, and conclude whether and how the presented approach was useful for developing an integrated IRGA-GSS.

2 Materials and methods

In the following, a set of laboratory tests are described for determining a suitable combination of GSS components (Sect. 2.1). Subsequently, field tests for determining the optimal heater setting and resulting frequency response are described (Sect. 2.2). Each test is accompanied by a description of the NEON requirement under evaluation. AFor each test the NEON requirements under evaluation are given and briefly summarized in Table 1. The complete list of NEON requirements regarding IRGA and GSS dimensioning is provided externally in our supplement (see https://w3id.org/smetzger/Metzger-et-al_2015_IRGA-GSS). Additional details can be found in the Data Availability section.

2.1 Laboratory tests

During system development at LI-COR and subsequent system optimization and testing at NEON and LI-COR, over 110 laboratory tests were conducted on the specific components external to the LI-7200 analyser, including intake tubes, filters, meshes, membranes,
Rain caps, insect screens, heating arrangements, etc. Also, various combinations of these components were tested over a 6-year period, from 2008 to 2014. The tests had a wide range of goals and criteria, ranging from water ingress into a vertical tube to the frequency attenuation by a membrane, and were conducted by different laboratories using varying equipment. Due to limited space in this study, only the key procedures are described below in a generalized form to provide the overall schemes and algorithms of testing. The results were aggregated to provide the range of performance across multiple tests.

2.1.1 Rain cap water ingress

In order to maximize data coverage and to minimize uncertainties in the latent heat flux determination, the GSS should be designed to minimize water ingress (NEON requirement NEON.TIS.4.1615). Different rain cap designs were tested for water ingress in a series of laboratory tests (Table 1: NEON.TIS.4.1615). Figure 1 shows three final rain cap designs; LI-COR’s old rain cap (LO) until 2013, part number 9972-054, LI-COR’s new rain cap (LN) from 2014, part number 9972-072, and the new NEON rain cap design (NN). Tests were conducted at a mass flow rate (standard temperature (with standard temperature $T = 20^\circ C$) and pressure (and standard pressure $p = 101.325$ kPa) conditions) of 23 SL min$^{-1}$ (standard litres per minute) to emulate the worst case scenario. This significantly exceeded the minimal recommended volumetric flow rate (at temperature and pressure of measurement location) of 10.5 L min$^{-1}$ (litres per minute) and nominal recommended volumetric flow rate of 15 L min$^{-1}$. The rain caps were sprayed from the top and side with a water hose at rates of 12.1–16.3 L min$^{-1}$, including horizontal spray. Additional tests were conducted at 15 SL min$^{-1}$ flow rate to establish whether a downward-oriented tube with 6.4 mm inner diameter (ID) would transport water upwards. Water ingress was observed, and the test concluded that a rain cap would indeed be required for the system to prevent or minimize water ingress. The latter corroborated the results reported for a downward-oriented tube without a rain cap from field tests conducted by ICOS (De Ligne et al., 2014; Aubinet et al., 2015).
2.1.2 **Pressure drop**

To avoid inaccuracies in IRGA performance caused by accumulating dirt (Fratini et al., 2014), a particulate filter with ≤ 2.0 pore size should be positioned immediately downstream of the rain cap (NEON requirements NEON.TIS.4.2007, NEON.TIS.4.1628). However, particulate filters can induce substantial pressure drops. Consequently, attention needs to be paid to not exceed the manufacturer’s recommended pressure drop.

Particulate filters aid the upkeep of system performance, but can induce pressure drops exceeding the dynamic range of the IRGA differential pressure sensor in the IRGA sampling cell (10, NEON requirement (Table 1: NEON.TIS.4.1618, NEON.TIS.4.1628, NEON.TIS.4.1618)). For this purpose, pressure (2007). Pressure drops were tested for 15 different filters and for the range of flow rates from 2 to 20 SL min$^{-1}$. The overall scheme for these tests included a mass flow controller regulating the flow rate, and pressure measurements upstream and downstream of the filter to measure the pressure drop. One set of tests used Sierra Mass Flow Controller (C100M-DD-3-OV1, Sierra Instruments, Monterey, CA, USA) and Dwyer manometer (Series 477, Dwyer Instruments, Michigan City, IN, USA) in conjunction with compressed air from a cylinder to push air through the filter. Another set of tests used a LI-7200 Flow Module (Model 7200-101, LI-COR Biosciences, Lincoln, NE, USA) as a flow provider and flow controller to pull the air through the filter, and LI-7200 differential pressure measurements to record the pressure drop. Yet other tests used a vacuum pump (1023-101Q-SG608X, Gast, Benton Harbor, MI, USA) in combination with a ballast chamber (5344R, Scott Specialty Gases, Plumsteadville, PA, USA) and barometer measurements upstream and downstream of the filter (PTB 330, Vaisala, Helsinki, Finland).

This study reports results for the 9 filters listed in Table 2. The ultimately selected FW-2.0 filter (Swagelok, Solon, OH, USA) was tested in several additional experiments, and results are presented as a range of values from all the experiments.
2.1.3 High-frequency attenuation

In general, the transfer function $F_T(f)$ of a system is defined as the ratio of its output to its input as a function of the natural frequency f. In an ideal system the transfer function would be unity across all frequencies. In a real system, fluctuations in CO_2 or H_2O tend to be dampened at higher frequencies. Using power spectra to quantify transfer functions, the output variance or covariance is reduced to 50\% or -3 dB of its input at the half-power frequency $f_{50\%}$. Adding a rain cap, filter and intake tubing to an IRGA essentially acts as a low-pass filter. That is, it attenuates high-frequency fluctuations of H_2O and CO_2, which subsequently reduces the turbulent flux calculated via correlation with the vertical wind speed measurement. In order to allow automated procedures for example, automated high-frequency spectral corrections require excellent frequency response beyond the spectral peak frequency (e.g., Nordbo and Katul, 2012), the combined frequency response of the IRGA and its GSS shall be unattenuated at frequencies ≤ 1 (NEON requirement NEON, Table 1: NEON.TIS.4.1626). Moreover, early results showed a wide range of frequency response for the particulate filters. Based on the above objective and Eqs. (7)–(10) below, we additionally specified that the filter shall have a half-power frequency $f_{50\%} \geq 4$ (NEON requirement NEON, NEON.TIS.4.1627).

The transfer function of an IRGA system including the GSS can never be better than the spectral quality of the IRGA itself. Consequently, first the frequency response of the IRGA needs to be quantified. This allows subsequent determination of whether and for which GSS components the GSS optimization can warrant significant frequency response improvements. The LI-7200 optical unit measures CO_2 and H_2O number density at internal rates exceeding 100 Hz. In combination with minimal inertia thermocouples and pressure transducers for mole fraction conversion, LI-7200 frequency response is likely dominated by volume averaging in the optical cell with a volume of $V = 16.0 \text{ cm}^3$. The volume averaging effect can be quantified by the generalized transfer function of Silverman (1968), in the form
of Massman (2004) and Moore (1986):

\[
F_T(f) = \frac{\sin^2(\pi f \tau)}{(\pi f \tau)^2} \quad \text{with the time constant } \tau,
\]

\[
\tau = \frac{V}{Q_v},
\]

(1)

(2)

\(\pi\) being number pi, and \(Q_v\) being volumetric flow rate in units \(\text{cm}^3 \text{s}^{-1}\). Analogously, Eq. (1) can be used to approximate the along-path (worst case) averaging effect of open-path gas analysers aligned to within \(\approx 30^\circ\) of horizontal by determining \(\tau\) as:

\[
\tau = \frac{d_i}{U},
\]

(3)

with length of the optical path \(d_i\) (e.g., 12.5 cm for a LI-COR LI-7500) and horizontal wind speed \(U\).

Numerically evaluating Eqs. (1) and (2) for \(Q_v\) leads to the perfect linear relationship \(Q_v = f_{50\%} \times 2.167\). The minimum required volumetric flow rate to achieve the most stringent half-power frequency requirement of \(f_{50\%} > 4\) Hz for the particulate filter can then be determined to be \(> 8.7 \text{ L min}^{-1}\). Thus, at larger flow rates, the LI-7200 itself does not limit the objectives of the GSS optimization. For the flow rate set point of \(10.8 \text{ L min}^{-1}\) (corresponding to \(\approx 13.6 \text{ L min}^{-1}\) and \(\approx 16.2 \text{ L min}^{-1}\) under laboratory and site conditions, respectively), the LI-7200 operates at \(f_{50\%} = 6.3\) Hz and \(f_{50\%} = 7.5\) Hz, respectively. Experimental data by Ligne et al., (2014) and Aubinet et al. (2015) generally corroborated these calculations, suggesting the nominal frequency response of their test setup of about 7.9 Hz. In comparison to the LI-7200 cell, frequency response due to line-averaging over the 12.5 cm long LI-7500 optical path was variable, with \(f_{50\%} > 7.5\) Hz for wind speeds exceeding \(1.4 \text{ m s}^{-1}\) (i.e., better than the frequency response of the LI-7200 cell at \(\approx 16.2 \text{ L min}^{-1}\)).

Subsequently, high-frequency attenuation was tested for the IRGA and each separate component of the GSS, as well as for cross-combinations of components, and for the com-
plete system consisting of all listed components (Table 2). Two techniques were used for this purpose: (i) providing a CO$_2$ and H$_2$O change as a singular rising or falling step, and (ii) generating a square wave consisting of a sequence of many rising or falling steps. While (i) allows efficiently pre-screening a large number of parts, only (ii) provides the necessary sample size for determining stable results based on Fourier Transformation. The Fourier Transform of a perfect square waves’ time derivative would show similar contributions across all frequencies, and the Fourier Transform of the actual time series’ time derivative is the systems transfer function (Truax, 1992). Based on the assumption of a Linear and Time Invariant (LTI) underlying system mathematical model, the Fourier transform of the time-derivative of the measured response to a unit-step function is the system transfer function. The differentiate-and-transform processing approach can be applied directly to the measured responses in (i). This same processing technique can be generalized to the measured responses of (ii), as the square wave input can be treated as an ensemble of rising or falling steps. Underlying principles of these signal processing approaches are described in detail in Lathi (1992), Truax (1999), Kaiser (2004), and Dorf and Bishop (2008). The latter approach was also utilized in a concurrent paper by Aubinet et al., 2015).

In all experiments, the solenoid switches were used to rapidly alternate between zero air and pre-defined concentrations of CO$_2$ and H$_2$O upstream of the tested component. The corresponding change was measured with a LI-7200 downstream of the tested component. In H$_2$O and CO$_2$ experiments the relative humidity (RH) and dry mole fraction varied between 0–90 % and 0–400 ppm, respectively. For H$_2$O specifically, the moist airstream was maintained at RH > 90 % to reflect the field environment as well as possible. Nevertheless, for the square wave, the time-average over alternating dry and moist airstreams cannot exceed RH = 50 %. A dew point generator (for lower flow rates: LI-610, LI-COR Biosciences, Lincoln, NE, USA) or bubbler (for higher flow rates) in combination with a hygrometer (Optisure, Kahn Instruments, Wethersfield, CT, USA) were used to generate, control and record H$_2$O concentrations. Tests were performed for a minimum of 420 s, and LI-7200 variables were recorded at 50 Hz. In these tests, flow rates ranged from 9 to 35 SLPM SL min$^{-1}$ depend-
ing on the experiment’s goal, providing fully turbulent tube flow in the vast majority of tests (Reynolds number, Re > 4000) or upper range of transient flow in a few tests (Re > 3300).

Prior to the power spectra analysis (i) the first 200 s and last 20 s of data were discarded to focus on steady-state periods, (ii) missing values were linearly interpolated (only datasets with < 10% missing values were further analysed), (iii) the dry mole fraction time-derivative was calculated, (iv) the time-derivative was low-pass filtered with a 5th order Butterworth filter at 15 Hz half-power frequency to dampen leaking from high frequencies, (v) linear detrending was applied to minimize bias, and (vi) 5% of the data at each end of the time series were tapered with a cosine-bell to reduce bias and to avoid leaking of peaks at far-away frequencies into other parts of the spectrum. Next, a fast Fourier transform was applied and unfolded spectral energy and co-spectra were calculated. A recursive circular filter with a Daniell kernel was then used to reduce noise, and the resulting Fourier coefficients were binned into exponentially widening frequency classes using the arithmetic mean. The result for the LI-7200 without additional GSS components \(S_{\text{ref}}(f) \) corresponds to the reference transfer function of the LI-7200 in combination only with the experimental setup (solenoids, connectors, etc.). The results for the LI-7200 with additional GSS components \(S_{\text{test}}(f) \) correspond to the test transfer functions of the LI-7200 in combination with the experimental setup as well as filter, intake tube and rain cap. Transfer functions \(F_T(f) \) of filter, tube, rain cap as well as their combinations independent of LI-7200 and experimental setup were calculated by division of the individual power spectra (e.g., Foken et al., 2012). For this it is assumed that the mean spectral response between \(f_1 = 0.01 \text{ Hz} \) and \(f_2 = 0.2 \text{ Hz} \) was not attenuated:

\[
F_T(f) = R_N \frac{S_{\text{test}}(f)}{S_{\text{ref}}(f)},
\]
with the dimensionless normalization factor;

\[
R_N = \frac{\int_{f_1}^{f_2} S_{\text{test}}(f) \, df}{\int_{f_1}^{f_2} S_{\text{ref}}(f) \, df}.
\]

Noise was reduced by a circular filtering with a Daniell kernel. In cases where multiple test results were available, ensemble transfer functions and their ranges were calculated. Finally,
was determined by inter/extrapolation of the resulting transfer function coefficients using the sigmoidal model of Eugster and Senn (1995):

\[
F_T(f) = \frac{1}{1 + \left(\frac{f}{f_{50\%}}\right)^2}.
\] (6)

Resistor-capacitor theory then allows determining \(f_{50\%}\) for a resulting system when multiple passive low-pass filters are combined, such as rain cap, filter and tube (e.g., Williams and Taylor, 2006):

\[
f_{50\%} = 1.54 \cdot f'_{50\%} - 4.66 \text{Hz}, \text{ with the non-damped half-power frequency;}
\] (7)

\[
f'_{50\%} = f_h \sqrt{2^{\frac{1}{n}} - 1}, \text{ the harmonic frequency;}
\] (8)

\[
f_h = \frac{1}{\sqrt{\prod_{1}^{n} \tau_n}}, \text{ and the time constant } \tau_n \text{ for each low-pass filter } n;
\] (9)

\[
\tau_n = \frac{1}{2\pi f_{50\%}, n}.
\] (10)

The systems’ damping coefficients in Eq. (7) were determined from an unweighted least-squares regression \((R^2 = 0.92, p \text{ value} = 6.338 \times 10^{-8})\): measured \(f_{50\%}\) for several combinations of rain cap, filter and tube \((N = 14)\) were regressed against \(f'_{50\%}\) calculated from measured \(f_{50\%}\) for individual components using Eqs. (8)–(10) using the measured \(f_{50\%}\) for individual components.

It is important to emphasize that all high-frequency attenuation experiments suffered from the intrinsic inability to produce a perfect step change or a perfect square wave under real-life conditions. Response time of the laboratory setup (solenoids, effects of connectors and other physical mixing volumes upstream of a tested component) attenuate the step change itself. This resulted in an apparent reduction in frequency response of a tested component. A remedy was to normalize the results of the LI-7200 in combination with
GSS components to the LI-7200 alone. Such procedure not only allowed the unveiling of the individual transfer functions of each GSS component, but also compensated for setup differences and enabled cross-comparison and aggregation of the results from the numerous different experiments.

In addition to physical laboratory tests, high-frequency attenuation processes were also modelled using computational fluid dynamics (CFD) software (ANSYS, Canonsburg, PA, USA). To corroborate the experimental results, turbulent flow simulations of cases with well-mixed and plug-flow assumptions were performed. The CFD results consistently showed lower attenuation by the components than experimental data, indicating that a perfect step change or a perfect square wave is not achievable in real-life settings.

A variety of additional aspects need to be considered and warrant testing when optimizing an IRGA-GSS. Of these, heating of the tube, filter and other components are addressed by the field experiments in this study (Sects. 2.2, 3.2), and by Fratini et al. (2012). Other tests are not the focus outside the scope of this paper, such as optimization of tube length, tube material and flow rates, which have been covered both conceptually and experimentally by Runkle et al. (2012), Burba et al. (2010); Clement, 2012; Fratini et al. (2009); Fratini 2012; Clement et al. (2012); Massman and Ibrom (2008); Rannik et al. (1997); Runkle et al. (2012).

2.2 Field tests

In July of 2013 and 2014 field tests were performed at the Niwot Ridge Subalpine Forest AmeriFlux US-NR1 site (see http://ameriflux.ornl.gov/fullsiteinfo.php?sid=34). The objectives of these tests were to determine (i) the impact and suitable dimensioning of intake tube heating, and (ii) whether the final GSS provides sufficient high-frequency response to warrant automated high-frequency spectral corrections in post-processing. To prevent condensation and to minimize attenuation of the water vapour measurement, the IRGA intake tube should be insulated and continuously heated with a constant wattage (NEON requirement NEON (Table 1: NEON.TIS.4.2017). However, to enable mole fraction conversions to within manufacturer performance specifications, the temperature difference
between IRGA inlet and outlet should be maintained to within $\leq 5^\circ$C (NEON requirement NEON:1666, NEON:TIS.4.1667, NEON:TIS.4.1668). To ensure that IRGA drift with temperature remains within manufacturer performance specifications, the temperature difference between the IRGA block and inlet should be maintained to within $\leq 15^\circ$C (NEON requirement NEON, NEON:TIS.4.1667). Lastly, to sufficiently improve frequency response for NEON:2017, and (ii) whether the final GSS provides sufficient high-frequency response to warrant automated high-frequency spectral corrections, the heating wattage should be chosen so that relative humidity in the IRGA is maintained at $\leq 60\%$ (NEON requirement NEON in post-processing (Table 1: NEON:TIS.4.1666). Below this threshold, high-frequency attenuation behaves principally similar to (e.g., Fratini et al., 2012). 1626)

2.2.1 Site description

US-NR1 is located in the Rocky Mountains, Colorado, USA ($40^\circ 1'58''\ N, 105^\circ 32'47''\ W, 3050\ m$ elevation), where measurements began in November 1998 (Monson et al., 2002; Turnipseed et al., 2002, 2003). The forest near the tower is around 110 years old, and primarily composed of subalpine fir ($Abies lasiocarpa\ var.\ bifolia$), lodgepole pine ($Pinus contorta$), and Englemann spruce ($Picea engelmannii$). The tree density is around 0.4 trees m$^{-2}$ with a leaf area index of 3.8–4.2 m2 m$^{-2}$, tree heights of 12–13 m (Monson et al., 2010; Turnipseed et al., 2002) and an approximate displacement height of 7.8 m.

Table 3 provides descriptive statistics of temperatures and humidities for all time periods utilized in this study. The median ambient temperature and relative humidity varied in a range of $3.3 \pm 5.6^\circ$C and $22.6 \pm 28.6\%$ among periods, respectively. Specifically, the LO-0 Watt period without intake tube heating was driest with RH$_a$ = 46.1\%, making it difficult to find periods of high relative humidity for intercomparison. The LO-6 Watt period with 6 W of intake tube heating was the most humid with RH$_a$ = 68.7\%.
2.2.2 Instrumentation

All instrumentation used in the field tests was deployed on the US-NR1 tower at 21.5 m above ground, equivalent to 13.7 m above the displacement height \((\text{Fig. 2})\). The companion study by Burns et al. (2014) provides an in-depth description of the sensor deployments, in short:

- A Vaisala HMP35-D platinum resistance thermometer and capacitive hygrometer (Vaisala, Helsinki, Finland) was sampled at 1 Hz and was used in this study as reference for ambient air temperature \((T_a)\) and relative humidity \((\text{RH}_a)\), respectively.

- A CSAT3 sonic anemometer (Campbell Scientific, Logan, UT, USA, S/N 0254, firmware v4) was used to measure the turbulent wind components. The measurements were performed in single-measurement mode at 10 Hz sampling rate, collected using the Campbell Scientific SDM—Synchronous Devices for Measurement protocol, and synchronized with variables from other sensors using network timing protocol Network Time Protocol (NTP). From the CSAT3, the along-axis, cross-axis and vertical-axis wind components as well as sensor health information (from the CSAT3 diagnostic word) were used in this study.

- Infrared gas analysers were used to measure the turbulent fluctuations of \(\text{H}_2\text{O}\) and \(\text{CO}_2\). A LI-7500 open-path IRGA (LI-COR Biosciences, Lincoln, NE, USA, S/N 75H-0084, firmware v2.0.4) was used as a reference for high-frequency response. The LI-7500 optical path was vertically centred with the CSAT3 sonic path, and laterally separated by 30 cm until 8 October 2013 and \(\approx 90\) cm thereafter. Data were collected at 10 Hz sample rate and 20 Hz bandwidth settings \textit{without observed aliasing}, and synchronized with variables from other sensors using NTP. From the LI-7500, \(\text{H}_2\text{O}\) and \(\text{CO}_2\) number densities were used in this study. A LI-7200 enclosed IRGA (LI-COR Biosciences, Lincoln, NE, USA, S/N 72H-0192 until 2 November 2013, S/N 72H-0479 thereafter, both firmware v6.5.2) was used to study the impact of GSS intake tube heating and rain cap on high-frequency response. The LI-7200 rain cap was vertically centred with the CSAT3 sonic path, and laterally separated by 30 cm until 12 November 2013 and 22 cm thereafter. The measurements were performed with a flow rate setting of 10.8 SL min\(^{-1}\). At the ambient air density this resulted in approxi-
mately 16.2 L min\(^{-1}\) volumetric flow rate, or a \(\approx 16\) Hz renewal rate of the 16.0 cm\(^3\) LI-7200 optical cell assuming plug-flow. Data were collected at a 20 Hz sample rate and 10 Hz bandwidth settings using the LI-7550 analyser interface, and synchronized with variables from other sensors using the Precision Time Protocol. From the LI-7200, H\(_2\)O and CO\(_2\) number densities, inlet, outlet and block temperatures of the optical cell (\(T_{in}\), \(T_{out}\), \(T_{block}\), respectively), as well as sensor health information were used in this study.

During the field tests, the LI-7200 GSS consisting of a rain cap, connected to a FW-2.0 filter and a stainless steel tube were tested. Until 7 January 2014, the LO rain cap (Fig. 1) was used in combination with a 70 cm long 4.8 mm ID tube. Thereafter, a prototype of the LN rain cap was used in combination with an 80 cm long 5.3 mm ID tube. Both, tube and filter were uniformly covered by a Watlow 010300C1 100 Ohm heating element rated at 120 V and 150 W (Watlow Electric, St. Louis, MO, USA). A tight fit and thermal contact was ensured by plastic spiralling, followed by AP/Armaflex closed-cell elastomeric thermal insulation with 12.7 mm ID and 9.5 mm wall thickness (Armacell International, Capellen, Grand Duchy of Luxembourg) and white heat shrink, minimizing the impact of wind speed on thermal dissipation. For a 4 W heater setting, heat release within 0.5 m of the sonic anemometer was determined to \(< 0.5\) W. The corresponding inflow sector was excluded from analysis to avoid potential impacts on energy budget and Bowen ratio estimates. A Tenma 72–7705 power supply rated at 60 V and 6 A (Tenma Test Equipment, Washington, OH, USA) was used to test different heating power settings.

2.2.3 Data processing

An analysis package developed in GNU R version 3.1.3 (R Development Core Team, 2012) was used for data processing. This package is described in detail in Metzger et al. (2012, 2013) and is available upon request. Relevant processing steps are: all data were prepared by first regularizing to evenly-spaced time increments, which are exactly 1 s for HMP35, 0.1 s for CSAT3 and LI-7500, and 0.05 s for LI-7200, respectively. Next, observations with invalid sensor health information were discarded, thresholds
for physically feasible value ranges were applied, and spikes were removed using the me-
dian filter method by Brock (1986). Thereafter, the wind components were rotated into the
14 month average aerodynamic plane using the planar fit rotation (Wilczak et al., 2001),
and all slow-sample variables (1, 10 Hz) were linearly interpolated to 20 Hz with zero gap
tolerance. Finally, lag times resulting from lateral separation and gas transport in the GSS
were determined via cross-correlation in a 1 s window over high-pass filtered data (4-pole
Butterworth filter with half-power frequency at 0.5 Hz) and shifted on a 30 min basis. Intake
tube heating power was interpolated between site visits with $R^2 > 0.99$ and 0.38 K residual
standard error using the difference between T_{in} and T_{out} as well as a unique identifier for
each tube as predictors.

Prior to power spectra analysis on a 30 min basis, missing values were linearly interpo-
lated (only datasets with < 10 % missing values were further analysed). Linear de-trending
was applied and 5 % of the data at each end of the time series were tapered with a cosine-
bell. Next, a Fast Fourier transform was applied and unfolded spectral energy and co-
spectra were calculated. Where indicated, a recursive circular filter with a Daniell kernel was
used to reduce variance for graphical presentation. The resulting Fourier coefficients were
binned into exponentially widening frequency classes using the median operator. Transfer
functions were derived following Eqs. (4) and (5) by dividing the H_2O and CO_2 number
density power spectra from the LI-7200 through those from the LI-7500, and normalizing to
the same spectral power between 0.005 and 0.05 Hz. While the LI-7500 measured the full
effect of temperature fluctuations on density, these were dampened in case of the LI-7200.
In particular for H_2O these effects were comparatively small (< 10 %), and the resulting
transfer function was dominated by the attenuation of the dry mole fraction itself. Since
LI-7200 and LI-7500 rely on a quasi-identical sampling cell, the effect of the sampling cell
itself is offset analogously to the laboratory tests, and both types of tests characterize the
GSS only. The determination of the half-power frequency was then automated in the fol-
lowing way: (i) determining the frequency > 0.5 Hz for which the transfer function reaches
its first minimum, (ii) recasting the transfer function Eq. (6) and solving for half-power fre-
quency. Lastly, the spectral correction factors for the corresponding EC fluxes were deter-
mined by applying the transfer functions to the co-spectra of H$_2$O and CO$_2$ dry mole fraction and the vertical wind speed.

Before calculating the ensemble power spectra, all available periods were screened for (i) recorded maintenance activities and interruptions, and > 90% raw data coverage (78% half-hours remained), (ii) successful lag correction with a correlation maximum > 0.01 (70% half-hours remained), (iii) undisturbed inflow sector (65% half-hours remained), and (iv) measured variations in H$_2$O and CO$_2$ number density in excess of 5:1 signal-to-noise (instrument resolution) ratio (Lenschow and Sun, 2007, 46% half-hours remained).

At the given measurement height of 13.7 m above displacement height, the amplitude of fluctuations at frequencies > 1 Hz can approach the detection limit of an enclosed IRGA, resulting in the latter 19% data loss. It should also be mentioned that the July 2014 period (LN rain cap) was not only drier than the July 2013 period (LO rain cap), but also the H$_2$O fluctuations and flux were ≈ 1/3 lower in 2014 compared to 2013 (not shown). As a result, the July 2014 power spectra began to display noise at lower frequencies. This also moves the minimum of the transfer function, and hence the base for calculating the half-power frequencies, towards lower frequencies for the GSS with the LN rain cap.

Lastly, in order to attribute the effect of intake tubes with different length d_l and inner diameter d_{id}, we solved the transfer function proposed by Philip (1963) in the form of Massman (1991) for half-power frequency:

$$f_{50\%} = \frac{\sqrt{-\ln(\sqrt{0.5}) U^2}}{2\pi} \frac{\Lambda(Re)d_l d_{id}} {\Lambda(Re)d_l d_{id}}$$

(11)

with the longitudinal mean flow velocity in the tube U, and a linear interpolation of tabulated values (Table 1 in Massman, 1991) for the attenuation coefficient $\Lambda(Re)$ (Lee and Gill, 1977, 1980).
3 Results and discussion

In the following, results for individual GSS components and their combinations are presented, based on laboratory tests are presented (Sect. 3.1). Subsequently, the effect of different heater settings and resulting frequency response for combined IRGA and GSS systems are shown, based on additional field tests are shown (Sect. 3.2).

In order to determine the significance of GSS optimization, first of all the LI-7200 frequency responses were calculated. Numerically evaluating Eqs. (1) and (2) for Q_v leads to the simple linear relationship $Q_v = f_{50\%} \times 2.167 (R^2 = 1; \ p \ value < 2.2 \times 10^{-16})$. The minimum required volumetric flow rate to achieve the most stringent half-power frequency requirement of $f_{50\%} > 4$ for the particulate filter can then be determined to be > 8.7. Thus, at larger flow rates, the LI-7200 itself does not limit the objectives of the GSS optimization. For the flow rate set point of 10.8 (corresponding to ≈ 13.6 and ≈ 16.2 under laboratory and site conditions, respectively), the LI-7200 operates at $f_{50\%} = 6.3$ and $f_{50\%} = 7.5$, respectively.

3.1 Laboratory tests

All high-frequency attenuation experiments suffered from the intrinsic inability to produce a perfect step change or a perfect square wave under real-life conditions. Response time of the laboratory setup (solenoids, effects of connectors and other physical mixing volumes upstream of a tested component) attenuate the step change itself. This resulted in an apparent reduction in frequency response of a tested component. A remedy was to normalize the results of the LI-7200 in combination with GSS components to the LI-7200 alone. Such procedure not only allowed the unveiling of the individual transfer functions of each GSS component, but also compensated for setup differences and enabled cross-comparison and aggregation of the results from the numerous different experiments. From our laboratory frequency response tests with the LI-7200 alone, we found $f_{50\%} = 3.4$ for the combined effects of the LI-7200 and the laboratory setup. Using this together with $f_{50\%} = 6.3$ for the LI-7200 itself in Eqs. (7)–(10) and solving numerically yields
\(f_{50\%} = 10.6 \) for the laboratory setup. Following, Sect. 3.1.1 focuses on the optimization of the rain cap, Sect. 3.1.2 on the optimization of a particulate filter, and in Sect. 3.1.3 the interaction of all system components is presented.

3.1.1 Optimization of a rain cap

An important part of optimizing an enclosed IRGA EC system is determining which arrangement provides the best frequency response of the entire system. This could obviously be achieved by using a very short tube in the absence of any filter or rain cap. However, for the practical reason to prevent precipitation from entering the filter and sampling cell, most experimental sites would benefit from using a rain cap. The rain cap is a mixing volume in interaction with the atmosphere, and a focus of our optimization is so focus of the optimization was to determine which rain cap design provided the least frequency attenuation, while still preventing water ingress into the tube, filter and sampling cell.

Numerous rain cap designs have been tested conceptually using the CFD software to minimize sample mixing in the rain cap. Several designs have been selected, built and tested to limit water ingress in the laboratory experiments, and rain. The caps that ingested liquid water when sprayed horizontally while operating at 23 L min\(^{-1}\) flow were rejected. In addition, we tests found that adding a slight downward tilt to the intake tube (\(\approx 10^\circ \) from horizontal) helped avoid water ingress during the field tests (Sect. 3.2), which included periods of heavy precipitation. Consequently, the NEON requirement (NEON.TIS.4.1615) was fulfilled for the remaining designs, which were The remaining three designs were then tested in the laboratory for frequency response following Eqs. (4) and (5). Figure 2-3 (top left panel) shows good frequency performance for LN and NN rain caps, with \(f_{50\%} \geq 14.3 \) Hz and \(f_{50\%} \geq 11.8 \) Hz, respectively (Table 3-4 provides an overview for all system components). Both newer rain caps considerably exceeded the performance of the older LO rain cap (\(f_{50\%} \geq 2.4 \) Hz), and NEON.TIS.4.1615 (Table 1)
was fulfilled. However, both designs were still more limiting to high-frequency response compared to the filters with the best frequency response tested in Sect. 3.1.2.

ICOS conducted field tests of several additional rain caps for their LI-7200-based flux systems (De Ligne et al., 2014; Aubinet et al. 2015): (i) LI-COR’s rain cap before 2013, part number 9972-043, which is a previous version of the LO rain cap, (ii) a modification of this rain cap with tubing extending all the way to the screen, (iii) a custom-built rain cap with lateral insertion and small volume were tested alongside (iv) a downward-oriented tube without a rain cap and (v) the LN rain cap. The range of results (1.4 ≤ $f_{50\%}$ ≤ 7.9Hz when used with FW-2.0 filter (1.36 ≤ $f_{50\%}$ ≤ 7.9 Hz) was similar to our tests but slightly lower. Differences may be attributed to differing gas injection design in the laboratory, different experiment settings required for the field testing, and possible filter contamination. Their conclusion was that the frequency response of the LN rain cap assembly (6.4 ± 1.0) was second only to the downward-oriented tube, and the latter was found to provide insufficient water ingress protection. The experiments of De Ligne et al. (2014) and Aubinet et al. (2015) also concluded that the rain cap critically contributed to overall system frequency response.

3.1.2 Optimization of a particulate filter

Similar to the rain cap situation, the highest frequency response of an enclosed IRGA EC system would be achieved without using a particulate filter. Such configurations are possible for a system based on the LI-7200 analyser, and have previously been used in the field (Burba et al., 2010, 2012; Clement et al., 2009). However, they would require frequent cleaning of the sampling cell in dusty environments or during high-contamination periods (e.g., harvest, pollination, etc.). To reduce the demand for manual cleaning, an intake particulate filter can be used. The important trade-off when optimizing the filter is to determine which models provide the least frequency attenuation with the smallest pressure drop, and still provide a pore size small enough to filter out most of the ambient particulate contaminants. Figure 3.4 shows results from multiple laboratory experiments for such an optimization. Out of nine tested filters, the Swagelok FW-2.0 filter (Table 2 pro-
vides detailed filter specifications) had the lowest pressure drop (0.2 kPa at 10 SL min⁻¹), reasonably small high-frequency attenuation ($f_{50\%} \geq 14.9$ Hz), and still provided delivered 2.0 µm particulate filtering. The ZenPure PF-0.1 filter was a close second in terms of pressure drop (0.6 kPa at 10 SL min⁻¹), but its frequency attenuation for CO₂ was much worse than the FW-2.0 at the high frequency range ($f_{50\%} \geq 8.3$ Hz), and its attenuation for H₂O was unacceptable ($f_{50\%} \geq 1.4$ Hz). The PF-0.1 was followed by PolyPro filter models PP-5.0 and PP-2.5, which provided higher pressure drops (2.9 and 4.9 kPa at 10 L min⁻¹ respectively) while offering less filtering capacity. Other tested filters had much larger pressure drops, which are not desirable—even larger pressure drop, ranging from 5 to 25 kPa at 10 L min⁻¹, which is undesirable for high-quality dry mole fraction computation, and which unnecessarily increase unnecessarily increases the power consumption and wear on the system.

ICOS conducted field tests of several additional filters for their LI-7200-based flux systems (De Ligne et al., 2014; Aubinet et al. 2015). A Pall open-face 2 µm filter (Pall Corporation, Port Washington, NY, USA) was tested for pressure drop alongside the FW-2.0 and AC-1.0. The AC-1.0 pressure drop was found unacceptable, and Pall 2 µm open-face filter was found to be less effective in contamination prevention as compared to the FW-2.0 filter. The pressure drop for the FW-2.0 filter in the De Ligne et al. (2014) and Aubinet et al. (2015) experiments was small, on the order of 0.9 kPa for 10 L min⁻¹ at approximately sea level, but still 4–5 times the pressure drop found in our study. De Ligne et al. (2014) do not present half-power frequencies for individual GSS components, but state that addition of one of those filters did not significantly reduce LI-7200 system frequency response. The overall conclusion from both Aubinet et al. (2015; Table 2) presented half-power frequencies for the entire system for a number of cases with multiple filters and caps, including cases not covered in this study. They also found the combination of lowest pressure drop and best system response when using FW-2.0 filter. Overall the conclusion from all three studies was similar suggesting the FW-2.0 filter to be optimal out of all tested models, and fulfilling the relevant NEON requirements (NEON.TIS.4.2007.1618, NEON.TIS.4.1628.1627, NEON.TIS.4.1618, 1628, and NEON.TIS.4.1627.2007 (Table 1).
3.1.3 Interaction of system components

Depending on the interaction of the system components reflected by Eq. (7), the total frequency response of the system may differ from a superposition of all components according to Eqs. (8)–(10). Hence, experiments were conducted to determine the actual effect of combining various system components on the total frequency response of the system, i.e. to parameterize Eq. (7). Figure 2-3 (top right and bottom panels) shows the results of such experiments for three main practical combinations of the components: (i) tube and filter, (ii) tube and rain cap, and (iii) combination of tube, filter and rain cap deployed together altogether. Table 3-4 summarizes these and other results of laboratory experiments for various filters, rain caps, and their combinations.

Combining the tube and the FW-2.0 filter leads to a very minor effect on CO\textsubscript{2} frequency response as expected from the small volume of the filter and turbulent tube flow (11.9 Hz $\leq f_{50\%} \leq 15.4$ Hz, Fig. 2-3 top right panel and Table 3-4). The H\textsubscript{2}O response was noticeably affected, although affected more than CO\textsubscript{2}, although still to a relatively small degree (11.2 Hz $\leq f_{50\%} \leq 11.6$ Hz). Such reduction in H\textsubscript{2}O frequency response is expected because both filter and especially the filter and the tube have large surface areas in relation to the sample volume and flow. The dipolar nature of the water molecule and surface adsorption/desorption rates proportional related to relative humidity lead to a “sticky” behaviour of water vapour at the tube and filter surfaces. Such phenomenon was studied, modelled, and corrected for in a number of studies (e.g., Fratini et al., 2012; Massman and Ibrom, 2008; Rannik et al., 1997; Runkle et al., 2012). It can be partially remedied remedied to a large extend by heating the elements to reduce the relative humidity at the wall surface below 50–60 %. Below this threshold, H\textsubscript{2}O behaves principally similar to CO\textsubscript{2} and theoretical corrections can be used to compensate for the frequency losses (Kaimal et al., 1972; Moncrieff et al., 1997). In the absence of heating, semi-empirical corrections progressive with relative humidity can also be used (e.g., Fratini et al., 2012; Massman and Ibrom, 2008; Runkle et al., 2012).
Combining the tube and rain cap led to a larger reduction in frequency response than combining the tube and filter for both CO$_2$ and H$_2$O ($2.0 \text{ Hz} \leq f_{50\%} \leq 12.0 \text{ Hz}$, Fig. 2-3 bottom left panel and Table 34). In fact, out of all elements in the system, the rain cap appeared to have the largest effect on the GSS frequency response. The importance of the rain cap choice was somewhat a surprise given that traditional closed-path GSSs utilize various custom-made rain caps with volumes exceeding several times those shown in Fig. 1. Yet, recent analyses by NEON (Metzger et al., 2014) and ICOS (De Ligne et al., 2014; Aubinet et al., 2015) corroborated the importance of the rain cap size and construction design as a very critically sensitive component affecting EC system frequency response. The CFD simulations (data not shown) suggested corroborated that even small rain caps may experience vortices such that mixing the samples. In result the residence time of the sample in the rain cap exceeds that increases, and may significantly exceed the time computed by simply dividing the rain cap volume by the flow rate (plug flow). This may explain why rain caps are responsible for a significant reduction in system frequency response in comparison to other components such as a short tube and a filter. assuming plug flow.

The frequency response of the combination of all elements in an enclosed IRGA–EC system GSS elements is shown in Fig. 2-3 (bottom right panel). The worst response was observed for the combination of the tube, FW-2.0 filter and the LO rain cap. This response was primarily driven by the effects of the rain cap (Fig. 23, top left panel) and yielded $f_{50\%} \geq 2.0 \text{ Hz}$ for the entire GSS for both CO$_2$ and H$_2$O (Table 34). Using the new, smaller rain caps significantly improved GSS system response, with half-power frequencies 2–6 times higher than with the LO rain cap. Differences among the GSS with the NN ($f_{50\%} \geq 9.3 \text{ Hz}$) and LN ($f_{50\%} \geq 4.3 \text{ Hz}$) rain caps were noticeable for both, CO$_2$ and H$_2$O, but overall both rain caps were much closer to each other compared to the LO rain cap. Also, these differences may be biased due to different sampling techniques, levels of relative humidity, and by how a step change or a square wave were generated in the laboratories. These tolerances were also apparent from a slightly better frequency response for the combination of tube, FW-2.0 filter and NL–NN rain cap ($f_{50\%} = 12.0 \text{ Hz}$) compared to the setup omitting the FW-2.0 filter ($f_{50\%} = 11.9 \text{ Hz}$). Moreover, the laboratory tests of the NN rain cap did not include any dead
volume potentially created by the rain caps’ outer lip and leaking into the sample flow. While this lip adds rain protection and is vertically offset, it might increase air residence time in the vicinity of the rain cap, thus potentially providing a better response in the laboratory than might be attainable under field conditions.

Overall, we found that possible choices of filters ($f_{50\%} \geq 1.4 \text{ Hz}$) and rain caps ($f_{50\%} \geq 1.9 \text{ Hz}$) limit system frequency response compared to the LI-7200 sampling cell ($f_{50\%} \geq 6.3 \text{ Hz at 13.6 L min}^{-1}$) and a short and thin intake tube ($f_{50\%} \geq 15.9 \text{ Hz}$). In order to better understand cross-sensitivity, we utilized Eqs. (7)–(10) and determined the frequency responses for all possible combinations of filters and rain caps, including those not explicitly tested (Fig. 4). It can be seen that for H_2O, the NN and LN rain caps provided similar frequency response, up to $\Delta f_{50\%} = 5 \text{ Hz}$ better compared to the LO rain cap. For H_2O, the NN and LN rain caps provided similar frequency response, up to $\Delta f_{50\%} = 6 \text{ Hz}$ better compared to the LO rain cap. Yet, for NN and LN rain caps both of these "good" caps, the filter choice could decrease system frequency response by as much as $\Delta f_{50\%} = 6 \text{ Hz}$. For the already limiting LO rain cap, the effect of the filter choice was less pronounced, with a decrease in frequency response by as much as $\Delta f_{50\%} = 2 \text{ Hz}$. It should be noted that for the two slowest filters AC-1.0 and PF-0.1, we determined $f_{50\%} < 0$, which is not physically feasible. However, the magnitude of underestimation falls within the standard error of regression Eq. (7). For the NN and LN rain caps was slightly more pronounced compared to, with the NN rain cap providing $\Delta f_{50\%} \approx 1$ better frequency response. Regardless, both rain caps provided frequency responses as much as $\Delta f_{50\%} = 6$ better when compared to the LO rain cap. The filter choice can decrease frequency response by as much as $\Delta f_{50\%} = 4$ and $\Delta f_{50\%} = 2$ for the NN and LN rain caps, and the LO rain cap, respectively. Our results also indicate that in terms of frequency response, the least favourable combinations studied here were the LO rain cap and AC-1.0 or PF-0.1 filters.

To summarize, laboratory tests have shown that the order of priority for optimizing GSS components against frequency response should be the choice of (i) rain cap, (ii) particulate filter, and (iii) intake tube. The should be as follows:

(i). Rain cap, with focus on frequency response and water ingress.
(ii). **Particulate filter**, with focus on frequency response and pressure drop.

(iii). **Intake tube**, with focus on frequency response for H_2O.

The optimal performance was achieved by the combination of NN and LN rain caps in combination with the FW-2.0 filter together with a thin and short stainless steel tube. Such combination provided the best and most comparable frequency response for both, H_2O and $CO_2 (f_{50\%} \geq 7)$. To also permit switched heating during icing conditions, NEON developed the NN rain cap. However, the NN rain cap was not yet available at the time of the experiments, so the remaining analysis will focus on the LN rain cap, out of all tested combinations of the components.

3.2 Field tests

All laboratory tests were conducted without heating or insulation. However, both NEON and LI-COR were working towards integrated heating designs to maximise heated tube designs to maximize the system frequency response, which is addressed in this section. Field NEON has also developed a heated rain cap, but it was not yet available at the time of the experiments. Therefore, the field tests focused on the effect of tube heating on GSS consisting of the LO and LN rain caps in combination with the FW-2.0 filter and an intake tube. Here, we selected two periods (i) July 2013 to compare the effect of different heater settings on frequency response with the LO rain cap, and (ii) July 2014 to compare the effect of LN vs. LO rain cap on frequency response at a given heater setting.

3.2.1 Experiment and sensor conditions

Figure 5-6 shows the meteorological conditions and the effect of filter and intake tube heater settings for July 2013 with the LO rain cap. It can be seen that the LI-7200 sampling cell inlet temperature (T_{in}) increased above the ambient air temperature (T_a) due to heating, and generally followed the heater power setting. The initial 4 W of heating power increased the sampling cell inlet temperature by about 6–8 $^\circ C$ above ambient, and after the heating was switched off on 7 July 2013, this difference ($T_{in} - T_a$) decreased to 0–3 $^\circ C$ above
ambient. During both settings, the temperature gradient in the sampling cell \((T_{in} - T_{out})\) did not exceed 5 °C, and the temperature difference between the sampling cell inlet and block \((T_{in} - T_{block})\) was well below 15 °C. However, during the 5 and 6 W settings, the temperature gradient in the sampling cell exceeded 5 °C. Consequently, the relevant NEON requirements \((\text{NEON.TIS.4.2017.1667}, \text{NEON.TIS.4.1668}, \text{and NEON.TIS.4.1667.2017} \text{Table 1})\) were only fulfilled for the 4 W heater setting. At a given power setting, the increase in sampling cell inlet temperature above ambient \((T_{in} - T_a)\) was correlated with the ambient temperature. For example, during the 4 W heating period, per 1 °C rise in ambient temperature, the sampling cell inlet temperature increased by 1.26 °C per 1 °C rise in ambient temperature \((r > 0.7)\). Similar behaviour was found without heating \((1.29 °C \text{ per } 1 °C, r > 0.7)\). Consequently, the heating circuit does not exhibit a feedback with ambient temperature, thus avoiding the risk of superimposing artificial correlations. After water ingress on 14 July 2013, the intake tube was changed from horizontal to slightly downward tilted \((\approx 10°)\) alignment, which avoided preventing any future ingress. The new tube was deployed with identical heating power setting. Yet, it is apparent that the replacement tube generated more heat than the previous tube, likely indicating an impact of variable manufacturing tolerances.

In order to avoid sensor offsets, relative humidity in the LI-7200 cell \((R_{\text{cell}})\) was calculated from the ambient relative humidity \((R_a)\) taking into account temperature and pressure differences. Compared to \(R_a\), \(R_{\text{cell}}\) was reduced by \(\approx 10, \approx 20, \approx 25\) and \(\approx 30\) % during the 0, 4, 5 and 6 W heating periods, respectively. However, none of the tested heater settings was capable of continuously reducing \(R_{\text{cell}}\) below 60 %, and therefore the corresponding NEON requirement \((\text{NEON.TIS.4.1666} \text{ Table 1})\) could not be fulfilled at this time. Nevertheless, 4 W of heating was sufficient to decrease the number of events where \(R_a > 60\) % resulted in \(R_{\text{cell}} > 60\) % by \(\approx 50\) %.

Table 4 provides descriptive statistics of temperatures and humidities for all heating periods utilized in this study. In addition to the periods shown in Fig. 5, Table 4 also includes the period in July 2014 where the LN rain cap was deployed. The median ambient temperature and relative humidity varied in a range of \(3.3 \pm 5.6 °C\) and \(22.6 \pm 28.6\) %
among heating periods, respectively. Specifically, the LO-0 Watt period was driest with RH_a = 46.1%, making it difficult to find periods of high relative humidity for intercomparison. The LO-6 Watt period was the most humid with RH_a = 68.7%.

3.2.2 Spectral analysis

Spectral analysis as described in Sect. 2.2.3 was performed on the field data, and Fig. 6 shows ensemble transfer functions of LI-7200-measured H_2O number density relative to the LI-7500. In all cases, heating improved the high-frequency response. For RH_a < 60%, the half-power frequency of the LO rain cap in combination with unheated filter and intake tube was f_{50\%} \approx 2\, \text{Hz}. This confirms which reflects the laboratory results for the LO rain cap in combination with filter and tube well.

Filter and intake tube heating marginally increased f_{50\%} to \approx 2.5\, \text{Hz}. For RH_a > 60%, f_{50\%} of the LO rain cap in combination with the unheated filter and intake tube decreased to \approx 1\, \text{Hz}. This is about half of the f_{50\%} observed in the laboratory, but the latter could not actually be conducted at such high average relative humidity. Also, it should be noted that the sample size of the LO-0 Watt control period was extremely small for RH_a > 60% (here, \(N = 3\), due to the generally low relative humidity in this period, median 46.1%). Filter and intake tube heating increased f_{50\%} to \approx 1.5–2\, \text{Hz}, and the 4 and 5\, \text{W} heating power settings yielded a slightly higher f_{50\%} compared to the 6\, \text{W} setting, which was likely a result of the higher ambient relative humidity during the LO-6 Watt period.

The LI-7500 was configured with 10 sample rate and 20 bandwidth. This makes aliasing possible, which, however, was not observed. Instead, at RH_a > 60% and with 5\, \text{W} heating the transfer function for the LO rain cap indicated that the LI-7200 setup produced noise above \approx 2\, \text{Hz}; in comparison to the LI-7200 cell, frequency response due to line-averaging over the 12.5 long LI-7500 optical path was variable, with f_{50\%} > 7.5 for wind speeds exceeding 1.4 (i.e., better than the frequency response of the LI-7200 cell at \approx 16.2\, \text{Hz}). Moreover, the LI-7500 measured the full effect of temperature fluctuations on density. So some of the fluctuations in density were large and well resolved, but they did not actually contribute to
the turbulent flux. In contrast, temperature-related density fluctuations are mostly attenuated in the LI-7200 cell (Burba et al., 2012).

Overall, no obvious improvement of H$_2$O frequency response was found for increasing heating power beyond 4 W. The resulting 8°C temperature increase above ambient appeared to be sufficient, and the remaining field tests will focus on this heater setting, which is the only setting that also fulfills NEON’s corresponding requirements (NEON.TIS.4.2017.1667, NEON.TIS.4.1668, NEON.TIS.4.1667). It thus results in the largest possible reduction of relative humidity, without impacting the performance of the underlying measurement principle. While the tests presented have been performed at a single site, Fratini et al. (2015) have found similar results under quite different conditions, indicating applicability across environments.

Since the rain cap has been identified as a design priority in Sect. 3.1, we expected that decreasing the rain cap mixing volume would further improve frequency response for H$_2$O. However, for the 4 W heating setting, the LN rain cap did not appear to outperform the LO rain cap. This contradicts our laboratory findings, which suggest $f_{50\%}$ > 4 Hz for the combination of LN rain cap with filter and tube. Also, during the LN rain cap period, filter and tube heating was actually 0.3 ± 0.9 W higher and RH$_a$ was $-13.1 \pm 35.5\%$ lower compared to the corresponding LO rain cap period, which should have given the LN rain cap a slight advantage.

For the LN rain cap, CO$_2$ frequency response was found to be un-attenuated at frequencies ≤ 1 Hz under all RH conditions. A difference between the frequency response under heated and un-heated conditions appeared only for RH $> 60\%$ and was not systematic (data not shown). The corresponding NEON requirement (NEON.TIS.4.1626 (Table 1)) was thus fulfilled for CO$_2$.

In order to further investigate the impact of relative humidity on frequency response, we determined the half-power frequencies as described in Sect. 2.2.3 individually for each half-hour period. The results for the different GSSs and heating strategies are shown in Fig. 78 as a function of relative humidity. In general, 4 W of heating increased $f_{50\%}$ by 0.5–1 Hz. For RH$_a < 40\%$, the heated GSS with LN rain cap yielded $f_{50\%} > 3$ Hz, approaching the
laboratory results of \(f_{50\%} > 4 \text{ Hz} \). At higher relative humidities, the heated GSS with LO rain cap outperformed the heated GSS with LN rain cap, contradicting our laboratory findings.

Together with the change from the LO to the LN rain cap, however, also the intake tube length was also changed from 70 to 80 cm, and the ID from 4.8 to 5.3 mm. For the given flow rate set point of 10.8 SL min\(^{-1}\) (or \(\approx 16.2 \text{ L min}^{-1} \) at site conditions), this lead to a reduction of the Reynolds number in the tube of –9.4 % from \(\text{Re} \approx 3470 \) to \(\text{Re} \approx 3150 \). Following Eq. (11) the half-power frequency of the tube was thus reduced by –32.9 % from 17.1 to 11.5 Hz. For the given volumetric flow rate, the LI-7200 cell by itself yielded \(f_{50\%} \) = 7.5 Hz due to volume averaging in Eq. (1). Combining LI-7200 cell and the tube according to Eqs. (7)–(10) yielded a half-power frequency reduction of –30.8 % from 6.5 to 4.5 Hz due to the change in intake tube. This effect alone approximately offsets the gain in half-power frequency for changing from LO to LN rain cap as observed in the laboratory (Table 34, from 2.0 Hz to 4.3–6.1 Hz). In addition, not only did the tube inner volume increase by 42 % from 12.4 to 17.7 cm\(^3\), but also the inner surface area increased by 28 % from 104.5 to 133.2 cm\(^2\).

As a result, the surface heating from the heater into the tube effectively decreased from 363.8 ± 19.1 W m\(^{-2}\) to 307.8 ± 52.6 W m\(^{-2}\). The combined effects resulting from changes in the tube ID and length increased the residence time in the tube, decreased turbulence in the tube, promoted surface adsorption of \(\text{H}_2\text{O} \), and thus reduced the frequency response in particular under high relative humidity conditions. This explains that for a given 4 W heater setting, the GSS with LN rain cap performed similar to the GSS with LO rain cap for \(\text{RH}_a < 60 \% \), but the performance was worse for \(\text{RH}_a > 60 \% \). It should also be mentioned that the final NEON design uses a flow rate of 11.8 across sites, thus promoting turbulence development in the intake tube in excess of the setup studied here.

Applying Eqs. (7)–(10) to the half-power frequencies for the LI-7200 (\(f_{50\%} = 7.5 \text{ Hz} \), 80 cm tube with 5.3 mm ID (\(f_{50\%} = 11.5 \text{ Hz} \)), filter FW-2.0 (\(f_{50\%} = 17.4 \text{ Hz} \)) and LN rain cap (\(f_{50\%} = 12.05 \text{ Hz} \)) yielded a system half-power frequency of \(f_{50\%} = 3.1 \text{ Hz} \). This matched the field results in Fig. 7-8 at 35 % relative humidity. Substituting in Eqs. (7)–(10) the 80 cm tube with 5.3 mm ID by the 70 cm tube with 4.8 mm ID (\(f_{50\%} = 17.1 \text{ Hz} \)), the half-power frequency for a theoretically improved system was estimated to \(f_{50\%} = 3.9 \text{ Hz} \) at
35% relative humidity. The average decrease of $\Delta f_{50\%} = 0.36$ Hz per 10% RH for the observed heated GSS with LO rain cap was utilized to extrapolate $f_{50\%} = 2.1$ Hz for the improved system at 85% relative humidity. This compares to the observed $f_{50\%} = 0.6$ Hz and $f_{50\%} = 0.9$ Hz for the heated GSS with LN and LO rain caps, respectively. Using Eq. (6), the signal attenuation at 1 Hz for $R_{Ha} = 85\%$ can now be determined to 74, 55 and 19% for the original heated GSS with LO and LN rain cap, and the theoretically improved GSS, respectively. While even the improved GSS is not fulfilling the corresponding NEON requirement (NEON the theoretically improved GSS was not fulfilling NEON.TIS.4.1626 (Table 1), attenuation rapidly decreased to < 5% at 0.5 Hz. This still warrants the application of automated spectral correction procedures (e.g., Nordbo and Katul, 2012) for NEON towers with a minimum measurement height of 6 m, which was the objective underlying the requirement. Moreover, for passive, first-order low-pass filter systems, the use of resistor-capacitor theory was found to be a convenient alternative to a full convolution of all transfer functions: the knowledge of a single parameter, the half-power frequency, is sufficient to propagate and combine results, which should also be useful for other studies.

Ultimately, the GSS optimization aims at minimizing the need for cospectral correction of the EC fluxes. We found that for the unheated GSS with LO rain cap, the H$_2$O correction is in excess of 5% for $R_{Ha} > 60\%$, and that 4 W of heating reduces the co-spectral correction by almost a similar amount (data not shown). For the GSS with LN rain cap and 4 W of heating, the cospectral correction never exceeded $\approx 3\%$, even at very high relative humidity. For CO$_2$, heated and unheated GSS with LO rain caps required marginal co-spectral corrections, while practically no co-spectral correction was required for the heated GSS with LN rain cap. This further confounds the interpretation of LN high-frequency response gains being offset for by intensified tube wall effects due to longer and larger ID tubing.

At the given measurement height of 13.7 above displacement height, the amplitude of fluctuations at frequencies > 1 can approach the detection limit of an enclosed IRGA, in our study resulting in 19% data loss (Sect. 2.2.3). In addition, the July 2014 period (LN rain cap) was drier than the July 2013 period (LO rain cap), but also the fluctuations and flux were $\approx 1/3$ lower in 2014 compared to 2013 (not shown). As a result, the July 2014 power
spectra began to display noise at lower frequencies. This also moves the minimum of the transfer function, and hence the base for calculating the half power frequencies, towards lower frequencies for the GSS with the LN rain cap. Consequently, by measuring closer to the ground with more energy contained in small eddies, as well as operating the different GSSs simultaneously, it should be possible to further improve the field intercomparison.

4 Summary and conclusions

We have shown that a re-examination of the gas analyser—in this study, careful optimization of the gas sampling system (intake tube, particulate filter, rain cap) can improve practicability and frequency response for eddy-covariance applications. Specifically, overall maintenance, pressure drop and pump and power dimensioning, as well as high frequency attenuation can all be reduced substantially. Every closed-path or for an enclosed gas analyser relies on at least some of these gas sampling components, and this study determined their relative importance and provided practical design suggestions. In summary, a rain cap with a minimum volume, 2 pleated mesh particulate filter, 70 long stainless steel tube with 4.8 inner diameter and 4 of filter and tube heating provided a robust design compromise permitting more automated and scalable operation and data processing was developed based on laboratory tests and multiple validation field experiments conducted by NEON, the University of Colorado, NCAR and LI-COR over the six-year period. Below are the key conclusions from these studies:

To our knowledge, this is the first study to show that large rain caps can limit overall system frequency response. A redesign can yield up to six-fold improvements, and small volume (≤ 3) rain caps thus provide a suitable compromise between water ingress protection and spectral quality. Next, it was shown that the filter choice can result in three orders of magnitude differences in pressure drop, and one order of magnitude difference in frequency response. A 2 pleated mesh filter was found to provide the most suitable trade-off between protection from dirt accumulating in the gas analyser, power demand and spectral quality. The selected short and thin intake tube was found to not limit frequency
response. However, a 10% increase in the tube length and inner diameter resulted in a 1/3 decrease in frequency response, effectively limiting the system. This was attributed to the reduction in surface heating and Reynolds number at given heater and flow rate settings, respectively. Heating the intake tube and particulate filter continuously with 4W was found to improve the detectability of high-frequency fluctuations, and no further improvement was found for higher heating powers.

- A suitable gas sampling system for routine observations was found to consist of a small-volume (<3.2 cm³) rain cap, a 2 μm pleated mesh particulate filter, a 70 cm long stainless steel tube with 4.8 mm inner diameter, and up to 4 W of continuous heating of filter and tube.

- A specific redesign of a large into a small cap yielded up to six-fold improvements in frequency response, and provided robust water ingress protection. To our knowledge, this is the first study (concurrently with Aubinet et al., 2015, study published in the same issue) that experimentally quantified the extent to which large rain caps can limit overall system frequency response.

- The filter choice was important for the system as well, and could result in three orders of magnitude differences in pressure drop, and in one order of magnitude difference in frequency response. Out of 15 tested filters, a 2 μm pleated metal mesh filter provided the most suitable trade-off between protection from dirt accumulating in the gas analyser, power demand and spectral quality.

- The selected short and thin intake tube did not limit frequency response, but overall system response was quite sensitive to increasing tube size. A 10% increase in the tube length and inner diameter resulted in a 30% decrease in frequency response, effectively limiting overall system response.

- Heating the intake tube and particulate filter continuously with 4W of power was found to improve the H₂O high frequency response and allow automated spectral corrections. No further improvement was found for heating above 4 W of power.
Such combination resulted in significantly reduced field maintenance needs, pressure drop, pump and power requirements, as well as in significantly increased frequency response of the system. It also allowed confident automated and scalable operation and data processing.

Further research is warranted to explore optimal solutions for specific use cases. Also, by measuring closer to the ground with more energy contained in small eddies, as well as operating different setups simultaneously, it should be possible to further improve the field intercomparison.

The National Ecological Observatory Network (NEON) has adopted a requirements-based approach for allowing its scientific infrastructure to address interactions of ecosystems, climate, and land use at pre-defined uncertainty levels. Here, this integrative strategy was applied to the development of an infrared gas analyser system for eddy-covariance applications. In this process, all but two of the enclosed infrared gas analyser-based system for eddy covariance applications. All corresponding technical requirements were fulfilled: (i) None of the except for the following: The tested heater settings were capable of continuously decreasing the relative humidity to \(\leq 60\% \) in the gas analyser, and (ii) for not always able to keep relative humidity below 60\% inside the analyser. As a result, during such high relative humidity levels periods the \(\text{H}_2\text{O} \) system response at 1 Hz was attenuated by up to 19\%\%. However, it was shown that the objective underlying these requirements can be accomplished, i.e. the application of adaptive correction procedures and automated data processing across field sites. This is a are able to compensate for such losses across different field sites in an objective and uniform manner.

The authors hope that this study makes a useful contribution to the fundamental prerequisite for emergent environmental observatories such as NEON and the Integrated Carbon Observing System (ICOS): advancing ecological inference from local to continental scales rests on the shoulders of using an integrated, unbiased, highly scalable and robust combination of instruments and data processing across eco-climatic zones.
Data availability

We provide an external supplement (see https://w3id.org/smetzger/Metzger-et-al_2015_IRGA-GSS) including (i) an extended abstract, (ii) a complete list of verbatim NEON requirements regarding the dimensioning of the infrared gas analyser and its gas sampling system, (iii) a dimensional drawing of the NEON rain cap, as well as (iv) all NEON raw data used in this study accompanied by variable documentation.

Acknowledgements. We are thankful to Tyler Anderson, Mark Johnson, Mike Furtaw, Jess Raw, Dan Konz, Bob Eckles, and Adam Krueger at LI-COR Biosciences for performing many of the laboratory tests from 2008 to 2014, and for providing important details on test definitions. Many colleagues at the National Ecological Observatory Network supported this study. In particular, Theodore Hehn designed the NEON rain cap, Doug Kath performed the majority of the laboratory tests, Janae Csavina, Ben Duval and Mike Stewart commented on an earlier version of the manuscript, and Jeffrey Taylor (now: Aspen Global Change Institute), Andrea Thorpe and Russ Lea helped shepherding this study and its publication through required administrative procedures.

The National Ecological Observatory Network is a project solely sponsored by the National Science Foundation and managed under cooperative agreement by NEON, Inc. This material is based upon work supported by the National Science Foundation under Cooperative Service Agreement EF-1029808. Any opinions, findings, and conclusions or recommendations expressed in this material are those of the author(s) and do not necessarily reflect the views of the National Science Foundation. Mention of a commercial company or product does not constitute an endorsement by the National Ecological Observatory Network or by the National Science Foundation. The US-NR1 AmeriFlux site is currently supported by the United States Department of Energy, Office of Science through the AmeriFlux Management Project at Lawrence Berkeley National Laboratory under Award Number 7094866.

References

Moncrieff, J. B., Massheder, J. M., de Bruin, H., Elbers, J., Friborg, T., Heusinkveld, B., Kabat, P., Scott, S., Soegaard, H., and Verhoef, A.: A system to measure surface fluxes of momentum, sen-

R Development

Table 1. **Summary of tested NEON requirements and applicable references.**

<table>
<thead>
<tr>
<th>Requirement</th>
<th>Application summary</th>
<th>Reference</th>
</tr>
</thead>
<tbody>
<tr>
<td>NEON.TIS.4.1615</td>
<td>To minimize uncertainty and to maximize data coverage, the gas sampling system should be designed to minimize water ingress.</td>
<td>LI-COR (2013)</td>
</tr>
<tr>
<td>NEON.TIS.4.1618</td>
<td>To minimize uncertainty and to maximize data coverage, the manufacturer’s recommended range of the differential pressure sensor in the IRGA sampling cell shall not be exceeded (10 kPa).</td>
<td>LI-COR (2013)</td>
</tr>
<tr>
<td>NEON.TIS.4.1626</td>
<td>To allow the use of automated high-frequency spectral correction procedures, the combined frequency response of the IRGA and its GSS shall be un-attenuated at frequencies < 1 Hz.</td>
<td>Nordbo and Katul (2012)</td>
</tr>
<tr>
<td>NEON.TIS.4.1627</td>
<td>To allow the use of automated high-frequency spectral correction procedures, the particulate filter shall have a halfpower frequency $f_{50%} > 4$ Hz.</td>
<td>Nordbo and Katul (2012), Eqs. (7) – (10)</td>
</tr>
<tr>
<td>NEON.TIS.4.1628</td>
<td>To avoid inaccuracies in IRGA performance caused by accumulating dirt, a particulate filter with < 2.0 μm pore size should be used.</td>
<td>Fratini et al. (2014)</td>
</tr>
<tr>
<td>NEON.TIS.4.1666</td>
<td>To sufficiently improve H_2O frequency response for automated high-frequency spectral corrections, the heating wattage should be chosen so that relative humidity in the IRGA is maintained at < 60 %</td>
<td>Fratini et al. (2012)</td>
</tr>
<tr>
<td>NEON.TIS.4.1667</td>
<td>To ensure that IRGA drift with temperature remains within manufacturer performance specifications, the temperature difference between the IRGA block and inlet should be maintained to within < 15 °C.</td>
<td>Metzger et al. (2013b)</td>
</tr>
<tr>
<td>NEON.TIS.4.1668</td>
<td>To enable mole fraction conversions to within manufacturer performance specifications, the temperature difference between IRGA inlet and outlet should be maintained to within < 5 °C.</td>
<td>Clapeyron (1834)</td>
</tr>
<tr>
<td>NEON.TIS.4.2007</td>
<td>To avoid inaccuracies in IRGA performance caused by accumulating dirt (Fratini et al., 2014), the particulate filter should be positioned immediately downstream of the rain cap.</td>
<td>Fratini et al. (2014)</td>
</tr>
<tr>
<td>NEON.TIS.4.2017</td>
<td>To prevent condensation and to minimize attenuation of the water vapour measurement, the IRGA intake tube should be insulated and continuously heated with a constant wattage.</td>
<td>Ibrom et al. (2007)</td>
</tr>
</tbody>
</table>
Table 2. Candidate filters and filter materials considered in this study, and their key characteristics including pore size (pore), length (d_l) and inner diameter (d_{id}).

<table>
<thead>
<tr>
<th>Manufacturer</th>
<th>Filter model</th>
<th>Material</th>
<th>Pore [µm]</th>
<th>d_l [mm]</th>
<th>d_{id} [mm]</th>
<th>Abbreviation</th>
</tr>
</thead>
<tbody>
<tr>
<td>3M/CUNO, Meriden, CT, USA</td>
<td>PolyPro XL G250 filter capsule</td>
<td>polypropylene housing and membrane</td>
<td>2.5</td>
<td>50.8</td>
<td>7.0</td>
<td>PP-2.5</td>
</tr>
<tr>
<td>3M/CUNO, Meriden, CT, USA</td>
<td>PolyPro XL G500 filter capsule</td>
<td>polypropylene housing and membrane</td>
<td>5.0</td>
<td>50.8</td>
<td>7.0</td>
<td>PP-5.0</td>
</tr>
<tr>
<td>Advantec MFS, Dublin, CA, USA</td>
<td>LS 25</td>
<td>stainless steel housing and nylon membrane</td>
<td>1.2</td>
<td>50.0</td>
<td>38.0</td>
<td>LS25-1.2</td>
</tr>
<tr>
<td>Advantec MFS, Dublin, CA, USA</td>
<td>LS 25</td>
<td>stainless steel housing and nylon membrane</td>
<td>5.0</td>
<td>50.0</td>
<td>38.0</td>
<td>LS25-5.0</td>
</tr>
<tr>
<td>Advantec MFS, Dublin, CA, USA</td>
<td>LS 47</td>
<td>stainless steel housing and nylon membrane</td>
<td>5.0</td>
<td>57.0</td>
<td>69.0</td>
<td>LS47-5.0</td>
</tr>
<tr>
<td>Pall Corporation, Port Washington, NY, USA</td>
<td>Acro 50</td>
<td>polypropylene housing and polytetrafluoroethylene (PTFE) membrane</td>
<td>1.0</td>
<td>82.0</td>
<td>73.0</td>
<td>AC-1.0</td>
</tr>
<tr>
<td>Swagelok, Solon, OH, USA</td>
<td>F-series</td>
<td>stainless steel housing and sintered stainless steel element</td>
<td>2.0</td>
<td>54.6</td>
<td>4.8</td>
<td>F-2.0</td>
</tr>
<tr>
<td>Swagelok, Solon, OH, USA</td>
<td>FW-series</td>
<td>stainless steel housing and pleated stainless steel mesh</td>
<td>2.0</td>
<td>54.6</td>
<td>4.8</td>
<td>FW-2.0</td>
</tr>
<tr>
<td>ZenPure, Manassas, VA, USA</td>
<td>PureFlo PTFE filter capsule</td>
<td>polypropylene housing and polytetrafluoroethylene (PTFE) membrane</td>
<td>0.1</td>
<td>127.0</td>
<td>73.0</td>
<td>PF-0.1</td>
</tr>
</tbody>
</table>
Table 3. Components tested in detail in the laboratory and field experiments including LI-COR old (LO), LI-COR new (LN) and NEON new (NN) rain caps, and the Swagelok FW-2.0 filter (Table 2 provides detailed specifications). Key characteristics include length (d_l), inner diameter (d_{id}), outer diameter (d_{od}) and volume (V). Only components and materials selected for this study are shown, and numerous alternatives are excluded. Cross combinations were also tested.

<table>
<thead>
<tr>
<th>Component</th>
<th>d_l [mm]</th>
<th>d_{id} [mm]</th>
<th>d_{od} [mm]</th>
<th>V [cm3]</th>
</tr>
</thead>
<tbody>
<tr>
<td>laboratory and field tests</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>rain cap LO</td>
<td>17.5</td>
<td>36.0</td>
<td>41.9</td>
<td>17.8</td>
</tr>
<tr>
<td>rain cap LN</td>
<td>11.4</td>
<td>19.1</td>
<td>25.4</td>
<td>3.2</td>
</tr>
<tr>
<td>filter FW-2.0</td>
<td>54.6</td>
<td>4.8</td>
<td>25.4</td>
<td>1.0</td>
</tr>
<tr>
<td>sampling cell LI-7200</td>
<td>125.0</td>
<td>12.8</td>
<td>75.0</td>
<td>16.0</td>
</tr>
<tr>
<td>laboratory tests only</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>rain cap NN</td>
<td>50.8</td>
<td>6.4–17.8</td>
<td>50.8</td>
<td>2.4</td>
</tr>
<tr>
<td>intake tube</td>
<td>700.0–1016.0</td>
<td>4.8–5.3</td>
<td>6.4</td>
<td>12.4–22.6</td>
</tr>
<tr>
<td>field tests only</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>intake tube for rain cap LO</td>
<td>700.0</td>
<td>4.8</td>
<td>6.4</td>
<td>12.4</td>
</tr>
<tr>
<td>intake tube for rain cap LN</td>
<td>800.0</td>
<td>5.3</td>
<td>6.4</td>
<td>17.7</td>
</tr>
</tbody>
</table>
Table 4. Descriptive statistics (median and median absolute deviation) covering periods of different heating settings of the LI-7200 intake tube and filter. The header distinguishes combinations of different rain caps (LO, LN) and heater settings (0 Watt, 4 Watt, 5 Watt, 6 Watt). Shown are ambient temperature (T_a), LI-7200 inlet temperature (T_{in}), LI-7200 outlet temperature (T_{out}), LI-7200 block temperature (T_{block}), ambient relative humidity (RH$_a$) and LI-7200 cell relative humidity (RH$_{cell}$).

<table>
<thead>
<tr>
<th>Variable</th>
<th>LO-0 Watt</th>
<th>LO-4 Watt</th>
<th>LN-4 Watt</th>
<th>LO-5 Watt</th>
<th>LO-6 Watt</th>
</tr>
</thead>
<tbody>
<tr>
<td>heating power [W]</td>
<td>0.0 ± 0.0</td>
<td>3.8 ± 0.2</td>
<td>4.1 ± 0.7</td>
<td>5.4 ± 0.2</td>
<td>6.3 ± 0.1</td>
</tr>
<tr>
<td>T_a [°C]</td>
<td>15.1 ± 2.9</td>
<td>11.7 ± 3.0</td>
<td>12.8 ± 3.7</td>
<td>14.4 ± 3.2</td>
<td>11.8 ± 2.7</td>
</tr>
<tr>
<td>$T_{in} - T_a$ [°C]</td>
<td>0.2 ± 1.0</td>
<td>6.7 ± 0.7</td>
<td>7.7 ± 1.6</td>
<td>9.6 ± 0.9</td>
<td>12.7 ± 1.0</td>
</tr>
<tr>
<td>$T_{in} - T_{out}$ [°C]</td>
<td>−0.1 ± 0.2</td>
<td>3.7 ± 0.2</td>
<td>4.0 ± 0.9</td>
<td>5.5 ± 0.3</td>
<td>6.9 ± 0.2</td>
</tr>
<tr>
<td>$T_{in} - T_{block}$ [°C]</td>
<td>−0.3 ± 0.2</td>
<td>5.7 ± 0.3</td>
<td>6.0 ± 1.4</td>
<td>8.4 ± 0.5</td>
<td>10.6 ± 0.4</td>
</tr>
<tr>
<td>RH$_a$ [%]</td>
<td>46.1 ± 10.8</td>
<td>63.1 ± 14.6</td>
<td>50.0 ± 20.9</td>
<td>55.5 ± 29.6</td>
<td>68.7 ± 17.8</td>
</tr>
<tr>
<td>RH$_{cell}$ [%]</td>
<td>44.7 ± 12.2</td>
<td>48.7 ± 13.7</td>
<td>39.0 ± 15.2</td>
<td>38.5 ± 20.9</td>
<td>41.7 ± 11.3</td>
</tr>
<tr>
<td>RHa − RH${cell}$ [%]</td>
<td>1.0 ± 2.9</td>
<td>14.9 ± 1.9</td>
<td>11.6 ± 4.8</td>
<td>16.2 ± 8.2</td>
<td>24.7 ± 7.2</td>
</tr>
<tr>
<td>sample size (half-hours)</td>
<td>190</td>
<td>183</td>
<td>284</td>
<td>288</td>
<td>275</td>
</tr>
</tbody>
</table>
Table 5. CO₂ and H₂O half-power frequencies for system components without heating or insulation, for the range of flow rates 9.5 to 14 SLPM SL min⁻¹, as derived from the data shown in Figs. 2–3. Ranges from multiple experiments are provided when available. Rain caps are NEON new (NN), LI-COR new (LN) and LI-COR old (LO). Filters are Swagelok FW-2.0, 3M/CUNO PP-2.5, 3M/CUNO PP-5.0, Pall AC-1.0 and ZenPure PF-0.1 (Table 2 provides detailed filter specifications).

<table>
<thead>
<tr>
<th>System elements</th>
<th>CO₂</th>
<th>H₂O</th>
</tr>
</thead>
<tbody>
<tr>
<td>rain cap NN</td>
<td>16.5 Hz</td>
<td>14.3 Hz</td>
</tr>
<tr>
<td>rain cap LN</td>
<td>12.3–13.8 Hz</td>
<td>11.8–12.3 Hz</td>
</tr>
<tr>
<td>rain cap LO</td>
<td>2.5 Hz</td>
<td>2.4 Hz</td>
</tr>
<tr>
<td>filter FW-2.0</td>
<td>16.4–16.5 Hz</td>
<td>14.9–19.9 Hz</td>
</tr>
<tr>
<td>filter PP-2.5</td>
<td>21.8 Hz</td>
<td>5.4–7.0 Hz</td>
</tr>
<tr>
<td>filter PP-5.0</td>
<td>18.9 Hz</td>
<td>5.0–8.8 Hz</td>
</tr>
<tr>
<td>filter AC-1.0</td>
<td>18.7 Hz</td>
<td>2.2–3.9 Hz</td>
</tr>
<tr>
<td>filter PF-0.1</td>
<td>8.3 Hz</td>
<td>1.4–4.0 Hz</td>
</tr>
<tr>
<td>intake tube (dᵢ = 700 mm, dᵢd = 4.8 mm)</td>
<td>19.9 Hz</td>
<td>15.9 Hz</td>
</tr>
<tr>
<td>intake tube + rain cap NN</td>
<td>11.9 Hz</td>
<td>9.8 Hz</td>
</tr>
<tr>
<td>intake tube + rain cap LN</td>
<td>9.7–14.6 Hz</td>
<td>5.9–9.6 Hz</td>
</tr>
<tr>
<td>intake tube + rain cap LO</td>
<td>2.2 Hz</td>
<td>1.9 Hz</td>
</tr>
<tr>
<td>intake tube + filter FW-2.0</td>
<td>11.9–15.4 Hz</td>
<td>11.2–11.6 Hz</td>
</tr>
<tr>
<td>intake tube + filter FW-2.0 + rain cap NN</td>
<td>12.0 Hz</td>
<td>9.3 Hz</td>
</tr>
<tr>
<td>intake tube + filter FW-2.0 + rain cap LN</td>
<td>5.3–10.2 Hz</td>
<td>4.3–6.1 Hz</td>
</tr>
<tr>
<td>intake tube + filter FW-2.0 + rain cap LO</td>
<td>2.2 Hz</td>
<td>2.0 Hz</td>
</tr>
</tbody>
</table>
Figure 1. Three selected rain cap designs tested in this study. Top row: cross-sections of each rain cap showing their internal volumes. Bottom row: rain cap inlets with screens that face downwards in typical field deployments.
Figure 2. Field test setup at the Niwot Ridge US-NR1 AmeriFlux site. A LI-7200 enclosed-path IRGA and a LI-7500 open path IRGA are operated side-by-side next to a CSAT3 sonic anemometer. The LI-7200 gas sampling system consists of rain cap, filter and tube, as well as insulation and adjustable heating of the filter and tube.
Figure 3. Transfer functions of different gas sampling system components and combinations thereof, without heating or insulation as determined by laboratory tests. Dotted grey boxes indicate approximate desirable ranges for a short-tube low-power implementation, requiring minimal corrections. Bars indicate range from multiple experiments, where available, as described in Sect. 2.1. Please note that the y axis starts at 0.05. Top left panel: three selected rain caps NEON new (NN), LI-COR new (LN) and LI-COR old (LO), without tube and filter. Top right panel: tube and Swagelok FW-2.0 filter (Table 2 provides detailed specifications), without rain cap. Bottom left panel: tube and three selected rain caps, without filter. Bottom right panel: tube, FW-2.0 filter and three selected rain caps.
Figure 4. Optimization of an intake particulate filter as determined by laboratory tests. Dotted grey boxes indicate approximate desirable ranges for a short-tube low-power implementation, requiring minimal corrections. Left panel: pressure drop of nine tested filters at different flow rates, without tube and rain cap (Table 2 provides detailed filter specifications). Please note the log-scale of y axis. Right panel: transfer function of five selected filters, without tube, rain cap, heating or insulation. Please note that y axis starts at 0.5. Bars indicate range from multiple experiments, where available, as described in Sect. 2.1.
Figure 5. Half-power frequencies of filter and rain cap combinations without tube for H$_2$O (left panel) and CO$_2$ (right panel) as determined by laboratory tests. Rain caps are NEON new (NN), LI-COR new (LN) and LI-COR old (LO). Filters are Swagelok FW-2.0, 3M/CUNO PP-2.5, 3M/CUNO PP-5.0, Pall AC-1.0 and ZenPure PF-0.1 (Table 2 provides detailed filter specifications). Values are determined by propagating combinations of individual filter and rain cap half-power frequencies (Table 3) through Eqs. (7)–(10). The shaded areas represent the standard error resulting from regression Eq. (7).
Figure 6. Example time series of the ambient air temperature and relative humidity during field test periods of different heating settings of the LI-7200 intake tube and filter, indicated by the dashed vertical lines. Top panel: ambient air temperature (T_a), LI-7200 cell inlet, outlet and block temperature (T_{in}, T_{out}, T_{block}, respectively) and differences thereof. The dashed horizontal line indicates a 5 °C threshold for the temperature gradient across the LI-7200 cell. Bottom panel: ambient relative humidity ($R\text{H}_\text{a}$), in the LI-7200 cell ($R\text{H}_{\text{cell}}$), and differences thereof. The period of missing data in mid-July corresponds to the water ingress occurred on 14 July 2013.
Figure 7. Ensemble transfer functions of LI-7200-measured H$_2$O number density relative to LI-7500 for different heater settings of the intake tube and filter (rows) and ambient relative humidity classes (columns). Shown are field results for the LI-COR old (LO) rain cap with and without heating of filter and intake tube, as well as for the LI-COR new (LN) rain cap for the 4 W heater setting, together with the respective ensemble sample size (N). Only half-hours with sensible heat flux > 50 W m$^{-2}$ are used to homogenize the sample size across different test periods.
Figure 8. Ensemble half-power frequencies of LI-7200-measured H$_2$O number density relative to LI-7500 as function of ambient relative humidity. Relative humidity classes without ensemble member are omitted. Left panel: field results for the LI-COR old (LO) rain cap without heating of filter and intake tube, as well as the LO and LI-COR new (LN) rain caps for the 4 W heater setting. Right panel: differences in half-power frequency between LO and LN rain caps with 4 W heating of filter and intake tube, and the LO rain cap without heating of filter and intake tube.