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Abstract. This study evaluates commonly used methods of extracting gravity wave induced temper-

ature perturbations from lidar measurements. The spectralresponse of these methods is characterized

with the help of a synthetic dataset with known temperature perturbations added to a realistic back-

ground temperature profile. The simulations are carried outwith the background temperature being

either constant or varying in time to evaluate the sensitivity to temperature perturbations not caused5

by gravity waves. The different methods are applied to lidarmeasurements over new Zealand and the

performance of the algorithms is evaluated. We find that the Butterworth filter performs best if grav-

ity waves over a wide range of periods are to be extracted fromlidar temperature measurements. The

running mean method gives good results if only gravity waveswith short periods are to be analyzed.

1 Introduction10

Atmospheric gravity waves are well known to have a strong impact on the middle atmospheric cir-

culation (e.g. Holton and Alexander, 2000; Fritts and Alexander, 2003). By transporting energy and

momentum from the lower atmosphere into the middle atmosphere they are responsible for the for-

mation of the cold polar summer mesopause (e.g. Lindzen, 1981). Although some processes related

to gravity waves are believed to be well understood there arestill open questions. For example, in15

how far gravity wave excitation, propagation and forcing isaffected by a changing climate remains

an open question (cf. Fritts and Alexander, 2003; Plougonven and Zhang, 2014).

Lidar technology has been used to study gravity waves in the middle atmosphere for the last three

decades (e.g. Chanin and Hauchecorne, 1981; Gardner et al.,1989; Wilson et al., 1991; Whiteway and Carswell,

1995; Duck et al., 2001; Rauthe et al., 2008; Yamashita et al., 2009; Alexander et al., 2011; Kaifler et al.,20

2015b). Hence, lidar studies can potentially be used to infer long-term trends in gravity wave activ-
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ity. Furthermore, lidars have the advantage of providing measurements throughout the entire middle

atmosphere with high temporal and vertical resolution of typically 1h and 1km. However, lidars

generally provide one dimensional profiles and no information on the horizontal structure and the

intrinsic properties of atmospheric waves can be retrieved. Exceptions are measurements from air-25

borne lidars and multi-beam lidars.

Gravity waves are usually determined from lidar measurements by separating an estimated back-

ground temperature (density) profile from the measured profiles in order to derive temperature (den-

sity) perturbation profiles. Several methods have been developed and used over the last decades. For

example Gardner et al. (1989), Rauthe et al. (2008) and Ehardet al. (2014) calculate a nightly mean30

profile and subtract it from the (time resolved) individual profiles. Yamashita et al. (2009) remove

a background profile determined by a temporal running mean (in addition to vertical filtering). Per-

turbation profiles obtained through a fit of polynomial functions to the measured profiles are exam-

ined e.g. by Whiteway and Carswell (1995), Duck et al. (2001) or Alexander et al. (2011). Mzé et al.

(2014) apply a variance method in order to determine perturbation profiles, while Chane-Ming et al.35

(2000) use spectral filtering.

All of these methods are most sensitive to different parts ofthe gravity wave spectrum. Thus, re-

sults from different lidar studies become hardly comparable because one cannot distinguish between

variations that are caused by a different methodology and variations that are geophysically induced.

Ehard et al. (2014) compared values of gravity wave potential energy density (GWPED) from dif-40

ferent studies to their results. Due to potential methodological biases it remained unclear whether

the differences were in fact of geophysical origin. Hence, they expressed the need for a standardized

method to extract gravity wave amplitudes from lidar measurements.

To our knowledge, no literature is so far available which characterizes and evaluates the most

commonly used methods to extract information on gravity waves from lidar profiles. Thus, we will45

evaluate and compare four methods in detail: subtraction ofthe nightly mean profile, subtraction of

temporal running mean profiles, the sliding polynomial fit method proposed by Duck et al. (2001)

and the application of a Butterworth filter. While the first twomethods rely on filtering in time, the

latter two methods apply a filter in space to determine wave induced temperature perturbations.

This paper is structured as follows: the four methods are described in detail in Sect. 2. The perfor-50

mance is studied in terms of their spectral response to synthetic data in Sect. 3. The results are then

applied to measurement data in Sect. 4. Finally, the characteristics of the four methods as well as

their suitability for extracting gravity wave induced temperature perturbations is discussed in Sect. 5

and conclusions are drawn in Sect. 6.
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2 Methods55

Lidar systems used for studies of the middle atmosphere measure the Rayleigh backscatter signal

which is proportional to atmospheric density after range correction. The temperature is
✿✿✿✿✿✿✿✿✿

commonly

retrieved by integration assuming hydrostatic equilibrium (Hauchecorne and Chanin, 1980).Derived

temperature
✿✿✿✿✿✿✿

Recently
✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿

Sica and Haefele (2015) proposed
✿

a
✿✿✿✿✿✿✿✿✿✿

temperature
✿✿✿✿✿✿✿

retrieval
✿✿✿✿

using
✿✿✿✿✿✿✿

optimal
✿✿✿✿✿✿✿✿✿

estimation

✿✿✿✿✿✿✿

methods.
✿✿✿✿

The
✿✿✿✿✿✿✿

derived
✿✿✿✿✿✿✿✿✿✿

temperature
✿

profiles typically range between 30 and 80–90km altitude de-60

pending on signal-to-noise ratio. At the upper boundary, the temperature retrieval is commonly

initalized with satellite data (e.g. Alexander et al., 2011) or resonance lidar measurements (e.g.

Rauthe et al., 2008).

The combination with a resonance lidar system extends the altitude range of temperature mea-

surements up to≈ 105 km. Temperatures below 30km altitude can be retrieved by using a strato-65

spheric Raman channel (e.g. Alpers et al., 2004). The large altitude range allows for studies of grav-

ity wave propagation from the troposphere to the mesosphere. Hence, we discuss the extraction

of gravity waves from temperature data rather than atmospheric density, although
✿✿✿✿

most
✿✿✿

of the re-

sults can be applied to density measurements as well.
✿✿

For
✿✿✿✿✿✿✿✿

different
✿✿✿✿✿✿✿

methods
✿✿✿

of
✿✿✿✿✿✿✿✿

extracting
✿✿✿✿✿✿✿

gravity

✿✿✿✿✿

waves
✿✿✿✿✿

from
✿✿✿✿✿✿

density
✿✿✿✿✿✿✿✿✿✿✿✿

measurements
✿✿✿✿

see
✿✿✿

e.g.
✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿

Sica and Russell (1999) ,
✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿

Thurairajah et al. (2010) and70

✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿

Mzé et al. (2014) .

Lidar studies usually determine wave induced temperature perturbationsT ′(z, t) (which are a func-

tion of altitudez and timet) from the measured temperature profileT (z, t) by subtracting a back-

ground temperature profileT0(z, t):

T ′(z, t) = T (z, t)−T0(z, t) . (1)75

T0(z, t) ideally contains all contribution from radiative and chemical heating and other large scale

effects such as planetary waves and tides. Hence, the temperature perturbationsT ′(z, t) should be

solely caused by gravity waves. Estimation ofT0(z, t) is challenging due to the specific shape of

the temperature profile with its changes in vertical temperature gradient, e.g. at the stratopause or

mesopause.80

The frequency range of gravity waves which may be present inT ′(z, t) can be inferred from the

gravity wave dispersion relation which states that the relation

N > |ω̂|> f (2)

between the intrinsic frequencŷω, the Brunt–Väisälä frequencyN and the Coriolis parameterf

must be fulfilled at all times. Using a typical stratosphericvalue ofN = 0.02 s−1 and a Coriolis85

parameter for mid-latitudes off = 10−4 s−1, the intrinsic period̂τ = 2π
ω̂

ranges between 5min

and 17h. It is important to note that the lidar only detects the observed periodτ which can be

Doppler shifted to larger or smaller values, depending on local wind conditions. Typical vertical

wavelengths of gravity waves measured by ground based instruments vary between 1 and 17km
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(see Chane-Ming et al., 2000, their Table 2). The spatial scales combined with the temporal scales90

define the spectral requirements on the methods of extracting gravity wave induced temperature

perturbations.

2.1 Time-averaged background profiles

A widely applied method is the use of the nightly mean temperature profile as background tempera-

ture profile (e.g Gardner et al., 1989; Rauthe et al., 2008; Ehard et al., 2014). Thereby it is assumed95

that the timescales of phenomena other than gravity waves affecting the temperature profile are con-

siderably larger and the timescales of gravity waves are smaller than the measurement period, which

is typically in the range of 3–12h.

Another common method is to determine background temperature profiles by means of a running

mean over a time window which is typically on the order of 3h (e.g. Yamashita et al., 2009). Tem-100

perature variations with timescales larger than the windowwidth are attributed to the background

temperature profiles and are therefore not included in the extracted gravity wave spectrum.

2.2 Sliding polynomial fit

Duck et al. (2001) proposed a method of extracting temperature perturbations based on a sliding

polynomial fit in the spatial domain. The method is sensitiveto small vertical scales and ignores the105

temporal evolution of waves. The method is based on the assumption that temperature variations with

large vertical scales can be attributed either to the climatological thermal structure of the atmosphere

(i.e. the different vertical temperature gradients in the troposphere, stratosphere and mesosphere),

the advection of colder or warmer air masses, or tides and planetary waves. Only variations with

a spatial scale smaller than a certain threshold are identified as gravity waves.110

The sliding polynomial fit method was designed to produce a background temperature profile

which contains all perturbations with vertical scales larger than 15km. For each measured temper-

ature profile Duck et al. (2001) applied a series of overlapping cubic polynomial fits to each range

gate. Each fit was applied to an altitude window with a width ofLf = 25 km. A weighted average

was computed to reconstruct the background temperature profile from the individual polynomial fits115

using the weighting function

w(z)i =























exp
(

z−(zc,i−δ)
γ

)

if z ≤ zc,i − δ

1 if zc,i − δ < z < zc,i + δ

exp
(

−
z−(zc,i+δ)

γ

)

if z ≥ zc,i + δ .

(3)

Hereδ = 0.5Lf −Lw, Lw is the width of the weighting window,zc,i the center altitude of the

individual fit andγ the e-folding width which defines how fast the weighting function decreases.

Duck et al. (2001) used a weighting window lengthLw = Lf

3 andγ = 3km.120
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Duck et al. (2001) smoothed the resulting background temperature profiles with a 1.5km boxcar

mean. These profiles were then subtracted from the corresponding measured temperature profiles

according to Eq. (1), yielding the temperature perturbation profiles.

In this study the following set of parameters is used: a fit lengthLf = 20 km, a weighting window

lengthLw = 3km and an e-folding widthγ = 9km. These parameters are chosen because they125

yield the flattest spectral response for the altitude resolution used in this study (see Sect. 5 for further

details). The boxcar smoothing showed to have a negligible effect. Hence, it is not applied in this

study.

2.3 Spectral filter

Another method which can be applied to vertical profiles is spectral filtering (e.g. Chane-Ming et al.,130

2000). By applying a high-pass filter to individual temperature profiles, temperature perturbations

can be retrieved. In order to yield perturbations caused by gravity waves, a filtering function has to

be chosen which has an adequate spectral response.

In this study we use a 5th order Butterworth high-pass filter with a cutoff wavelengthλc = 15 km

and the transfer function135

H(λz) =

(

1+

(

λz

λc

)2n
)

−
1

2

, (4)

wheren is the order of the filter andλz is the vertical wavelength. The Butterworth filter is cho-

sen due to its flat frequency response in the passband. The filter itself is applied in Fourier space.

As the Fourier transformation assumes a cyclic dataset, theupper and lower end of the measured

temperature profile are internally connected. This createsan artificial discontinuity which introduces140

a broad range of frequencies including frequency components that are in the passband of the filter.

These frequency components contribute to temperature perturbations at the upper and lower end of

the analyzed altitude window and thus artificially enhance gravity wave signatures. In order to miti-

gate this effect, the dataset is mirrored at the lowest altitude bin and attached to the original dataset

before the filtering process. Thereby, the dataset can be cyclic extended without discontinuities at145

the lower end, where temperature perturbations are smallest and therefore artificial enhancements

produce largest relative errors. After the filtering only the original half of the resulting perturbation

profile is retained.

3 Application to synthetic data

In order to characterize the different methods regarding their ability to extract temperature pertur-150

bations from middle atmospheric temperature profiles, we apply them to a synthetic dataset with

known temperature perturbations. These perturbations areadded to a fixed, realistic background

temperature profileT0(z). The latter is derived from the mean temperature profile above Lauder,
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New Zealand, (45.0◦ S, 169.7◦ E) measured with the Temperature Lidar for Middle Atmosphere re-

search (TELMA) from July until end of September (black line in Fig. 1a). The particular choice of155

the background temperature profile does not affect the results as long as the background temperature

profile is realistic, smooth and does not contain contributions from gravity waves. For example, with

a climatological or a model temperature profile, similar results can be derived.

Sinusoidal temperature perturbations with exponentiallyincreasing amplitude were added to the

background temperature profile according to160

Ts(z, t) = T0(z)+T ′

s(z, t), with (5)

T ′

s(z, t) =Acos

(

2πz

λz

+
2πt

τ

)

exp

(

z− z0
2H

)

, (6)

with the amplitudeA, the vertical wavelengthλz, the observed periodτ the scale heightH and the

lowest altitude of the analyzed altitude rangez0. An example of the perturbed background profileTs

can be seen in Fig. 1a (red line) and the corresponding temperature perturbationsT ′

s in Fig. 1b.165

For each method, the spectral responseRm(z) was calculated from the ratio between the time

averaged absolute values of the determined temperature perturbations|T ′

m(z, t)| and the synthetic

temperature perturbations|T ′

s(z, t)| as

Rm(z) =
|T ′

m(z, t)|

|T ′

s(z, t)|
· 100% (7)

A spectral response larger than 100% indicates an overestimation of gravity wave amplitude, while170

a value below 100% indicates an underestimation of gravity wave amplitude.

All simulations conducted for this study use the realistic set of parametersA= 1.2K, H = 12 km

andz0 = 25 km. A height resolution of∆z = 0.1 km was used, while the altitude interval ranged

from 25 to 90km. A time interval of 8h, corresponding to the length of an average nighttime mea-

surement period, with a resolution of∆t= 0.5 h was used. For each simulation eitherλz or τ was175

kept constant, while the other was varied. The vertical wavelengthλz was varied from 0.6 to 20km

in steps of 0.2km, while τ was varied from 0.15 to 14.95h in steps of 0.1h.

3.1 Constant background temperature

As a first step, simulations were carried out with a constant background temperature profileT0(z).

In order to reduce aliasing effects caused by even multiplesof the analyzed time window (8h), the180

period of simulated gravity waves was set toτ = 1.9 h while the vertical wavelengthλz was varied.

Figure 2 depicts the spectral response of the different methods as a function of vertical wavelength.

The nightly mean method (Fig. 2a) and the 3h running mean method (Fig. 2b) both exhibit an al-

most uniform spectral response at all altitudes and wavelengths. However, the running mean slightly

overestimates the extracted temperature perturbations.
✿✿✿✿✿

which
✿

is
✿✿✿✿

due
✿✿

to
✿✿✿

the
✿✿✿✿✿

choice
✿✿

of
✿✿

a
✿✿✿✿✿✿

specific
✿✿✿✿✿✿

period185

✿✿

of
✿✿✿✿✿✿

τ = 1.9 h
✿✿✿

(cf.
✿✿✿✿

Fig.
✿✿✿

3e).
✿

The sliding polynomial fit method (Fig. 2c) shows a reduced spectral re-

sponse for vertical wavelengths larger than≈ 13 km. For shorter vertical wavelengths the spectral
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response is close to 100% at most altitudes. Vertical wavelengths of≈ 9 km show a slight reduction

in spectral response over the entire altitude range. At the upper and lower 5km of the analyzed al-

titude window vertical wavelengths larger than 5km are strongly damped. The spectral response of190

the Butterworth filter (Fig. 2d) is very similar to the sliding polynomial fit. The main difference is

that the Butterworth filter exhibits no underestimation of temperature perturbations at 9km vertical

wavelength.

Figure 2e and f shows mean extracted temperature perturbations. The blue line (here underneath

the green line) depicts the original temperature perturbations added to the background temperature195

profile. As evident from Fig. 2e, the sliding polynomial fit method underestimates temperature per-

turbations at vertical wavelengths around 9km. In agreement with the filter design both vertical

filtering methods, the sliding polynomial fit and the Butterworth filter, show a decrease in extracted

temperature perturbations for vertical wavelengths larger than 13km. This decrease is almost lin-

ear with increasing vertical wavelength. As a consequence,amplitudes are effectively reduced by200

a factor of 3 atλz = 20 km.

In the first simulation setup the vertical wavelengthλz was varied, while the periodτ was kept

constant. We now proceed by varying the periodτ with a fixedλz = 6km (Fig. 3). The spectral

response of the nightly mean method (Fig. 3a) is close to 100% at all altitudes. Temperature pertur-

bations with periods larger than10 h are damped and periods around6 h are slightly underestimated.205

For τ = 15h the reduction in amplitude is≈ 20% (green line in Fig. 3e and f). Like the nightly

mean method, the 3h running mean (Fig. 3b) exhibits a uniform spectral responseat all altitudes.

However, waves with periods longer than 3.5h are strongly damped. At a period of 6h temperature

perturbations are underestimated by a factor of 2 and forτ = 2.5 h amplitudes are overestimated

by ≈ 20% (orange line in Fig. 3e and f). The spectral response of the filter for waves with shorter210

periods oscillates between over- and underestimation asτ approaches zero. In contrast, the sliding

polynomial fit method (Fig. 3c) and the Butterworth filter (Fig. 3d) both exhibit an almost uniform

spectral response for most periods. Only for very long periods the spectral response oscillates be-

tween over- and underestimation with increasing altitude,indicating a slight phase delay between

simulated and extracted temperature perturbations.
✿✿✿

This
✿✿✿✿✿✿✿✿✿

oscillation
✿✿

is
✿✿✿

not
✿✿✿✿

seen
✿✿

in
✿✿✿✿✿✿

Figure
✿✿

3e
✿✿✿

and
✿

f
✿✿✿✿

due215

✿✿

to
✿✿✿

the
✿✿✿✿✿✿✿

vertical
✿✿✿✿✿✿✿✿

averaging
✿✿✿✿

over
✿✿✿

10km.
✿

3.2 Varying background temperature

While in the previous section the simulated background temperature was kept constant, we now

examine the influence of a time dependent variation of the background temperature on the different

methods. Slow variations of the form220

T ′

0(z, t) = αt sin

(

2π (z− z0)

60km

)

exp

(

z− z0
H0

)

(8)
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were added to Eq. (5), whereα= 0.5Kh−1 is the heating/cooling rate andH0 = 65 km is the scale

height of the background temperature variation. This results in a warming of the stratosphere and

a cooling of the mesosphere over time, representing a very simplified effect of a propagating plane-

tary wave with a vertical wavelength of 60km. All other parameters are the same as before.225

Filter characteristics are shown for a varying vertical wavelength in Fig. 4. Compared to the steady

background simulations (e.g. Fig. 2), the nightly mean method exhibits an enhanced spectral re-

sponse around 35 and 65km altitude (Fig. 4a). From Fig. 4e it can be determined that thenightly

mean method overestimates temperature perturbations by roughly 25% between 30 and 40km al-

titude. No change in spectral response is detected for the 3h running mean method (Fig. 4b), the230

sliding polynomial fit method (Fig. 4c) and the Butterworth filter (Fig. 4d).

The filters exhibit similar characteristics if the gravity wave period is varied instead of the vertical

wavelength. The nightly mean method (Fig. 5a) overestimates temperature perturbations in the same

altitude bands as shown for the simulations with varying vertical wavelength (cf. Fig. 4a). The filter

characteristics of the 3h running mean method (Fig. 5b), the sliding polynomial fit method (Fig. 5c)235

and the Butterworth filter (Fig. 5d) are not affected by the varying background temperature.

4 Application to measurement data

Rayleigh lidar measurements at Lauder, New Zealand, (45.0◦ S, 169.7◦ E) were obtained with the

TELMA instrument from mid June to mid November 2014 (Kaifler et al., 2015a). We use temper-

ature data with a temporal resolution of 10min and a vertical resolution of 100m. The effective240

vertical resolution of the temperature data is 900m due to smoothing of the raw data before process-

ing. Measurement uncertainties are typically on the order of 2–3K at 70km altitude and generally

lower than 1K below 60km altitude.

4.1 Case study: 23 July 2014

A detailed analysis with the four different methods of extracting temperature perturbations is shown245

for the dataset obtained on 23 July 2014 in Fig. 6. This case was chosen because the gravity wave

analysis depicts many previously noted characteristics ofthe four methods.

The main features of the mean temperature profile (Fig. 6b) are the stratopause between 45 and

55km altitude withT ≈ 245K and the temperature minimum of approximately 200K at 73km al-

titude below a mesospheric inversion layer. The time evolution of the temperature measurements250

(Fig. 6a) shows an increase of the temperature at the stratopause and a jump in stratopause height

around 08:00UTC. Afterwards, the stratopause descends slowly. The structure of the mesospheric

inversion layer varies also over time with the minimum temperature below the inversion layer reach-

ing≈ 175K around 14:00UTC.
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The temperature perturbations as determined by the nightlymean method (Fig. 6c) exhibit a ver-255

tically broad maximum descending from about 80km altitude down to 50km altitude over the 12h

measurement period. Temperature perturbations within this descending maximum reach values of

up to±20K. Below 50km altitude temperature perturbations are generally on the order of±5K.

The 3h running mean method on the other hand (Fig. 6d) shows strongly tilted patterns. Below

50km altitude the phase lines tend to be steeper than above. The magnitude of the temperature260

perturbations generally increases with altitude from approximately±5K below 60km altitude to

approximately±15K above 60km altitude.

The sliding polynomial fit method (Fig. 6e) and the Butterworth filter (Fig. 6f) extract almost

identical patterns of temperature perturbations, with theButterworth filter inferring slightly larger

amplitudes. The phase lines in the Fig. 6e and f decrease moreslowly in altitude compared to the 3h265

running mean method. Below 60km altitude temperature perturbations are below±10K for both

filters and increase to±15K above 60km altitude.

4.2 Statistical performance

A quantity often used as a proxy for gravity wave activity is the gravity wave potential energy density

(GWPED) per mass270

Ep =
1

2

g2

N2

(

T ′

T0

)2

, with (9)

N2 =
g

T0

(

dT0

dz
+

g

cp

)

, (10)

whereg denotes the acceleration due to gravity andcp the heat capacity of dry air under constant

pressure, in addition to the previously defined variables. The mean GWPED is determined as the

average over one measurement period – typically 5–12h in our case – which is denoted by the275

overline in Eq. (9). Due to the decrease in density with altitude, GWPED per mass increases expo-

nentially with altitude in the case of conservative wave propagation. For a more detailed description

and physical interpretation of the GWPED see e.g. Rauthe et al. (2008) and Ehard et al. (2014).

From TELMA observations above New Zealand over the period 1 July 2014 to 30 September

2014 we determined the mean GWPED per mass using the four methods of gravity wave extraction280

discussed in this study (Fig. 7).
✿✿✿✿✿✿

Relative
✿✿✿✿✿✿✿✿✿✿✿

uncertainties
✿✿

of
✿✿✿

the
✿✿✿✿✿✿✿✿

GWPED
✿✿

for
✿✿✿

all
✿✿✿✿✿✿✿

methods
✿✿✿

are
✿✿

on
✿✿✿

the
✿✿✿✿✿

order

✿✿

of
✿✿✿✿

0.5%
✿✿

in
✿✿✿

the
✿✿✿✿✿✿✿✿✿✿

stratosphere
✿✿✿

and
✿✿✿✿✿✿✿

increase
✿✿

to
✿✿✿✿✿✿✿✿✿✿✿✿

approximately
✿✿✿

5%
✿✿

at
✿✿✿

80km
✿✿✿✿✿✿

altitude
✿✿✿✿✿

which
✿✿

is
✿✿✿✿✿✿✿✿✿✿✿

considerably

✿✿✿✿✿✿

smaller
✿✿✿✿

than
✿✿✿

the
✿✿✿✿✿✿✿✿

variations
✿✿

of
✿✿✿

the
✿✿✿✿✿✿✿✿

GWPED
✿✿✿✿

due
✿✿

to
✿✿✿

the
✿✿✿✿✿✿✿✿✿✿

geophysical
✿✿✿✿✿✿✿✿✿

variability. The absolute value of

the GWPED varies by as much as one order of magnitude dependingon which method is used. The

largest relative deviations appear in the lower stratosphere between the 3h running mean method and285

the Butterworth filter. Above 65km altitude all methods produce similar results. A distinct feature

of Fig. 7 is the larger growth of GWPED with altitude if the running mean method is used instead of

the vertical filtering methods. Additionally, the 3h running mean method yields the lowest GWPED

9



values. If a 4h running mean is used instead, the GWPED profile is shifted towards slightly larger

values. Below 45km altitude the nightly mean method produces values comparable to the sliding290

polynomial fit and the Butterworth filter. Above 45km altitude the nightly mean method shows the

largest values of all methods. The sliding polynomial fit andthe Butterworth filter produce generally

similar results, with the Butterworth filter yielding a slightly larger GWPED. Another striking feature

in Fig. 7 is theincreasein
✿✿✿✿✿✿✿

enhancedGWPED below 35km altitude which is detected by both vertical

filtering methods. Thisincrease
✿✿✿✿✿✿✿✿✿✿

enhancement
✿

is not detected by the running mean method.295

5 Discussion

5.1 Temporal filters

The nightly mean method has been applied in many studies (e.g. Gardner et al., 1989; Blum et al.,

2004; Rauthe et al., 2008; Ehard et al., 2014). The major disadvantage is that a varying length of

measurement periods results in a variation of the sensitivity to different timescales. This effect is300

clearly demonstrated in Fig. 3e showing that gravity waves with periods larger than 10h are sig-

nificantly underestimated if an 8h long timeseries is used. If the timeseries is shortened, thecutoff

period is smaller as well (not shown) and the spectral response for long period waves is reduced

even further. Strictly speaking, this implies that gravitywave analyses of timeseries of different

length cannot be compared.305

In practice measurement periods vary typically in length between a few hours up to a whole night

as weather conditions can change rapidly during an observational period. Moreover, there is a sea-

sonal dependency because most middle atmospheric lidars are capable of measuring in darkness

only. This results in shorter measurement periods in summerand longer measurement periods in

winter. Hence, the nightly mean method is sensitive to different parts of the gravity wave spectrum310

depending on weather conditions as well as season. For example, Rauthe et al. (2006) compared

winter and summer measurements of gravity wave activity determined by the nightly mean method.

Their winter measurementswererestrictedto observational
✿✿✿✿

They
✿✿✿✿✿✿✿✿

resolved
✿✿✿✿✿✿

gravity
✿✿✿✿✿

waves
✿✿✿✿

with
✿

peri-

ods of 1.5–12h andthesummermeasurementsto observationalperiodsof
✿✿✿✿✿

during
✿✿✿✿✿✿

winter
✿✿✿✿

and1.5–

3.5h
✿✿✿✿✿✿

during
✿✿✿✿✿✿✿

summer. Hence, Rauthe et al. (2006) limited their analysis to 3–5h long measurement315

periods in order to reduce the variation of the spectral response.

The use of the nightly mean method in gravity wave analysis isfurther complicated by the fact

that there are processes besides gravity waves which occur on similar timescales. For example tides

with periods of 8, 12 and 24h are within the sensitivity range of this method. In the analysis of

radar data, the removal of tidal signals is a standard procedure (e.g. Hoffmann et al., 2010). With320

lidar data, however, this is problematic due to generally shorter and often intermitted measurement

periods. Figure 6c shows an example of a tidal signal extracted with the nightly mean method. The

broad descending maximum in temperature perturbations is caused by the semidiurnal tide,
✿✿✿✿✿✿

which
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✿✿✿

was
✿✿✿✿✿✿✿✿✿

confirmed
✿✿

by
✿✿

a
✿✿✿✿✿✿✿✿✿

composite
✿✿✿✿✿✿✿

analysis
✿✿✿✿

over
✿✿✿✿✿✿

several
✿✿✿✿

days
✿✿✿✿

(not
✿✿✿✿✿✿

shown). Note, that the nightly mean

method is not a suitable method for tidal analysis. Tidal signals are generally extracted from lidar325

measurements by means ofa
✿✿✿

the
✿✿✿✿✿✿✿✿

previously
✿✿✿✿✿✿✿✿✿

mentioned
✿

composite analysis (e.g. Lübken et al., 2011).

The running mean method (e.g. Yamashita et al., 2009) tries to compensate for some of the short-

comings of the nightly mean method. The spectral response islimited to timescales on the order

of the window width of the running mean – which is typically 3h – resulting in the suppression

of tides and planetary waves. However, due to this limitation, only a very small part of the gravity330

wave spectrum is retained in the analysis (e.g. Fig. 3e). As stated previously, gravity wave periods

can range from about 5min to 17h. Thus the limitation to short timescales excludes a major part of

the gravity wave spectrum. Figure 7 shows that as the length of the running mean window increases,

the GWPED increases as well. Still, gravity waves with long periods are suppressed. Additionally,

the running mean method overestimates periods slightly shorter than the chosen window widthand335

showsaliasingeffectsfor evenshorter
✿✿✿✿

(Fig.
✿✿✿✿

3e).
✿✿✿

The
✿✿✿✿✿✿✿✿

strongly
✿✿✿✿✿✿✿✿✿

oscillating
✿✿✿✿✿✿✿

spectral
✿✿✿✿✿✿✿

response
✿✿✿

of
✿✿✿

the

✿✿✿✿✿✿

running
✿✿✿✿✿

mean
✿✿✿✿✿✿✿

method
✿✿✿

for
✿✿✿✿✿

shortperiods (Fig. 3e).
✿✿✿✿

arises
✿✿✿✿

due
✿✿

to
✿✿✿

the
✿✿✿✿✿✿

coarse
✿✿✿✿✿✿✿✿

temporal
✿✿✿✿✿✿✿✿

resolution
✿✿✿

of

✿✿✿

0.5
✿

h
✿✿✿✿

used
✿✿✿

in
✿✿✿

the
✿✿✿✿✿✿✿✿✿✿

simulations,
✿✿✿✿✿✿

which
✿✿

is
✿

a
✿✿✿✿✿✿

typical
✿✿✿✿✿✿✿✿

temporal
✿✿✿✿✿✿✿✿

resolution
✿✿✿

of
✿✿✿✿

lidar
✿✿✿✿✿✿✿✿✿✿✿✿✿

measurements.
✿✿

If
✿✿✿

the

✿✿✿✿✿✿✿

temporal
✿✿✿✿✿✿✿✿✿

resolution
✿✿

of
✿✿✿

the
✿✿✿✿✿✿✿✿✿✿

simulations
✿✿

is
✿✿✿✿✿✿✿✿

increased
✿✿✿✿✿

these
✿✿✿✿✿

sharp
✿✿✿✿✿

peaks
✿✿✿

for
✿✿✿✿✿✿✿

periods
✿✿✿✿✿✿

shorter
✿✿✿✿

than
✿✿

1
✿✿

h

✿✿✿✿✿

vanish
✿✿✿✿

(not
✿✿✿✿✿✿✿

shown).340

The beginning and the end of the measurement period poses an additional problem for the appli-

cation of the running mean method. At the beginning of the measurement period, a centered running

mean of 3h lacks the first 1.5h of observations necessary for determining the background tempera-

ture. Thus, if in the beginning of the measurement only 1.5h of data are available for averaging, the

spectral response differs at the beginning of the measurement period compared to later times when345

3h of measurements are available. The same is true at the end of the measurement period as well as

in the presence of measurement gaps. Thus, when requiring the same spectral response at all times,

the “spin-up” time of the running mean method would have to bediscarded. However, this would re-

sult in a significantly reduced dataset because one window width of data would have to be discarded

from each measurement period, in addition to another windowwidth for each measurement gap.350

Note that the resolved high frequency range of the gravity wave spectrum is limited by the sam-

pling frequency of the lidar system which ranges typically between 10min and 1h, depending on

lidar performance. This is a fundamental limitation to the extractable part of the gravity wave spec-

trum which affects all methods of extracting gravity wave induced temperature perturbations in the

same way. The same holds true for the effective vertical resolution of the temperature profiles.355

5.2 Spatial filters

Filtering in the spatial domain, either by using the slidingpolynomial fit or the Butterworth filter,

has the advantage that the spectral response in the time domain is independent of the length of

the measurement period and the presence of measurement gaps. This makes it possible to derive
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temperature perturbations associated with gravity waves from observational periods which are too360

short to yield meaningful results if temporal filtering methods are applied. In addition, both spatial

filtering methods are capable of detecting waves with periods larger than 12h (Fig. 3c and d).
✿✿✿✿

One

✿✿✿✿✿✿✿✿✿✿

disadvantage
✿✿✿

of
✿✿✿✿

both
✿✿✿✿✿✿

spatial
✿✿✿✿✿✿

filtering
✿✿✿✿✿✿✿✿

methods
✿✿

is
✿✿✿

the
✿✿✿✿✿✿✿✿✿

dampening
✿✿

of
✿✿✿✿✿✿✿

vertical
✿✿✿✿✿✿✿✿✿✿

wavelengths
✿✿✿✿✿✿

larger
✿✿✿✿

than

✿

5km
✿

at
✿✿✿

the
✿✿✿✿✿

upper
✿✿✿

and
✿✿✿✿✿

lower
✿✿✿✿✿

edge
✿✿

of
✿✿✿

the
✿✿✿✿✿✿✿

analyzed
✿✿✿✿✿✿✿

altitude
✿✿✿✿✿✿✿

window
✿✿✿

due
✿✿

to
✿✿✿✿

edge
✿✿✿✿✿✿✿

effects.

The sliding polynomial fit has been applied in several studies (e.g. Duck et al., 2001; Alexander et al.,365

2011; Kaifler et al., 2015b). Different authors use temperature data with different altitude resolu-

tions and slightly different parameter setups forLf , Lw andγ. The fit lengthLf determines the

cutoff wavelength of the spectral response. The weighting window lengthLw and the e-folding

width γ must be adapted to the altitude resolution of the data used. For example, the parameter setup

γ = 3km andLw = Lf/3 used by Duck et al. (2001) results in a flat spectral response for their alti-370

tude resolution of∆z = 2km and fit lengthLf = 25 km. If a different altitude resolution is chosen,

a different set of parameters is needed in order to achieve a flat spectral response in the passband.

For the altitude resolution of∆z = 0.1 km used in this study, a flat spectral response was found for

γ = 9km andLw = 3km.
✿✿✿✿✿✿✿✿

However,
✿✿✿✿✿✿

vertical
✿✿✿✿✿✿✿✿✿✿✿

wavelengths
✿✿

of
✿✿✿

≈ 9 km
✿✿

are
✿✿✿✿

still
✿✿✿✿✿✿

slightly
✿✿✿✿✿✿✿✿✿✿✿✿✿

underestimated

✿✿✿✿

with
✿✿✿

this
✿✿✿✿✿✿✿✿✿

parameter
✿✿✿

set.
✿

The fit length ofLf = 20 km was chosen following Kaifler et al. (2015b).375

Additional high-pass filtering, as applied by Alexander et al. (2011) or Kaifler et al. (2015b), was

found to be unnecessary because the long vertical wavelengths are already strongly suppressed by

the sliding polynomial fit itself.

The sliding polynomial fit method is sensitive to large changes of the temperature gradient and

may falsely overestimate temperature perturbations for example in the presence of mesospheric in-380

version layers (not shown). The Butterworth filter tends to overestimate sudden changes in the tem-

perature gradient of the measured temperature profile as well. However, the magnitude of the overes-

timation is generally lower than for the sliding polynomialfit method. Furthermore, the Butterworth

filter has the advantage that it can be easily adjusted if a different cutoff wavelength is desired.

5.3 Application to measurement data385

All the previously discussed characteristics influence thegravity wave spectrum which is extracted

from lidar temperature measurements. This becomes visibleif the mean GWPED of a set of mea-

surements is computed using different methods as shown in Fig. 7. The running mean method ex-

tracts only a small part of the gravity wave spectrum and thusshows the lowest GWPED values.

The GWPED increases if the window width of the running mean is increased. The nightly mean390

method yields the largest GWPED values at higher altitudes. This can be attributed to the insuffi-

cient suppression of tides and other processes unrelated togravity waves which happen on longer

timescales. In the lower stratosphere the sliding polynomial fit method and the Butterworth filter

yield the largest GWPED values. This is most likely caused by the inclusion of long period waves

such as quasi-stationary mountain waves. These waves have the largest impact on GWPED in the395
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lower stratosphere above Lauder during winter (Kaifler et al., 2015a). Above 30km altitude GW-

PED values are reduced. A possible mechanism is that mountain waves with very large amplitudes

become unstable at these altitudes and break. This has for example been observed by Ehard et al.

(2015) who detected a self-induced critical layer around 30km altitude caused by a strong mountain

wave event above northern Scandinavia.400

The fact that the Butterworth filter exhibits a lower growth rate of GWPED compared to the run-

ning mean method (Fig. 7) mayby
✿

be
✿

evidence that short period gravity waves can propagate more

easily to higher altitudes than gravity waves with long periods. This complicates the comparison

and interpretation of GWPED growth rates (generally expressed in terms of scale heights) of dif-

ferent studies. For example Rauthe et al. (2006) deduced a GWPED scale height of 9–11km with405

the nightly mean method for a mid-latitude site. On the otherhand, Kaifler et al. (2015b) reported

a GWPED scale height of approximately 7km determined with the sliding polynomial fit method

for measurements conducted at Antarctica. A large part of the difference in retrieved scale height

can be attributed to different wave propagation conditionsat the two sites. However, it remains an

open question in how far the results are affected by the use ofdifferent methods to extract gravity410

waves.

6 Conclusions

We evaluated four commonly used methods of extracting gravity wave induced temperature per-

turbations from lidar measurements. A widely used method – the nightly mean method – relies on

filtering in time by subtraction of the nightly mean temperature. Thereby, it is sensitive to all temper-415

ature changes occurring on the timescale of the measurementperiod including temperature changes

induced by planetary waves and tides. Because measurement periods can vary substantially in length

and the spectral response of the nightly mean method dependson the length of the measurement pe-

riod, the extracted gravity wave spectrum can vary from observation to observation. This makes the

nightly mean method an improper choice for compiling gravity wave statistics
✿

if
✿✿

a
✿✿✿✿✿✿

dataset
✿✿✿✿

with
✿✿

a420

✿✿✿✿✿✿

varying
✿✿✿✿✿✿

length
✿✿

of
✿✿✿✿✿✿✿✿✿✿✿

observational
✿✿✿✿✿✿

periods
✿✿

is
✿✿✿✿✿✿✿✿

analyzed.

The second method which relies on filtering in time, the running mean method, provides a more

stable spectral response with regard to a varying length of the measurement period. However, it

extracts only a small fraction of the gravity wave spectrum,with long period waves being strongly

suppressed. Moreover, the running mean method exhibits a variation in the spectral response at the425

beginning and end of a measurement period as well as in the presence of measurement gaps.

The sliding polynomial fit method is not only capable of extracting waves over a broad range of

temporal scales but also suppresses tides and planetary waves due to their large vertical wavelengths.

In addition, it is unaffected by measurement gaps. However,the parameters used for the sliding
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polynomial fit need to be adjusted to the altitude resolutionof the measured temperature profiles in430

order to provide a flat spectral response in the passband.

The Butterworth filter provides an alternative to the sliding polynomial fit method which is not

only easy to implement but also easily adjustable to a desired cutoff wavelength. Also, the filter

is largely independent of the altitude resolution while providing all the advantages of the sliding

polynomial fit method. Furthermore, sudden changes in the background temperature gradient affect435

the Butterworth filter less than the sliding polynomial fit method.

Based on the results presented here, two methods are recommended for gravity wave extraction

from lidar temperature measurements
✿✿✿✿✿✿✿

covering
✿

a
✿✿✿✿✿

large
✿✿✿✿✿✿✿

altitude
✿✿✿✿✿

range: the running mean method is

the most suitable method if the analysis is focused on short period gravity waves with large vertical

wavelengths. On the other hand, if a broad passband is desired which covers a large part of the440

gravity wave spectrum, the Butterworth filter is the method of choice. Additional advantages are

the insensitivity to measurement gaps, a varying length of observational periods and the altitude

resolution of the measured temperature profile.
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Figure 1. (a) Background temperature profileT0 used for the simulations (black) and perturbed temperature

profileT (red). (b) The temperature perturbationsT
′ added toT0. Temperature perturbations in both panels were

constructed using Equation 6 with the following set of parameters:t= 4 h,A= 1.2 K, λz = 6 km, τ = 1.9 h,

H = 12 km.
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Figure 2. Spectral response of different methods of determining temperature perturbations as a function of

vertical wavelengthλz: Nightly mean (a), 3 h running mean (b), sliding polynomial fit (c) and Butterworth

filter (d). Panels (e) and (f) depict mean extracted temperature perturbations between 30–40 km (e) and 50–

60 km (f) as well as the simulated temperature perturbations (blue line). The different methods are color coded

as follows: Nightly mean – green, 3 h running mean – orange, sliding polynomial fit – red, Butterworth filter

– black. Please note that the blue line in this case lies exactly underneath the green line. All simulations were

carried out withτ = 1.9 h and a background temperature profile constant in time.
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Figure 3. Same as Figure 2 but as a function of periodτ . All simulations were carried out with a fixed vertical

wavelength of 6 km and a background temperature profile constant in time. Note that the blue and black lines

in panels (e) and (f) are lying on top of each other.
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Figure 4. Same as Figure 2 but with a varying background temperature (see Section 3.2 for details).
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Figure 5. Same as Figure 3 but with a varying background temperature (see Section 3.2 for details).
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Figure 6. Temperature (a), mean temperature profile (b) and derived temperature perturbations obtained by

different methods (c)–(f) over Lauder, New Zealand, (45.0◦ S, 169.7◦ E) on 23 July 2014. The following

methods were used for the different panels: Nightly mean (c), 3 h running mean (d), sliding polynomial fit (e),

Butterworth filter (f). Time is given in UTC.
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Figure 7.Mean gravity wave potential energy density (GWPED) per mass over Lauder, New Zealand, (45.0◦ S,

169.7◦ E) between 1 July and 30 September 2014. The methods used to determinethe GWPED are color coded.

The profiles were smoothed by a vertical running mean with a window width of 3 km.
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