Online technique for isotope and mixing ratios of CH\textsubscript{4}, N\textsubscript{2}O, Xe and mixing ratios of organic trace gases on a single ice core sample

J. Schmitt, B. Seth, M. Bock, and H. Fischer

Climate and Environmental Physics, Physics Institute & Oeschger Centre for Climate Change Research, University of Bern, Switzerland

Received: 13 December 2013 – Accepted: 14 February 2014 – Published: 3 March 2014

Correspondence to: J. Schmitt (schmitt@climate.unibe.ch)

Published by Copernicus Publications on behalf of the European Geosciences Union.
Abstract

Polar ice cores enclosing trace gas species offer a unique archive to study changes in the past atmosphere and in terrestrial/marine source regions. Here we present a new online technique for ice core and air samples to measure a suite of isotope ratios and mixing ratios of trace gas species on a single small sample. Isotope ratios are determined on methane, nitrous oxide and xenon with reproducibilities for ice core samples of 0.15 ‰ for δ^{13}C-CH$_4$, 0.22 ‰ for δ^{15}N-N$_2$O, 0.34 ‰ for δ^{18}O-N$_2$O, and 0.05 ‰ for δ^{136}Xe. Mixing ratios are determined on methane, nitrous oxide, xenon, ethane, propane, methyl chloride and dichloro-difluoromethane with reproducibilities of 7 ppb for CH$_4$, 3 ppb for N$_2$O, 50 ppt for 136Xe, 70 ppt for C$_2$H$_6$, 70 ppt for C$_3$H$_8$, 20 ppt for CH$_3$Cl, and 2 ppt for CCl$_2$F$_2$. The system consists of a vacuum extraction device, a preconcentration unit and a gas chromatograph coupled to an isotope ratio mass spectrometer. CH$_4$ is combusted to CO$_2$ prior to detection while we bypassed the oven for all other species. The highly automated system uses only \sim 160 g ice, equivalent to \sim 16 mL air, which is less than previous methods. This large suite of parameters on a single ice sample is new and helpful to study phase relationships of parameters which are usually not measured together. A multi-parameter dataset is also key to understand in situ production processes of organic species in the ice, a critical issue observable in many organic trace gases. Novel is the determination of xenon isotope ratios using doubly charged Xe ions. The attained precision for δ^{136}Xe is suitable to correct the isotopic ratios and mixing ratios for gravitational firn effects, with the benefit that this information is derived from the same sample. Lastly, anomalies in the Xe mixing ratio, δXe/air, can be used to detect melt layers.

1 Introduction

The analysis of atmospheric trace gases and their stable isotopic ratios on air archived in ice cores is fundamental to reconstruct and understand the composition of the
atmosphere of the past. Of special interest are studies dealing with the greenhouse gases CO₂, N₂O, and CH₄ due to their radiative forcing. While the long-term temporal changes of their mixing ratios during the past 800 kyr (1 kyr = 1000 years) are broadly known, and in more detail for the last 140 kyr (Loulergue et al., 2008; Lüthi et al., 2008; Schilt et al., 2010), untangling the processes driving these changes remains a challenge. Here, the stable isotopic signatures help to track changes in the atmospheric budget, i.e. distinguish among sources and sink processes (Sowers et al., 2003; Ferialdi et al., 2005; Bock et al., 2010b; Schmitt et al., 2012). For example, N₂O emitted from the ocean is enriched in both δ¹⁵N and δ¹⁸O compared to emissions from terrestrial ecosystems (Rahn and Wahlen, 2000); likewise CH₄ emitted from biomass burning carries a heavy δ¹³C signature compared to microbial CH₄ (Whiticar and Schaefer, 2007). Again, for CO₂, organic carbon derived from terrestrial and marine ecosystems is strongly depleted compared to the carbon dissolved in the ocean. On the other hand, the wide natural variability of a particular source signature often leads to overlaps among sources, and source signatures may change through time (Möller et al., 2013). Besides these traditional trace gases at ppm (CO₂) or ppb levels (CH₄ and N₂O), atmospheric trace gases in the ppt level, like CO, ethane, propane or methyl chloride, are currently being explored in firn (Aydin et al., 2011; Worton et al., 2012) and ice core studies (Saltzman et al., 2009; Wang et al., 2010; Verhulst et al., 2013). Although these ppt-level gases do not significantly influence climate via the greenhouse effect, they act indirectly, e.g. modifying the lifetime of CH₄ via atmospheric chemistry. Trace gases like ethane, propane, and methyl chloride are predominantly emitted by plants and biomass burning (Pozzer et al., 2010; Xiao et al., 2010). Although not entirely specific for a certain emission type, these trace gases help to constrain possible scenarios in conjunction with other gas species and proxies. For example, methyl chloride shares similarities with CH₄, as the sources of methyl chloride are also located mostly in tropical regions and the life times of both gases are determined by tropospheric OH as their dominant sink. A challenge for most ppt-level gases and so far limiting their full usage in ice core research is the fact that production of these species in the ice itself (in situ
production) complicates the atmospheric reconstruction (Aydin et al., 2007; Faïn et al., 2013). Like in the case of CO₂, where records from Greenland ice cores have been shown to be obscured by in situ production (Tschumi and Stauffer, 2000), conditions favouring in situ production for N₂O, CH₄, and trace gases like ethane, propane, and methyl chloride have to be identified.

To analyse isotopes of CH₄ and N₂O on ice core samples, several methods using different extraction techniques have been developed (Sowers et al., 2005; Schaefer and Whiticar, 2007; Behrens et al., 2008; Melton et al., 2011; Sapart et al., 2011; Sperlich et al., 2013). In contrast, only a few techniques for ice core samples have been established to analyse trace gas species at the ppt level, such as for ethane, propane, and methyl chloride (Aydin et al., 2002; Saito et al., 2006; Aydin et al., 2007). Here, we present a new, multi-parameter method to simultaneously measure the mixing ratios and stable isotopic ratios of CH₄ and N₂O, the mixing ratios of ethane, propane, and methyl chloride and, additionally, the mixing ratio and isotopic ratio of Xe. This large suite of parameters requires a sample size of only ~ 160 g ice, which is considerably less than previous methods: a great asset in ice core research, where sample availability is highly limited. Besides sample consumption, deriving all parameters on the same sample is crucial to identify processes within the ice, like in situ production of trace gas species. For CH₄, these processes have been shown to occur in core sections affected by surface melting (NEEM community members, 2013) or are associated to sharp spikes associated with aerosol events from biomass burning (Rhodes et al., 2013). In both cases sample size is a critical parameter, and the combined knowledge from many gas species is crucial to identify the underlying processes affecting the archived atmospheric composition of the particular ice core sections.

2 Experimental set-up

Our set-up allows for quantitative extraction and measurement of a large suite of gas species (isotope ratios and/or mixing ratios) in ice and air samples. The set-up shown in 2020
Fig. 1 comprises a custom-built online preconcentration system, combining a vacuum melt-extraction and a trapping line (Sect. 2.1) including a gas chromatographic separation line (Sect. 2.2). Via an open split this unit is coupled with the detection system, an isotope ratio mass spectrometer (IRMS) described in Sect. 2.3.

2.1 Vacuum extraction and trapping line

The extraction and trapping of the enclosed air of ice samples is carried out under vacuum conditions. The target gases are separated from H$_2$O, CO$_2$, and bulk air components (N$_2$, O$_2$, Ar) using individual trapping steps.

2.1.1 Sample vessel and melting device

Our sample vessel (∼350 mL, DN63CF, MCD Vacuum Ltd., UK; Fig. 2) consists of a rounded-bottom glass part and a stainless steel (SST) flange and holds up to 260 g ice. A capillary (SST, o.d. 1/16″, i.d. 0.030″) reaching the bottom of the vessel provides the inlet for the reference gas and purge-He (Fig. 2). The vessel can be placed into a cooling-melting device – a plexiglas cylinder that can be automatically cooled to freezing temperatures using a liquid nitrogen (LN$_2$) pump (Schmitt, 2006; Schmitt et al., 2011) or heated using infrared radiation to melt the ice. An insulating styrofoam lid and fan guarantee a homogeneous temperature distribution throughout the cylinder.

The sample vessel can be bypassed using a 1/16″ capillary (SST, i.d. 0.030″). The bypass is used for reference gas measurements and air samples and allows tests in which the sample vessel is excluded from the flow path. These gases pass an SGE valve (SGE Analytical Sciences Pty. Ltd., Australia; Fig. 1), which allows us to simulate different sample sizes by changing the time the valve is opened.

2.1.2 Ice melting and trapping processes

The ice is melted using infrared radiation (Fig. 2). As a precaution against possible photochemical reactions of ultraviolet (UV) light with organic material (Vigano et al., 2009), 2021
the short wave part of the emitted light, $\sim<600\text{nm}$, is absorbed by a UV blocker foil (Schmitt et al., 2011). During the melting process, which lasts $\sim24\text{ min}$, valves V1, V3, and V5 (diaphragm sealed valves, Swagelok) are open (Fig. 1). The released air is dried by freezing out water vapour in the water trap (SST tubing, o.d., $1/4''$, 8 cm long, i.d. 0.209'') held at -80°C. Between the sample vessel and the water trap we installed a restriction (SST, length 3 cm, i.d. 0.030'') to adjust the conductivity. We set it to optimise pumping efficiency while limiting excessive water from entering the water trap. Low pressure is the main advantage of continuous vacuum extraction compared to melting under He overpressure and is necessary to extract gases with high Henry coefficients at high extraction efficiency (Kawamura et al., 2003; Sperlich et al., 2013). During the melting of the ice sample the total pressure in the vessel (sum of partial pressures of H_2O and air) ranges between 12 mbar at the start and 7 mbar at the end. As the water temperature is close to 0°C, resulting in a $p_{\text{H}_2\text{O}}$ of around 6 mbar, the partial pressure of air in the vessel is in the range of only 1 to 6 mbar. For comparison, melt extraction techniques, which melt the ice under He overpressure with closed valves (e.g. Behrens et al., 2008 and Bock et al., 2010a), produce air partial pressures ~20 times larger than our values. Equally important to minimise the dissolution of gases into the water during melting is the total pressure as it determines the internal pressure of the rising bubbles in the meltwater.

Sample CO_2 is removed from the air stream by an Ascarite trap (10–35 mesh, Sigma-Aldrich, in 6 cm $1/4''$ SST tubing, i.d. 0.085''). All other gases, besides He and Ne, are trapped on our AirTrap at -180°C (SST, 12 cm, o.d. $1/8''$, i.d. 0.085'' filled with activated carbon). During the melting process valves V2, V4, and VL1 remain closed. At the end of the melting process the sample vessel is cooled to $+3^\circ\text{C}$ to keep the water vapour pressure low. He is then sent to flow through via the SGE valve into the bottom of the vessel (“purge-He”, Fig. 1) and bubbled through the meltwater for approximately 14 min at a flow rate of 4 mL min^{-1} at STP (standard temperature and pressure); VL1 and VL3 are open. We thereby we expel the remaining air from the vessel headspace and the tubing towards the AirTrap to achieve quantitative collection.
Simultaneously, the *AirTrap* is heated to a temperature of $-78^\circ C$ to keep the gases of interest adsorbed on the activated carbon while the bulk air components (N$_2$, O$_2$, and Ar) are flushed out with the He flow. The extraction and trapping step ends when the *AirTrap* is switched into the GC line using valve 1 (Fig. 1; 6-port Vici Valco, Vici AG International, Switzerland).

2.1.3 Re-collection of the bulk air

Determining the amount of air corresponding to the trace gas species is necessary in order to calculate atmospheric mixing ratios of these species (additionally, we calculate mixing ratios based on Xe, see Sect. 4.3). The amount of air trapped within the ice sample is also used to calculate the total air content of the ice (Raynaud and Lebel, 1979). To this end, the bulk air leaving the *AirTrap* at $-78^\circ C$ is re-collected on the *air volume trap* at $-196^\circ C$ (SST tubing, 8 cm, o.d. 1/4", i.d. 0.209", filled with activated carbon; Fig. 1). Afterwards, the trap is isolated (VL1 and VL3 closed), heated to $+80^\circ C$, and the released gas is expanded into a thermally insulated 2-L volume by opening VL2. When the pressure reading is stable, pressure and temperature are read out, and mixing ratios of measured gas species are calculated vs. Σ_{air}, the sum of the bulk air components N$_2$, O$_2$, and Ar (see Sect. 4.4).

2.2 GC separation line

The GC line constitutes the continuous-flow part of our set-up (Fig. 1). Helium with 99.9990% purity (Alphagaz I He; Carbagas, Gümligen, Switzerland) is used as carrier gas, and we further purify it using a high-capacity gas purifier, an inline gas purifier (both Supelco, Bellefonte, USA), and a custom made *purifier trap* held at $-196^\circ C$ (SST, 30 cm, o.d. 1/4", i.d. 0.209", filled with activated carbon). The *purifier trap* is held at $-196^\circ C$ during the week and warmed over the weekend for cleaning. The flow of the GC line is set to 1.0 mL min$^{-1}$.
When most of the bulk air components have been flushed from the AirTrap, valve 1 is switched from the vacuum line to the GC line, and the AirTrap is heated to 100°C. The released gases are focussed for 22 min on the cryofocus trap \((l = 90 \text{ cm}, \text{i.d. } 0.32 \text{ mm})\) GC-CarbonPlot, Agilent Technologies, USA) held at −115°C. At this temperature the gases of interest are trapped while residual \(\text{N}_2\), \(\text{O}_2\), and \(\text{CO}\) are flushed into the GC.

Upon lifting the cryofocus trap, the gases of interest are released at \(\sim 80\)°C and transferred to the GC column (30 m GC-CarbonPlot). Compounds with a high affinity to the CarbonPlot column at 80°C, like drill fluid, stay on the cryofocus trap (see Sect. 2.2.1). The GC temperature is held at 30°C throughout the detection of \(\text{CH}_4\), \(\text{N}_2\text{O}\), and \(\text{Xe}\). For the organic ppt-level species, temperature is increased at a rate of ca. \(11\)°C min\(^{-1}\). The separated species leave the GC column at increasing retention time summarised in Table 1.

By switching valve 6 during the GC run, only \(\text{CH}_4\) and \(\text{Kr}\) enter the loop containing the combustion furnace, as only \(\text{CH}_4\) has to be oxidised to \(\text{CO}_2\) prior to detection (Fig. 1). The construction of the combustion furnace is based on Bock et al. (2010a) with a ceramic tube filled with one wire each of Cu, Ni, and Pt (all wires are 0.1 mm o.d., Alfa Aesar, UK) and operated at \(940\)°C. We re-oxidise the combustion furnace every morning using the oxygen of the reference gas (Boulder). Since \(\text{Kr}\) has almost the same retention time in our system as methane, and doubly charged krypton \((^{86}\text{Kr}^2+ = m/z 43)\) interferes with the \(\text{CO}_2\) measurement producing erroneous results, these gases have to be separated (Schmitt et al., 2013). To provide sufficient separation between \(\text{CH}_4\)-derived \(\text{CO}_2\) and \(\text{Kr}\), a LN\(_2\)-trap (“S2”, untreated fused silica capillary) is installed behind the outlet of the combustion furnace (Fig. 1). Here, the \(\text{CH}_4\)-derived \(\text{CO}_2\) is trapped at \(−196\)°C while \(\text{Kr}\) passes and enters the ion source well before the \(\text{CH}_4\)-derived \(\text{CO}_2\) (Schmitt et al., 2013). A second LN\(_2\)-trap (“S1”, untreated fused silica capillary) was installed before the combustion furnace to remove background \(\text{CO}_2\) while \(\text{CH}_4\) passes the trap. All other gases bypass the combustion furnace via valve 6 (Fig. 1).
To remove water vapour prior to the mass spectrometric detection, e.g. water formed from the combustion of methane, the He flow passes a cold trap (30 cm fused silica capillary, i.d. 0.32 mm, −70 °C).

2.2.1 Dealing with drill fluid residues

Deep ice cores are drilled with the help of so-called drill fluids, which are usually a mixture of hydrocarbons, e.g. kerosene and a densifier. The widely used densifier in the EPICA projects, at NGRIP and Talos Dome is HCFC-141b or C₂H₃Cl₂F (Augustin et al., 2007). Problems during the analysis of ice cores caused by traces of drill fluid, which are enclosed in the ice during the drilling process are widespread and compromise the results of isotopic and trace gas measurements (Aydin et al., 2007; Schmitt et al., 2011; Rubino et al., 2013). During our first ice core measurements we encountered several instances of drill fluid contaminated samples, which led to baseline distortions and changes in the retention time of the species. Once in the GC, removing them is a tedious task. Therefore, a 6-port valve was installed, which prevents the drill fluid from entering the GC column in the first place (Fig. 1, valve 5). Valve 5 serves as a bypass for the GC flow. Once the gases of interest have been transferred from the heated cryofocus trap, valve 5 is switched to backflush the trap and to send the drill fluid to the vent. To achieve this, the cryofocus trap is heated to 160 °C using an infrared lamp (OSRAM, Augsburg, Germany). While this procedure removes the largest fraction of drill fluid components, a harmless, small part may still make its way into the GC and is monitored using its m/z 45 fragment C₂H₂F⁺ in the run No. 7 (Table 1).

2.3 Inlet system and mass spectrometer

2.3.1 Inlet system

The GC system is connected to the mass spectrometer via an open split to introduce a constant fraction of sample. The inner diameter and length of the inlet capillary...
(fused silica, i.d. 100 µm, length 150 cm) controls the flow rate to the ion source (ca. 0.3 mL min\(^{-1}\)). In routine operation the vacuum in the source chamber of the mass spectrometer is 2.6 \times 10^{-6} \text{ mbar}. A reference inlet system controls the injection of pure CO\(_2\) and N\(_2\)O gas pulses into the mass spectrometer via SGE valves and a second inlet capillary (reference gas box, Elementar, Hanau, Germany), and a fraction is sucked into the ion source. The pure CO\(_2\) (“Quellkohlenäsure”, Messer AG, Switzerland) has \(\delta^{13}\text{C}\) and \(\delta^{18}\text{O}\) values of \(-44.300 \pm 0.005 \text{%o}\) vs. VPDB and 30.807 \pm 0.067 \text{%o}\) vs. VSMOW, respectively (dual inlet measurements performed by P. Nyfeler). For the N\(_2\)O gas (“N\(_2\)O for medical use”, Carbagas, Switzerland) the isotopic composition is unknown and both \(\delta\)-values are set to 0.00 \pm 0.00 \text{%o}. In addition to serving as preliminary reference for the sample peaks, the on/off peaks admitted through this reference gas box are used to monitor the performance of the mass spectrometer and to correct for temporal drifts, where appropriate. Besides CO\(_2\) and N\(_2\)O, rectangular Xe pulses (1.00 \% Xe in He) are injected with our modified reference gas box to provide a reference for the Xe sample peak.

2.3.2 Continuous-flow IRMS

For the continuous-flow analyses we use an Isoprime IRMS (Elementar, Hanau, Germany). Our Isoprime is equipped with a universal triple collector plus two additional cups to monitor \(m/z\) 28 and 32, the N\(_2\)-cup and O\(_2\)-cup, respectively; details are described in Schmitt et al. (2013). This cup configuration allows for various source settings to analyse gas species of up to \(m/z\) 85 and, by chance, isotope analysis of doubly charged Xe isotopes.

The measurement of several gas species on a single sample requires that the IRMS is operated with different source tuning parameters and magnet current settings to accommodate the different \(m/z\) requirements. For each species or group of species a dedicated set of IRMS parameters and IonVantage scripts is selected, subsequently referred to as a run. To measure all species of a sample, we consecutively start individual runs, each run framing the peaks of the respective gas species (see Fig. 3).
Between the individual runs the IRMS source parameters are adjusted, requiring about 30 s to jump from one source setting to the next. Depending on the application, a sample measurement comprises a sequence of up to 7 runs (Table 1). The detection of Xe and CCl₂F₂ (run 2 and 6) requires that the magnet current is increased from its default value, 4000 nA, used for the CO₂-N₂O run, to 4800 nA leading to a transient warming of the magnet. To achieve stable peak centre conditions for the CO₂-N₂O run, the lengths of runs with deviating magnet currents are minimised, and the final run 7 (drill fluid components) again uses the CO₂-N₂O source setting. By the start of the next sample measurement, the magnet temperature has reached equilibrium and the IRMS is stable. The order of identified species passing our GC column is as follows: CH₄, Kr, CF₄, CO₂, N₂O, pentafluoroethane, ethyne, Xe, ethene, ethane, methyl chloride, propene, propane, and dichloro-difluoromethane (CCl₂F₂). We usually measure a sequence of runs with a selected number of target species as indicated in Table 1. From each run we obtain individual, mass-specific raw data files, which are processed individually.

For the CH₄-N₂O run the CO₂ cup configuration is used, collecting the major isotopologues of CO₂ and N₂O. Molecular nitrogen and oxygen are monitored using the N₂- and O₂-cups. All other species are measured at appropriate ions according to their mass spectra (National Institute of Standards, US: http://webbook.nist.gov/chemistry). For example, for both ethene and ethane, m/z 28 is the dominant ion in the mass spectra, but traces of background N₂ interferes at this m/z. Therefore, the less abundant m/z 27 ion is chosen, which allows the measurement of both gases in the same run. Besides these organic trace gas species, we measure the intensities of two Xe isotopes at m/z 66 and 68 reflecting the doubly charged ions $^{132}\text{Xe}^{2+}$ and $^{136}\text{Xe}^{2+}$, respectively, which is a novel application for CF-IRMS (see Fig. 4 and Sect. 4.2). To our knowledge this is the first time doubly charged Xe ions have been used for stable isotope analysis.
3 Analytical procedure

3.1 Sample material and preparation

Our experimental set-up is designed for analysing gas species from air extracted from ice core samples, bottled air samples, and working standard gases.

3.1.1 Ice preparation

The size of the measured ice core sample is \(\sim 160 \) g after about 40 g of ice from the surface is carefully removed in a first decontamination step. Possible lab air contamination at or close to the ice surface is removed by sublimation. This second decontamination step is achieved in the sample vessel at vacuum conditions by irradiating the ice sample several times for a few seconds using the heating bulbs. Using the LN\(_2\) pumping system the sample vessel is kept cold at \(-5\) °C throughout the time interval before the ice is melted and is stabilised at +3 °C after all ice is melted to keep \(p_{H_2O} \) at ca. 7 mbar.

3.1.2 Air injection

Air samples are run via the bypass (see Sect. 2.1.1). Air cylinders need to be slightly overpressure to achieve a flow through the SGE valve of ca. \(2 \) mL STP min\(^{-1}\). The amount of gas injected into the vacuum system and trapped on the Air\(T_{rap} \) is controlled by timing the opening of the SGE valve. An injection time of 24 min at a constant flow rate of \(2 \) mL min\(^{-1}\) is equivalent to ca. 15–17 mL STP or \(\sim 160 \) g ice sample with entrapped air bubbles. Whole air working standards (externally or in-house calibrated gases) are also run using the bypass. We use three pressurised air cylinders to reference or check the performance of our measurements. The first cylinder CA08289 (“Boulder”) contains present-day air with reduced CH\(_4\) and N\(_2\)O mixing ratios of \(1508.18 \pm 0.17 \) ppb and \(296 \pm 11 \) ppb, respectively. The assigned \(\delta^{13}C\)-CH\(_4\) value for Boulder is \(-47.34 \pm 0.02\) ‰ and for \(\delta^{15}N\)-N\(_2\)O and \(\delta^{18}O\)-N\(_2\)O \(7.55 \pm 0.20\) ‰.
and 45.19 ± 0.28 ‰, respectively. The [CH₄] and δ¹³C-CH₄ calibration was carried out by NOAA, Boulder, USA (n = 18) using CA03901 (1796.2 ± 0.7 ppb CH₄). The [N₂O] calibration was carried out by M. Baumgartner (n = 5) using NOAA reference gases (CA03901 315.1 ± 3.2 ppb N₂O). Cross-calibration for δ¹⁵N-N₂O and δ¹⁸O-N₂O via Air Controlé (see below) is linked to an atmospheric air cylinder from Groningen (NAT332, Sapart et al., 2011). Additionally, with respect to ethane, propane, and methyl chloride, our Boulder air standard is calibrated on the SIO-05 scale via J-155 by the Swiss Federal Laboratories for Materials Science and Technology (EMPA). The mixing ratios of ethane, propane, and methyl chloride in Boulder are 2916 ± 16 ppt, 1689 ± 9 ppt, and 418 ± 8 ppt, respectively. Boulder air is measured on a day-to-day basis together with samples and is used to calibrate samples to the international scales.

The second gas cylinder, CB541659 called “Air Controlé”, also represents present day air and was filled by CarbaGas, Gümligen, Switzerland. The CH₄ and N₂O mixing ratios of 1971 ± 7 ppb and 327 ± 5 ppb, respectively, were determined using conventional gas chromatography (Flückiger et al., 2004). We measure Air Controlé only periodically to check long-term consistency of the other cylinders.

Our third gas cylinder is a synthetic gas mixture (“Saphir”, No. 4405, CarbaGas, Switzerland) with a [CH₄] of 761 ppb, [N₂O] 315 ppb, [CO₂] 280 ppb, and [Xe] 90 ppb. It is measured on a daily basis.

3.2 Measurement scheme

The duration of a measurement varies with the numbers of species measured. The CH₄-N₂O-run (measuring m/z 44, 45, 46 for CH₄ and N₂O) takes ca. 80 min. A sequence with all runs (Table 1) takes 140 min. The routine protocol involving an ice sample is as follows: (1) working standard Boulder through the bypass, (2) working standard Saphir over ice, (3) blank over ice, (4) ice sample, treating all measurements almost identically (Werner and Brand, 2001). Measuring “over ice” means that Saphir is injected via the SGE valve into the vessel and pumped towards the AirTrap, while the
ice sample sits in the cold vessel at −5 °C throughout the procedure. The injection takes 24 min, i.e. the same duration as the injection of Boulder in the previous bypass measurement or the melting process of the ice in the subsequent measurement. Before the ice sample is melted and measured, we perform a whole-procedure blank run over ice (Sect. 3.2.1); this is an additional check whether the vessel is leak tight and provides an estimate for the blank correction. Finally, the ice sample is melted (Sect. 2.1.2) and measured.

3.2.1 Blank procedure and extraction efficiency

Treating a blank measurement identically to an ice sample measurement is the general idea of a whole-procedure blank. However, completely gas free “blank ice” is not available for our purposes, as it contains traces of the gas species we measure. Therefore, the best approximation of a whole-procedure blank is by measuring a blank over ice, called He blank. The temperature of the vessel stays at −5 °C throughout the He blank. We always process the same amount of He during a blank measurement and an ice sample measurement and use the same trapping time. All subsequent steps are identical for He blanks and ice sample measurements. The results of this blank measurement provide information on the cumulative blank for the procedure – the vacuum and trapping line and the continuous-flow GC line. That means that this blank is the sum of both air leaks and desorption within the system or bleed from the combustion oven and air released from the ice sample at a temperature of −5 °C in the vacuum system (around 0.1 g during the procedure).

Blank measurements using the bypass are valuable for mimicking sample or reference measurements and allow us to determine the location of leaks and outgassing contributions, e.g. with and without the contribution of the sample vessel. The bypass blank follows the same procedure as for He blank over ice measurements – except for bypassing the vessel.

To estimate the extraction efficiency, we run complete procedure blank measurements through the meltwater just after ice sample measurements. Generally, our
vacuum extraction guarantees an extraction efficiency of >99.9%, e.g. 99.98% for CH$_4$ and of 99.97% for Xe.

3.2.2 Measurement scheme for CH$_4$ and N$_2$O

Previous methods determining both CH$_4$ and N$_2$O isotopes on a single ice core sample either used two separate mass spectrometers for CH$_4$ and N$_2$O (Sapart et al., 2011) or two individual acquisitions on a single mass spectrometer (Sperlich et al., 2013). To our knowledge we are the first to combine these two isobaric species (CH$_4$-derived CO$_2$ and N$_2$O) in a single acquisition run. The acquisition of the CH$_4$-N$_2$O-run takes 4930 s and starts with three sets of rectangular and Gaussian peak pairs (Fig. 3a). The rectangular on/off peaks comprise pure N$_2$O and pure CO$_2$ injected via the reference box (Sect. 2.3.1). While the CO$_2$ on/off peak is injected, the GC-line status is set to “flow through the oven”, and for the N$_2$O on/off peak, the valve 6 (Fig. 1) is switched to “bypass the oven” in order to have the same baseline conditions for rectangular and Gaussian peaks. Each pair of on/off peaks is followed by a pair of Gaussian peaks. The first peak is CH$_4$ (500 ppm CH$_4$ in He) injected into the GC-line via a 15 µL 1/16” SST loop using valve 3 (Fig. 1). The second is N$_2$O (250 ppm N$_2$O in He), injected via a 13 µL loop using valve 4 (Fig. 1). Both loop fillings are trapped together on the cryofocus trap and released and transferred to the GC column as described above (Sect. 2.2). The three pairs of rectangular and Gaussian peaks are distributed over two thirds of the chromatogram (Fig. 3a) and allow for drift correction during the acquisition. The vacuum extraction and trapping process occur in parallel to this step (Sect. 2.1). After the gas or ice sample is transferred from the vacuum to the GC line, residual sample N$_2$ is the first signal to pass the cold cryofocus trap (Sect. 2.3.2). At the end of the acquisition, after the cryofocus trap is heated, the following peaks are observed according to their respective retention times (see Table 1): the sample Kr peak, the sample CH$_4$-derived CO$_2$ peak, and the sample N$_2$O peak (Fig. 3a). The separation of Kr and CH$_4$ is described in detail in Schmitt et al. (2013).
4 Data processing and corrections

The data processing is based on the mass-specific raw data files resulting from the sequence of runs for each measurement (see Sect. 2.3.2). The raw data files produced by IonVantage are processed by our own Matlab (MathWorks) routine, which calculates peak areas and raw isotopic ratios of the species. Isotope ratio calculations are performed for CH$_4$, N$_2$O, and Xe using Gaussian sample peaks, which are referenced in a first step to the rectangular on/off peaks for CO$_2$, N$_2$O, and Xe, respectively (see Sect. 2.3.1). Especially for the determination of the isotope ratios of N$_2$O, a robust background correction is crucial for high-precision measurements. As can be seen in Fig. 5, the intensities before the N$_2$O peak drop due to residual CO$_2$, which stems from both the preceding CH$_4$-derived CO$_2$ peak and residual sample CO$_2$. A robust, exponential fit of this long-term decay of the major signal can be obtained from the background before the peak, as the signal-to-noise ratio of the major signal is still high < 0.1 mV (black dots in Fig. 5). In contrast, fitting a sloping background on the minor1 and minor2 signals (red and blue lines showing a running mean, Fig. 5) is delicate, and the fit becomes more robust with the help of a background interval after the peak. With regard to the integration boundaries, the Matlab script is able to use either start and end slope criteria, fixed time steps left and right from the peak maximum or a fixed percentage of the intensity at peak maximum. The latter approach has resulted in the most reproducible values for N$_2$O.

In a second step, the individual runs of a species are assembled and analysed to calculate long-term trends. Calculations are carried out e.g. for the blank contribution to the sample peak area, the ppt-level species, trends in the isotopic ratios through time, and mixing ratios of the species based on air and Xe.

4.1 Blank estimation and correction

To achieve high-precision mixing ratios and isotopic ratios of trace gases in ice cores, low and quantifiable blank contributions are key aspects of the analytical routine. Firstly,
modern mixing ratios and isotopic ratios of the target species can be very different to those found in old ice core air, thus, contamination of lab air has to be minimised. Secondly, outgassing from the valve material and the extraction line is of critical concern.

To address both issues we follow two procedures. First we use whole procedure blank measurements, “He over ice”, before each ice core sample to estimate the blank contribution for the following ice core sample. To further constrain the blank contribution, “He bypass” measurements are used. Secondly, we measure a contamination indicator of modern air directly with each sample as introduced by Aydin et al. (2010). Dichloro-difluoromethane, CCl₂F₂, is attractive for this purpose, since it currently has the highest mixing ratio of any man-made halocarbon with, about 550 ppm, and was absent in preindustrial times (Kaspers et al., 2004). Our detection limit for CCl₂F₂ is 1–2 ppm, thus, we can identify modern air contamination to the ice sample to a level of ~ 0.3% (volume fraction of ambient air relative to the ice core air). An example of a chromatogram for an ice core sample is shown in Fig. 3f, illustrating a CCl₂F₂ signal close to blank level (the ambient air signal intensity would be around 600 fA). For a typical ice core measurement, the CCl₂F₂ mixing ratio is 3 ± 2 ppm. Taken at face-value and using the ~ 550 ppm CCl₂F₂ in ambient air, this value translates into a contribution of 0.5 ± 0.3% ambient air volume to the air volume of the ice sample. However, this estimate is an upper boundary and relies on the assumption that CCl₂F₂ is co-transported within ambient air in a macroscopic leak. Generally, the measured CCl₂F₂ and other gas species of modern ambient air can result from various contamination types. First, ambient air can leak or diffuse into the extraction vessel and tubing which are at vacuum conditions. Secondly, modern air can be entrapped in ice core samples from depth ranges shortly below the firn-ice transition, where a small fraction of open porosity is still available for gas exchange. Aydin et al. (2010) dubbed this phenomenon post-coring entrapment of modern air and observed CCl₂F₂ in ice samples that were assumed to be fully closed-off (up to 20 m below the estimated firn-ice transition). Correspondingly, measuring CCl₂F₂ allows us to identify ice samples contaminated with modern air.
Overall, He over ice measurements give low blank values for CH$_4$ and N$_2$O, typically of about 2 ppb for CH$_4$ and 0.8 ppb for N$_2$O, which translates to only 0.4 % and 0.3 % of the average sample value (Table 2). The mixing ratios of the blank air (typically only 0.023 mL or 0.15 % of the air volume of an ice sample) for these species is around 1580 ppb for CH$_4$ and 581 ppb for N$_2$O. These CH$_4$ values could be explained by a mixture of air released from the ice sample containing air with typically low CH$_4$ (between 360 and 700 ppb) and a fraction of ambient air. In the case of N$_2$O, leaked lab air is another viable explanation if our lab air is heavily enriched in N$_2$O; however, a second source – outgassing from and permeation through polymer material used in the Vici valves – is more likely to occur, as blank values are relatively stable with time. For the organic ppt-level species, however, much higher blank values are observed and cause a sizeable fraction of the measured signals in ice core samples. For ethane, methyl chloride, and propane the observed He over ice blank values cannot be explained by a leak contribution from ambient air. The typical mixing ratios of the blank air are 41 400 ppt for ethane, 22 200 ppt for methyl chloride and 37 200 ppt for propane, thus orders of magnitude higher than ambient mixing ratios. Further tests using the bypass (Table 2, He through bypass) instead of the sample vessel showed that the blanks for these species result from outgassing of the valves rather than from the vessel itself. The Vici valves in particular contribute to this outgassing blank although their purge housings are permanently connected to a vacuum pump, which reduces the blank considerably.

Although the blank of a typical Antarctic ice core sample is considerable for ethane with 15 % and 18 % for propane and moderate with 6 % for methyl chloride, its level is relatively stable over a longer time window. This is to be expected if outgassing is the dominant process. Accordingly, the mixing ratio of a given trace gas is corrected for this contribution using the daily He over ice measurements by applying a spline interpolation similar to previous studies (Behrens et al., 2008). The mixing ratios reported in Tables 3 and 4 are blank-corrected.
4.2 Air content

The air content in ice samples is calculated using the read-out at the pressure gauge P3 for the air volume (Fig. 1), the weight of the ice sample, \(m_{\text{ice}} \), the internal volume of the air volume, \(V_{\text{air}} \), and a calibration factor, \(f_{\text{calibration}} \).

\[
V = p_{\text{t_corr}} \cdot V_{\text{air}} / m_{\text{ice}} \cdot f_{\text{calibration}}
\]

To compensate for temperature changes of the expansion volume, the pressure is first corrected for temperature changes, yielding \(p_{\text{t_corr}} \). As the ice sample slowly sublimates prior to the melting and trapping process, a small fraction of the enclosed air is lost. The total loss is estimated to be around 0.5 over ice processing typically 0.023 mL air is collected and the corresponding time interval is 30. Since the internal volume of the air volume and its connections (Fig. 1) is not precisely known (ca. 1900 mL), calibration is necessary to yield accurate values comparable with other group’s results. To determine the calibration factor, \(f_{\text{calibration}} \), we use our measurements from the Dome C ice core and the accurately calibrated data from the same core (Raynaud et al., 2007). Our data set consists of 59 measurements and the overlapping calibration data comprise 54 points (Fig. 6). The calibration factor, \(f_{\text{calibration}} \), is found by multiplying our data with a varying factor (between 0.98 and 1.02) and selecting the value where the sum of the differences of the time series is at a minimum. We estimate the uncertainty of this calibration procedure, i.e. the accuracy, to be 0.5 mL kg\(^{-1}\) by choosing random subgroups of both time series as input for the calibration. Regarding the achieved precision, Table 4 summarises results from two Antarctic ice cores: (1) vertical pairs of neighbouring samples from the “TALos Dome Ice CorE” (TALDICE) and (2) horizontal pairs from the shallow B34 core 75°0.15′ S, 00°4.104′ E, 2892 m a.s.l., Dronning Maud Land, drilled in the framework of the European Project for Ice Coring in Antarctica (EPICA)). The typical difference for horizontal pairs (B34) is 0.3 mL kg\(^{-1}\) and 0.6 mL kg\(^{-1}\) for vertical pairs (TALDICE), which is comparable to previous studies (Lipenkov et al., 1995).
4.3 Xe-based mixing ratios

Atmospheric mixing ratios are usually calculated by referencing the amount (mol) of a species to the amount of total air. However, if an atmospheric gas species is sufficiently constant over the relevant time scale, mixing ratios can be referenced to that parameter as well. In this respect the noble gas Xe can be used, as its past variations on the time scales considered here are smaller than a few permil, which is lower than our measurement precision (Headly and Severinghaus, 2007). Using this approach for ice core samples, the gravitational fractionation in the firn column has to be corrected for. Typically, the air at the bottom of the firn column is enriched in the heavier gas species by about 0.2 to 0.5‰ per mass unit (Craig et al., 1988; Landais et al., 2006). As the mass difference between e.g. 136Xe and CH$_4$ is 120 mass units, the gravitational fractionation results in ratios which are up to 6% lower than in the atmosphere. To quantify this gravitational effect, we use the Xe isotope ratio (136Xe/132Xe) measured with a precision of 0.05‰ per mass unit. Hence, we can correct each individual ice sample for gravitational enrichment, which is especially advantageous for ice cores with no available gravitational enrichment data. Our precision for the gravitational correction of 0.05‰ per mass unit obtained from δ^{136}Xe is lower than the results from dedicated systems for δ^{15}N (Landais et al., 2006), yet sufficient for our purpose here. Note that using 136Xe/132Xe to correct for gravitational effects of any gas species in the firn column assumes that the gravitational enrichment of the gases in the firn column only depends on the absolute mass difference of two species. Only in the case of kinetic fractionation processes for sites with large convective zones does this approach produce small biases (Kawamura et al., 2013). In fact, for Greenland ice cores, δ^{136}Xe/132Xe is a better parameter to correct for the gravitational effect than the widely used δ^{15}N$_2$, since thermal diffusion effects due to temperature gradients in the firn affect δ^{15}N$_2$ more than δ^{136}Xe/132Xe (Severinghaus et al., 2001).

The Xe-based mixing ratio of a sample, hereafter referred to e.g. as $^{Xe}[CH_4]_{sa,raw}$, is derived from the ratio of the sample’s species’ peak area, A(species)$_{sa}$, and the area
\(A^{(136}Xe)_{sa} \) times the respective ratio of the reference, \(A(\text{species})_{\text{ref}} \), and \(A^{(136}Xe)_{\text{ref}} \) times the defined mixing ratio of the species of the reference, \([\text{species}]_{\text{ref}}\), following Eq. (1):

\[
Xe[\text{species}]_{sa \text{ raw}} = A(\text{species})_{sa}/A^{(136}Xe)_{sa} \cdot A(\text{species})_{\text{ref}}/A^{(136}Xe)_{\text{ref}} \cdot [\text{species}]_{\text{ref}} \quad (1)
\]

For each sample measurement we have a reference air measurement from the same day that could be used for a point-wise calculation of the mixing ratio. However, the reproducibility of the ice core replicates is better if a moving average of \(A(\text{species})_{\text{ref}}/A^{(136}Xe)_{\text{ref}} \) over several days is used instead, which eliminates the stochastic measurement uncertainty in the daily reference air measurement.

In the following step the gravitational effect is corrected using the measured \(^{136}Xe/^{132}Xe \) ratio of the sample times the mass difference between \(^{136}Xe \) and the respective species, \(\Delta m \):

\[
Xe[\text{species}]_{sa} = (1 - 1/4 \cdot \delta^{(136}Xe/^{132}Xe)_{sa} \cdot \Delta m/1000) \cdot Xe[\text{species}]_{sa \text{ raw}} \quad (2)
\]

For calculating these mixing ratios we use our calibrated Boulder cylinder as reference (see Sect. 3.1.3 and Table 3). The thus derived Xe-based mixing ratios compare well with the mixing ratios based on air, (see Sect. 4.4 for a comparison of both mixing ratios). Note that the Xe-based mixing ratios cannot be used if the sample contains melt layers, because Xe is more soluble than the main air components (see below).

4.4 Air-based mixing ratios

The calculation of the air-based mixing ratios for a given species is similar to the calculation of the Xe-based mixing ratios. Instead of using Xe, the amount of air, \(\Sigma_{\text{air}} \), serves as denominator in the following way:

\[
[\text{species}]_{sa \text{ raw}} = A(\text{species})_{sa}/\Sigma_{\text{air}}_{sa} \cdot A(\text{species})_{\text{ref}}/\Sigma_{\text{air}}_{\text{ref}} \cdot [\text{species}]_{\text{ref}} \quad (3)
\]
Analogous to the Xe-based version, gravitational fractionation affects the air-based values and is corrected for using Xe isotopes. Here, Δm is the mass difference between the species and the average mol mass of air (28.8 u):

$$[\text{species}]_{\text{sa}} = (1 - 1/4 \cdot \delta^{136}\text{Xe}/^{132}\text{Xe})_{\text{sa}} \cdot \Delta m/1000 \cdot [\text{species}]_{\text{sa raw}}$$

Together with the Xe-based mixing ratios from Sect. 4.3, our method allows for the calculation of atmospheric mixing ratios based on two approaches. To keep the figures and tables showing mixing ratios concise, only the air-based results are shown. For the raw mixing ratios, i.e. not corrected for gravitational effects in the firn ($[\text{species}]_{\text{sa raw}}$), the precision of both types of mixing ratios are comparable and the differences are within their combined errors. In contrast, for the CH$_4$ mixing ratios corrected for gravitational effects, the air-based values are more precise. The typical reproducibility for TALDICE replicates is 5 ppb for the air-based and 7 ppb for the Xe-based value. This is due to the uncertainty of the δ^{136}Xe measurement and the large mass difference between CH$_4$ (16 u) and Xe (136 u), compared to only 16 u and 28.8 u in case of the air-based [CH$_4$]. The 0.04 ‰ uncertainty of the δ^{136}Xe measurement and the mass difference of 120 u already lead to an uncertainty of 5 ‰ in the mixing ratio, e.g. 2.5 ppb for a concentration of 500 ppb.

4.5 Xe air ratio as melt layer proxy

To identify melt layers in polar ice several approaches can be applied. First, melt layers within bubble ice can be identified by visually analysing line scan profiles of the ice core (Abram et al., 2013). This technique works in the bubble ice zone in the absence of clathrates and is very sensitive as mm-thick melt layers can be reliably identified. Secondly, total air content measurements provide a proxy for melt layers and can be used to identify melt layers in deep clathrated ice as well (NEEM community members, 2013). This sensitivity to melt layer detection depends both on the analytical precision and the small-scale variability (mostly annual layering) of the total air content due to
changes in the firnification (Hörhold et al., 2012). Typically, the combined uncertainty of air content measurements is 1% (Raynaud and Lebel, 1979). To identify melt layers from a reduced air content caused by melting, the "background air content" of unaffected bubble ice has to be established, which is primarily a function of the altitude (Raynaud and Lebel, 1979). The third principle uses the fact that some gases are more water-soluble than other gases, producing characteristic deviations in the mixing ratios of otherwise temporally fairly constant atmospheric gas species. Examples are the noble gases Ar, Kr, and Xe (Headly, 2008; NEEM community members, 2013). For the Greenland Dye 3 ice core, Headly (2008) reports δXe/Ar ratios for samples with melt layer sections which deviate by 50–100‰ from surrounding bubbly ice sections. The air content of these samples is reported to be reduced by 20–50% compared to bubble ice. Instead of using δKr/Ar and δXe/Ar ratios, we calculate the parameter δXe/air for the same purpose using the gravitationally corrected mixing ratio of 136Xe in air for the sample, $[^{136}$Xe]$_{sa}$, and for the reference, $[^{136}$Xe]$_{ref}$, applying the δ-notation as follows:

$$\delta \text{Xe/air} = ([^{136}\text{Xe}]_{sa}/([^{136}\text{Xe}]_{ref} - 1) \cdot 1000 \quad (5)$$

The mixing ratio $[^{136}$Xe]$_{ref}$ is the value for ambient atmospheric air derived from measurements of Air Controlé. Note that for this purpose the small changes in the Xe content of the atmosphere due to changes in the ocean temperature can be neglected, as our error of 11‰ exceeds the small changes from this process, which amount to only ca. 2‰ (Headly, 2008; Ritz et al., 2011).

N$_2$ and O$_2$ have lower water solubilities than Ar (Weiss, 1970); thus, the sensitivity of δXe/air is higher than δXe/Ar. The drawback of using air as the denominator of the ratio is that air is a mixture of N$_2$, O$_2$, and Ar, with different water solubilities, yet dominated by the 79% share of N$_2$ with a solubility of less than half of that of Ar. Our reproducibility of δXe/air for air samples is 10‰, and for ice samples without melt layers, typical differences of replicates are 8‰ (Table 4). A first feasibility study using Dye-III-88 ice core samples with and without melt layers has shown that our...
\(\delta^{13}\text{C-CH}_4\) values are unaffected, this points either to an in situ signature close the atmospheric value, or the fact that CH\(_4\) behaves differently to Xe during melt layer formation. This complicated picture among the different gas species observed from this small feasibility study on melt layers demonstrates that judgments based on a single parameter may lead to biased conclusions. Clearly, a more detailed investigation is necessary to characterise solubility effects and in situ production of CH\(_4\) and N\(_2\)O in melt layers.
4.6 Isotope ratios of CH$_4$ and N$_2$O

4.6.1 Long-term trends and referencing to international standards

In a first step we reference our isotopic ratios for CH$_4$ and N$_2$O on a preliminary scale, which is a pure CO$_2$ working gas in the case of δ^{13}C-CH$_4$ and pure N$_2$O for δ^{15}N-N$_2$O and δ^{18}O-N$_2$O, both introduced as rectangular on/off peaks. To report our values on an international scale against a reference processed following the identical treatment principle (Werner and Brand, 2001), we use our Boulder measurements, which are processed on a daily basis. Similar to the calculation of the mixing ratios, the long-term evolution of the δ^{13}C-CH$_4$, δ^{15}N-N$_2$O and δ^{18}O-N$_2$O of the Boulder measurements are used for the correction to eliminate the stochastic measurement uncertainty in the daily values (see Fig. 8a). For δ^{13}C-CH$_4$, the correction is stable over time and amounts to only 0.04 ‰. We thus conclude that the overall isotopic fractionation in our system is very small. For previous methods more significant drifts in the measured δ^{13}C-CH$_4$ values were observed, presumably caused by the combustion unit (e.g. Behrens et al., 2008). In our case a time dependent correction did not further improve precision. For δ^{15}N-N$_2$O and δ^{18}O-N$_2$O we also observe that the isotopic ratios preliminarily referenced to our pure N$_2$O working gas do not vary over time, pointing to stable conditions in the overall preconcentration and measurement system.

4.6.2 Assessing amount effects

Tests regarding a possible dependency of the measured isotope ratios (δ^{13}C-CH$_4$, δ^{15}N-N$_2$O, and δ^{18}O-N$_2$O) on peak size were carried out with two contrasting air mixtures, Boulder and Saphir (see Table 3 for the respective isotopic and mixing ratios). While the isotopic signatures of Boulder are close to the range found in ice samples, the artificial Saphir mixture has strongly deviating δ^{13}C-CH$_4$, δ^{15}N-N$_2$O, and δ^{18}O-N$_2$O, which is ideal to check the system performance at strongly deviating isotope ratios. As mentioned above (Sect. 2.1.1), we simulate different sample sizes by timing the
opening of the SGE valve while keeping the flow rate to the vessel constant. To cover the peak size range from ca. 360 ppb CH$_4$ to ca. 1500 ppb, injection time for Boulder varies between 335 s and 1435 s. Since the isotopic signatures are so different between Boulder and Saphir, anomalies are calculated to plot the results of both gases in one graph (Fig. 8b and c). In general, no signal dependency on the respective peak size is observed for δ^{13}C-CH$_4$ and δ^{18}O-N$_2$O. For δ^{15}N-N$_2$O there is a small deviation towards lighter values for smaller sample sizes. Figure 8 shows that for δ^{13}C, precision is almost independent of sample size, while for δ^{15}N-N$_2$O and δ^{18}O-N$_2$O, precision is lower for the smallest peak size, which is, however, far outside the sample range indicated by the arrows.

5 System performance and reproducibility

In the following chapter we will discuss the precision of the overall system. We will concentrate in this discussion on the isotopic ratios of CH$_4$ and N$_2$O. The precision of the ppt-level concentration measurements is listed in Table 4 but is not discussed in the following, partly for the sake of conciseness of this paper, but mainly as the results on these species in polar ice cores is not limited by the analytical precision but by in situ production in the ice.

5.1 Pure gases

In the following we discuss the measurement precision of the different components in a sequential way starting with the isotope ratio mass spectrometer, the continuous-flow GC part, and finally the performance of the whole procedure. We use pure gases (CO$_2$ and N$_2$O) admitted via the reference gas box, CH$_4$ and N$_2$O mixtures in He injected onto the cryofocus, and whole air and ice core samples, respectively. Regarding the IRMS part only, the precisions of the three CO$_2$ and N$_2$O on/off peaks injected in each run (1σ-standard deviation of the three values after correcting for temporal
drift using a linear fit) are 0.03 ‰, 0.05 ‰, and 0.09 ‰ for δ¹³C, δ¹⁵N, and δ¹⁸O respectively (Table 3, pure gases). For the Gaussian CH₄ and N₂O peaks we achieve precisions of 0.13 ‰, 0.22 ‰, and 0.43 ‰ for δ¹³C, δ¹⁵N, and δ¹⁸O respectively. If the Gaussian peaks are corrected for the observed linear trend of the on/off peaks, precision improves slightly (Table 3, gauss_raw and gauss_corr). The good precisions of these Gaussian peaks shows that both CO₂ and N₂O peaks can be measured within a run (see Fig. 3 for the injection scheme) without producing significant memory effects. This allows for the measurement of isotopic ratios of different isobaric species within a run, while previous studies measuring CH₄ and N₂O on a single sample either reserved a specific IRMS for each species (Sapart et al., 2011) or held one species until the IRMS was preconditioned for the second species (Sperlich et al., 2013). Currently, the CH₄ and N₂O Gaussian peaks within each chromatogram serve only to monitor the system performance and for troubleshooting. The reference basis for the CH₄ and N₂O sample peaks are the CO₂ and N₂O on/off peaks. When we tested to use the Gaussian peaks to correct sample peaks for any variable fractionation process in the GC part or the combustion oven, reproducibility of samples did not improve.

5.2 Whole air

For estimating the overall precision of our system we calculate the 1σ-standard deviation of our daily Boulder and Saphir measurements. For Boulder, we obtain standard deviations of 0.08 ‰, 0.23 ‰, and 0.56 ‰ for δ¹³C-CH₄, δ¹⁵N-N₂O, and δ¹⁸O-N₂O, respectively (Table 3). A similar precision for these parameters is obtained for Saphir, which is injected into the cold sample vessel containing the ice sample. As shown for our He over ice measurements, a small fraction of the ice sample sublimates during the “over ice” procedure, thus, air is released from the ice sample and “contaminates” the Saphir sample. Based on our He over ice blanks, the released amount of ice core air is 0.023 mL. With a Saphir sample volume of 13 mL, this translates to a volumetric contribution of 0.18 %. While the CH₄ and N₂O mixing ratios of Saphir are close to the
range of ice core samples, the isotopic ratios deviate considerably (Table 3). Yet the small contribution of ice core air does not significantly affect the isotopic signatures of [CH$_4$] or [N$_2$O]. In addition, two natural whole-air samples have been measured to quantify the reproducibility: Air Controlé and firn air from NEEM (Table 3).

5.3 Ice core replicates

Performance values derived from working standards and air samples allow a first approximation of the system performance due to identical treatment, yet determining the reproducibility on real ice samples is nevertheless necessary. One reason is that ice core samples may contain interferences, e.g. traces of drill fluid, which can affect some parameters. Second, the mixing ratios for CH$_4$, ethane, and propane in Antarctic ice cores, especially from cold periods, are considerably lower than those in the working standards. Two different approaches were applied. (1) We measured horizontal ice core replicates, i.e. samples from exactly the same depth and therefore identical gas and impurity content. For this we used ice from the shallow core B34 with the samples derived from two vertically neighbouring depth intervals (179.12–179.24 m and 179.24–179.36 m) with each interval providing four horizontal replicates. While most parameters show no difference among the two sections, air content and methyl chloride show differences (Tables 3 and 4). It is also notable that the ppt-level gas species for B34 show a higher variability when compared with TALDICE results, pointing to complex in situ production of these species in B34. (2) We measured vertical replicates on the TALDICE core. In this case, samples are vertical neighbours, i.e. the enclosed air has a slightly different age. The age difference, Δ\textsubscript{a}, of our neighbouring samples depends on the specific depth due to thinning of the ice in the ice sheet. For our neighbouring samples Δ\textsubscript{a} is between 50 and 250 years. In view of the width of the age distribution of the enclosed air (about 40 and 70 years for Holocene and glacial conditions respectively, B. Bereiter, personal communication, 2013), these vertical replicates are rather independent atmospheric samples than identical replicates. Two different bin classes (Δ\textsubscript{a} < 80 years and < 250 years) were selected to account for
the different temporal variability of the parameters. From previous studies it is known that CH$_4$, a species with short atmospheric life times, shows high temporal variability, while e.g., δ^{15}N-N$_2$O, varies more gradually allowing wider binning, thus more samples are regarded replicates in this case. As expected, the reproducibility of most parameters is better for $\Delta a < 80$ years (Tables 3 and 4). For δ^{13}C-CH$_4$, δ^{15}N-N$_2$O, and δ^{18}O-N$_2$O the achieved reproducibility is better than in previous studies and also a step forward in terms of sample amount. Especially in terms of N$_2$O isotope ratios previous studies used around twice or three times as much ice as used in our method. For the ppt-level gas methyl chloride, the reproducibility is comparable to previous studies (Williams et al., 2007). In the case of ethane and propane, results from other studies are only available for Greenland ice cores, with their much higher Northern Hemisphere background concentrations (Aydin et al., 2007). For our Antarctic samples, the reproducibility for ethane obtained on B34, WAIS, and TALDICE ranges between 20 ppt for WAIS and 150 ppt for B34, i.e. amounts to 6 % and 30 % of the total signal, respectively. Yet, more critical is rather that the reconstructed absolute mixing ratios exceed the modern values and those reconstructed from firn air samples (Aydin et al., 2011). In situ production or reactions during the melting process for ethane and propane are the most likely explanations for the high levels at B34, WAIS, and TALDICE. As a conclusion for these two species, the blank contribution is an issue for further analytical improvements; however, the non-atmospheric component generated by the ice itself is a more severe problem, limiting its usage in reliably reconstructing past mixing ratios.

5.4 Intercomparison

In the following we compare our results with measurements from other laboratories, as for most measured parameters there is not yet an official reference available. However, air and ice sample intercomparison round-robins are currently underway. Given the large suite of parameters, not all measured species can be treated with the same detail here.
We lay special stress on δ^{13}C-CH$_4$, since several intercomparison samples have been measured by other groups as well, and only recently was an interference with Kr affecting several δ^{13}C-CH$_4$ data sets identified (Schmitt et al., 2013). Ice samples from the Antarctic ice core B34 (our δ^{13}C-CH$_4$ value: -47.10 ± 0.05‰) have also been measured previously by our colleagues at the Institute for Marine and Atmospheric Research Utrecht (IMAU) and at the Alfred Wegener Institute, Helmholtz Centre for Polar and Marine Research (AWI); Sapart et al. (2011) report δ^{13}C-CH$_4$ values of -46.46 ± 0.21‰ for IMAU and -46.57 ± 0.13‰ for AWI. Both values were measured before the awareness of the Kr issue. According to Schmitt et al. (2013), the Kr-correction would translate the IMAU and AWI numbers into lighter values, hence, closer to our value. A second ice core material allowing comparison with other groups is from the WAIS divide drill site (our WDCO5A core piece: bag 182, depth 170.99 m, ca. 1550 AD) provided by Todd Sowers from Penn State University (PSU). The Kr-corrected δ^{13}C-CH$_4$ values from neighbouring core sections from AWI is -47.81‰ (depth 166.78 m) and -48.28‰ (depth 164.96 m) and -47.87‰ (depth 169.80 m) for two pieces measured at PSU (Möller et al., 2013), thus close to our value of -48.03‰ (Table 3). Further support for the correctness of the Kr-corrected data recently published by Möller et al. (2013) comes from a remeasured time interval with a pronounced shift of 4‰ in δ^{13}C-CH$_4$, thus ideal to capture the dynamic range of the methods as well (Fig. 9). The Kr-corrected results measured on EDML and Vostok (Möller et al., 2013) fit well with our new data set from the TALDICE core taking the uncertainty of the age scales into account. Additionally, Fig. 9 allows for the comparison of the CH$_4$ mixing ratios obtained with different methods, all measured on the TALDICE core. Here, our [CH$_4$] results agree well with those of Buiron et al. (2011) as well as with a high-resolution data set using the continuous-flow analysis system, with a precision of 15–20 ppb (Schüpbach et al., 2011). Finally, we compare results from a firn air sample (canister name “FA23”, depth 76 m deep, termed “firn air NEEM” in Tables 3 and 4) from the NEEM 2008 EU hole that has also been investigated by IMAU and the Centre for Ice and Climate, Copenhagen (CIC) (see Sapart et al., 2013). Our δ^{13}C-CH$_4$ value of -49.49 ± 0.04‰
agrees well with data from IMAU (Kr-corrected value, $-49.69 \pm 0.03 \%$) and CIC (no Kr issue, $-49.52 \pm 0.13 \%$).

As no official reference gas exists for the stable isotope ratios of N$_2$O, we tie our δ^{15}N-N$_2$O and δ^{18}O-N$_2$O values to those used at IMAU via Groningen air, NAT332. To assess the robustness of this single tie point NAT332, we compare results from three air samples that were provided and measured by CIC (Sperlich et al., 2013) and exchanged with our lab. For δ^{15}N-N$_2$O, our values for all three cylinders are heavier than the CIC values while our δ^{18}O-N$_2$O values are all lighter than CIC (Table 5). A second N$_2$O intercomparison using the “firn air NEEM” canister was conducted in collaboration with the laboratory at Oregon State University (OSU, Adrian Schilt). They tied their working standards for the N$_2$O isotope measurement to match the extrapolated values of the Cape Grim reconstruction (Park et al., 2012). For δ^{15}N-N$_2$O our value is again heavier by 0.8 ‰ compared to the OSU value and our δ^{18}O-N$_2$O of is again slightly lighter than OSU (Table 5). Regarding the N$_2$O mixing ratios, the two methods agree well, with our value at 289 ± 4 ppb and 291.2 ± 1.1 ppb for OSU. In both intercomparison cases our δ^{15}N-N$_2$O values turned out to be heavier by 0.2 to 0.8 ‰, whereas our δ^{18}O-N$_2$O values are lighter by 0.3 to 0.9 ‰.

Similar to δ^{13}C-CH$_4$, our WAIS divide intercomparison ice allows comparing with other groups’ results. Our methyl chloride value of 889 ± 20 ppt is in accordance with measurements at University of Irvine (M. Aydin, personal communication, 2013) from neighbouring sections. A comparison of our TALDICE data from the Holocene with a recently published data set spanning the same period but measured on Taylor Dome ice (Verhulst et al., 2013) is delicate, since the variable difference in the two records points rather to in situ production.
6 Conclusions

We described a multi-parameter device to measure a large suite of trace gas species and their isotopic compositions on a single ice core sample and demonstrated its performance. The new system is based on an automated infrared melting device operated under vacuum, which allows for rapid extraction of the ice core air once released during the melting process. This principle combines high extraction efficiency with low helium consumption compared to techniques using a helium-purge set-up. A novel feature of our new device is the separation of drill fluid residues using a dedicated valve and backflush system.

With the help of our software routine developed in-house, we are able to calculate \(\delta^{13}\)C-CH\(_4\), and \(\delta^{15}\)N-N\(_2\)O, and \(\delta^{18}\)O-N\(_2\)O values within a single acquisition run. To prevent interference with Kr during the \(\delta^{13}\)C-CH\(_4\) measurement, Kr and CH\(_4\)-derived CO\(_2\) are separated. Improvement in precision was reached for \(\delta^{15}\)N-N\(_2\)O and \(\delta^{18}\)O-N\(_2\)O analyses, which now allows us to reconstruct the small variations hidden within measurement uncertainty in previous studies.

To detect the other trace gas species (Xe, ethane, propane, methyl chloride, CCl\(_2\)F\(_2\)), we perform several peak jumps. Focussing the ion source to the \(m/z\) range of doubly charged Xe isotopes, we are the first to measure the isotopic composition on Xe\(^{2+}\) ions using GC-IRMS. The attained precision of 0.04 ‰ per mass unit allows us to correct the species’ concentrations and isotopic ratios for gravitational effects in the firn column.

Acknowledgements. This work is a contribution to the European Project for Ice Coring in Antarctica (EPICA), a joint European Science Foundation/European Commission scientific program, funded by the EU (EPICA-MIS) and by national contributions from Belgium, Denmark, France, Germany, Italy, the Netherlands, Norway, Sweden, Switzerland and the UK, as well as to the “TALos Dome Ice CorE” (TALDICE) project funded by Italy, France, Germany, Switzerland and UK. The main EPICA logistic support was provided by IPEV and PNRA (at Dome C) and AWI (at Dronning Maud Land). Financial support for this work has been provided in part by the European Research Council Advanced Grant MATRICs, and the Schweizerischer Nationalfonds (SNF project primeMETHANE). B34 ice core samples were provided by the Alfred
We thank Matthias Baumgartner for measuring replicate ice core samples from the TALDICE core. Martin Vollmer from the Swiss Federal Laboratories for Materials Testing and Research (EMPA) kindly calibrated our working standard for the ppt-level species.

References

Schüpbach, S., Federer, U., Bigler, M., Fischer, H., and Stocker, T. F.: A refined TALDICE-1a age scale from 55 to 112 ka before present for the Talos Dome ice core based on high-

2054

Table 1. Overview of measured gas species with their corresponding cup configurations for the seven individual acquisition runs (No.). Time is the elapsed time after the cryofocus trap is lifted, i.e. sample injected onto the GC column. GC (°C) denotes the temperature in the GC when the respective peak is detected in the IRMS.

<table>
<thead>
<tr>
<th>No.</th>
<th>species</th>
<th>time (s)</th>
<th>GC (°C)</th>
<th>m/z major</th>
<th>m/z minor1</th>
<th>m/z minor2</th>
<th>remarks</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Kr</td>
<td>414</td>
<td>30</td>
<td>44</td>
<td>45</td>
<td>46</td>
<td>Kr⁺ and Kr²⁺ interference</td>
</tr>
<tr>
<td></td>
<td>CH₄</td>
<td>414</td>
<td>30</td>
<td>44</td>
<td>45</td>
<td>46</td>
<td>combusted to CO₂, delayed by S2</td>
</tr>
<tr>
<td></td>
<td>CO₂</td>
<td>~540</td>
<td>30</td>
<td>44</td>
<td>45</td>
<td>46</td>
<td>removed by S1 trap</td>
</tr>
<tr>
<td>2</td>
<td>N₂O</td>
<td>586</td>
<td>30</td>
<td>44</td>
<td>45</td>
<td>46</td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>Xe</td>
<td>916</td>
<td>30</td>
<td>66</td>
<td>66</td>
<td>68</td>
<td>¹³²Xe²⁺ and ¹³⁶Xe²⁺</td>
</tr>
<tr>
<td>4</td>
<td>C₂H₄</td>
<td>1020</td>
<td>57</td>
<td>–</td>
<td>–</td>
<td>27</td>
<td>C₂H₃⁺</td>
</tr>
<tr>
<td></td>
<td>C₂H₆</td>
<td>1212</td>
<td>118</td>
<td>–</td>
<td>–</td>
<td>27</td>
<td>C₂H₃⁺</td>
</tr>
<tr>
<td>5</td>
<td>CH₃Cl</td>
<td>1592</td>
<td>166</td>
<td>–</td>
<td>–</td>
<td>50</td>
<td>CH₃⁺Cl⁺</td>
</tr>
<tr>
<td>6</td>
<td>CCl₂F₂</td>
<td>1730</td>
<td>177</td>
<td>–</td>
<td>–</td>
<td>29</td>
<td>C₂H₅⁺</td>
</tr>
<tr>
<td>7</td>
<td>C₂H₃Cl₂F</td>
<td>>1900</td>
<td>>200</td>
<td>–</td>
<td>45</td>
<td>–</td>
<td>C₂H₂F₂⁺ and C³⁷ClF₂⁺</td>
</tr>
</tbody>
</table>

Discussion Paper

CH₄, N₂O and Xe isotopes and mixing ratios from a single ice sample

J. Schmitt et al.
Table 2. Results from three procedures to estimate the blank for measured gas species. Blanks are reported in three different units serving different purposes.

<table>
<thead>
<tr>
<th>species</th>
<th>He over ice; $n = 156$</th>
<th>He through bypass; $n = 6$</th>
<th>He through meltwater; $n = 8$</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>(ppb1)</td>
<td>(ppb2)</td>
<td>(3)</td>
</tr>
<tr>
<td>air</td>
<td>–</td>
<td>–</td>
<td>0.15</td>
</tr>
<tr>
<td>CH$_4$</td>
<td>1580</td>
<td>2</td>
<td>0.4</td>
</tr>
<tr>
<td>N$_2$O</td>
<td>581</td>
<td>0.8</td>
<td>0.3</td>
</tr>
</tbody>
</table>

136Xe | 6200 | 10 | 0.1 | nd | nd | nd | 15000 | 14 | 0.2 |

C$_2$H$_6$ | 41 400 | 65 | 15 | 350 000 | 50 | 11 | 1.4×10^6 | 281 | 63 |

CH$_3$Cl | 22 200 | 35 | 6 | 190 000 | 21 | 4 | 19 000 | 35 | 9 |

C$_3$H$_8$ | 37 200 | 57 | 18 | 290 000 | 49 | 16 | 0.9×10^6 | 202 | 65 |

CCl$_2$F$_2$ | 1839 | 3 | – | 6000 | 8 | – | 12 000 | 2 | – |

1 is the mixing ratio of a species. Note that due to the small amount of air involved in these blank measurements, the error due to pressure read out is around 10%, dominating the error of these values.

2 would be the increase in the sample mixing ratio if the measured amount of species were added to a typical ice sample (median of TALDICE samples, see Tables 3 and 4).

3 is the percentage of the blank relative to a typical ice sample.

nd = not detectable.
Table 3. Means and 1σ standard deviations of isotope and mixing ratios of CH$_4$ and N$_2$O on gases and air extracted from ice samples. n denotes the number of measurements; reference values are in bold. Note that the isotopic ratios and mixing ratios for CH$_4$ and N$_2$O are without gravitational correction, i.e. they represent the composition of the trapped firn air in the ice core.

<table>
<thead>
<tr>
<th>gas measured</th>
<th>n</th>
<th>CO$_2$ and CH$_4$-derived CO$_2$</th>
<th>N$_2$O</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>δ^{13}C (%) (ppb)</td>
<td>δ^{15}N (%)</td>
</tr>
<tr>
<td>pure gases and mixtures in He</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>rect on/off CO$_2$, N$_2$O</td>
<td>623</td>
<td>-44.30 ± 0.03</td>
<td>0.72 ± 0.05</td>
</tr>
<tr>
<td>gauss$_{raw}$ CH$_4$, N$_2$O</td>
<td>623</td>
<td>-41.80 ± 0.13</td>
<td>1.48 ± 0.22</td>
</tr>
<tr>
<td>gauss$_{corr}$ CH$_4$, N$_2$O</td>
<td>623</td>
<td>-41.84 ± 0.08</td>
<td>1.40 ± 0.17</td>
</tr>
<tr>
<td>working standards and air samples</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Boulder</td>
<td>–</td>
<td>-47.34 ± 0.08</td>
<td>1508.2</td>
</tr>
<tr>
<td>Saphir</td>
<td>141</td>
<td>-38.10 ± 0.16</td>
<td>761 ± 10</td>
</tr>
<tr>
<td>Air Controlé</td>
<td>7</td>
<td>-47.79 ± 0.14</td>
<td>1977 ± 19</td>
</tr>
<tr>
<td>Firn air NEEM</td>
<td>7</td>
<td>-49.49 ± 0.04</td>
<td>1275 ± 21</td>
</tr>
<tr>
<td>ice core samples</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>B34 (179.12 m)</td>
<td>4</td>
<td>-47.12 ± 0.05</td>
<td>636 ± 9</td>
</tr>
<tr>
<td>B34 (179.24 m)</td>
<td>4</td>
<td>-47.08 ± 0.05</td>
<td>648 ± 12</td>
</tr>
<tr>
<td>TALDICE1 ($\Delta a < 80$ a)</td>
<td>14</td>
<td>-48.56 ± 0.10</td>
<td>556 ± 5</td>
</tr>
<tr>
<td>TALDICE1 ($\Delta a < 250$ a)</td>
<td>21</td>
<td>-48.18 ± 0.17</td>
<td>535 ± 5</td>
</tr>
<tr>
<td>WAIS (170.99 m)</td>
<td>4</td>
<td>-48.03 ± 0.08</td>
<td>710 ± 9</td>
</tr>
</tbody>
</table>

1 For TALDICE the replicate means are shown to put the measured reproducibility into perspective; the reported mean for each parameter is the average of all replicate pairs of the measured time interval (2 kyr to 100 kyr). Note, the reproducibility (\pm value) for TALDICE samples represent the average standard deviation of pairs of “vertical neighbouring replicates”; see Sect. 5.3 for details.
Table 4. Means and 1σ standard deviations of isotope and mixing ratios on trace gases and air extracted from ice samples. Reference values are in bold. δ^{136}Xe denotes the deviation of the 136Xe/132Xe ratio against the standard divided by 4 to express the δ per 1 mass difference. δXe/air is the anomaly of the atmospheric Xe mixing ratio with respect to the standard in ‰. Note that CCl$_2$F$_2$ is absent in the pre-industrial air, and the reported values for ice samples are contamination blank. See caption Table 3 for further information.

<table>
<thead>
<tr>
<th>gas measured</th>
<th>n</th>
<th>δ^{136}Xe (%)</th>
<th>δXe/air (%)</th>
<th>C$_2$H$_6$ (ppt)</th>
<th>CH$_4$Cl (ppt)</th>
<th>C$_3$H$_8$ (ppt)</th>
<th>CCl$_2$F$_2$ (ppt)</th>
<th>air content (mLkg$^{-1}$)</th>
</tr>
</thead>
<tbody>
<tr>
<td>working standards and air samples</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Boulder</td>
<td>–</td>
<td>–</td>
<td>–</td>
<td>2916 ± 16</td>
<td>418 ± 8</td>
<td>1689 ± 9</td>
<td>405 ± 10</td>
<td>–</td>
</tr>
<tr>
<td>Saphir</td>
<td>141</td>
<td>0.03 ± 0.06</td>
<td>105 ± 10</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Air Controlé</td>
<td>7</td>
<td>0.02 ± 0.07</td>
<td>0 ± 10</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Firn air NEEM</td>
<td>7</td>
<td>0.24 ± 0.06</td>
<td>13 ± 6</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>ice core samples</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>B34 (179.12 m)</td>
<td>4</td>
<td>0.43 ± 0.04</td>
<td>12 ± 8</td>
<td>474 ± 151</td>
<td>503 ± 33</td>
<td>325 ± 115</td>
<td>3 ± 2</td>
<td>90.9 ± 0.3</td>
</tr>
<tr>
<td>B34 (179.24 m)</td>
<td>4</td>
<td>0.47 ± 0.07</td>
<td>9 ± 4</td>
<td>418 ± 120</td>
<td>561 ± 26</td>
<td>289 ± 93</td>
<td>3 ± 2</td>
<td>93.7 ± 0.4</td>
</tr>
<tr>
<td>TALDICE ($\Delta a < 80$ a)</td>
<td>14</td>
<td>0.34 ± 0.04</td>
<td>15 ± 7</td>
<td>351 ± 77</td>
<td>511 ± 19</td>
<td>209 ± 54</td>
<td>3 ± 2</td>
<td>100.9 ± 0.8</td>
</tr>
<tr>
<td>TALDICE ($\Delta a < 250$ a)</td>
<td>21</td>
<td>0.38 ± 0.05</td>
<td>13 ± 8</td>
<td>353 ± 63</td>
<td>530 ± 24</td>
<td>204 ± 78</td>
<td>3 ± 2</td>
<td>101.4 ± 0.7</td>
</tr>
<tr>
<td>WAIS (170.99 m)</td>
<td>4</td>
<td>0.30 ± 0.04</td>
<td>5 ± 14</td>
<td>345 ± 21</td>
<td>889 ± 20</td>
<td>297 ± 52</td>
<td>2 ± 1</td>
<td>111.5 ± 0.4</td>
</tr>
</tbody>
</table>
Table 5. Intercomparison of isotope measurements on N$_2$O of air cylinders between this study (Bern) and published data from CIC (Sperlich et al., 2013) and OSU (A. Schilt, personal communication, 2013). The differences (diff.) are calculated between Bern and the external results.

<table>
<thead>
<tr>
<th>cylinder name</th>
<th>δ^{15}N-N$_2$O (‰)</th>
<th>δ^{18}O-N$_2$O (‰)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Bern</td>
<td>CIC</td>
</tr>
<tr>
<td>NEEM1</td>
<td>6.97 ± 0.08</td>
<td>6.49 ± 0.04</td>
</tr>
<tr>
<td>AL1</td>
<td>1.57 ± 0.47</td>
<td>1.01 ± 0.15</td>
</tr>
<tr>
<td>NOAA1</td>
<td>−0.28 ± 0.18</td>
<td>−0.46 ± 0.15</td>
</tr>
<tr>
<td>Firn air NEEM FA32</td>
<td>9.16 ± 0.19</td>
<td>8.36 ± 0.12</td>
</tr>
</tbody>
</table>

1 Same names as used in Sperlich et al. (2013).
Fig. 1. Custom-built analytical set-up comprising the vacuum extraction and trapping line (green), the continuous-flow line with the gas chromatograph (GC) and the combustion furnace (orange), and the detection part (blue). The sample vessel (shaded grey) is sketched in detail in Fig. 2.
Fig. 2. Custom-built vessel holder with sample glass vessel to automatically melt ice samples using infrared light (heating bulbs + UV light blocker foil) or to keep the ice at around −5°C using LN₂ during pumping and procedure blank processing.
Fig. 3. Chromatograms illustrating the sequence of runs and detected gas species at the respective focus settings of the ion source for an Antarctic ice core sample. The order from (a) to (f) follows the increasing retention time starting with CH$_4$ and ending with CCl$_2$F$_2$. (a) CH$_4$-N$_2$O-run consisting of rectangular on/off peaks for N$_2$O and CO$_2$ admitted by the reference gas box, Gaussian peaks for CH$_4$ and N$_2$O injected via valves 3 and 4 (Fig. 1), and sample peaks for CH$_4$ and N$_2$O at the end of the run. (b) Xe run consisting of a rectangular on/off Xe peak as reference and the following Xe sample peak. (c–f) show the chromatograms for the organic trace gas species ethane, methyl chloride, propane, and dichloro-difluoro-methane (CCl$_2$F$_2$), respectively, eluting at higher GC temperatures. All chromatograms reflect species concentrations of the ice, besides CCl$_2$F$_2$, which serves as an indicator of contamination with modern ambient air. Note, to better visualise the small CCl$_2$F$_2$ intensities from the highly amplified minor1 and minor2 cups, the red and blue lines here represent a moving average of 1 s; the minor2 raw signal at 0.1 s resolution is shown as a grey line.
Fig. 4. Mass spectrometer focussing to allow for isotope analysis of doubly charged Xe ions. (a) Accelerating voltage scan (note the magnet current was switched from 4000 nA to 4800 nA to allow for the collection of higher m/z ions in the cups) over the region where Xe$^{2+}$ ions hit the Faraday cups. At the selected peak centre position a shared plateau region and the subsequent stable measurement conditions allow for the simultaneous detection of 136Xe$^{2+}$ in minor2 and 132Xe$^{2+}$ in minor1 to calculate isotope ratios spanning 4 m/z units. (b) Constructed Faraday cup configuration at peak centre position illustrates that the centre position has to be selected carefully as many Xe$^{2+}$ ions are close to cup edges. Note, the mass to charge ratio of (b) is plotted on an inverse scale to directly correspond to (a).
Fig. 5. Zoom into the background region of the N$_2$O sample peak (peak maximum indicated by the arrow). For clarity, the minor1 and minor2 signals are plotted as a 1.5 s moving average to allow for following the faint trends. For the background correction, an exponential fit is calculated using background data before and after the N$_2$O peak (dotted intervals). The thick solid lines below the N$_2$O peak indicate the subtracted background signals. Thin lines connect the background below the N$_2$O peak with the background region after the peak to visually examine the quality of the fitting step.
Fig. 6. Comparison of our calibrated air content measurements from the Dome C core with published results from the same ice core (Raynaud et al., 2007) plotted on the AICC2012 ice age scale (Bazin et al., 2013; Veres et al., 2013).
Fig. 7. Results of ice core measurements (Dye 3-88, bag 145, depth is given as top of sample) with sections of bubble ice and sections including melt layers. Samples consisting of bubble ice only (No. 1–3) are shown as circles and samples with melt layers (No. 4–6) are shown as squares within grey shading. Note that air content is plotted on an inverse axis. For CH₄ and N₂O, green and black bars, respectively, indicate calculated values in the melt layer samples assuming that both species are affected by equilibrium solubility effects as derived from the δXe/air anomaly. Error bars represent the average standard deviation derived from replicate samples (see Table 3). Horizontal shading and lines in the respective species’ colour represent the mean of the bubble ice measurements and 1σ of the typical reproducibility (Tables 3 and 4).
Fig. 8. System performance of reference air measurements. (a) Long-term evolution of the measured raw values for the isotopic signatures (δ^{13}C, δ^{15}N, δ^{18}O) of Boulder air referenced against pure CO$_2$ and N$_2$O on/off peaks spanning a period of 1 year. Effect of sample size and signal intensity on the measured isotope ratios (b) for δ^{13}C-CH$_4$ and (c) for δ^{18}O-N$_2$O and δ^{15}N-N$_2$O. Within the range covered by ice core and ambient air samples, all three isotope ratios are independent of the signal intensity.
Fig. 9. Comparison of our δ^{13}C-CH$_4$ and [CH$_4$] measurements with published results for an interval showing strong variations in both parameters. All data are plotted on a common age scale (Veres et al., 2013).