Supplement of

The CU 2-dimensional MAX-DOAS instrument – Part 1: Retrieval of \( \text{NO}_2 \) in 3 dimensions and azimuth dependent OVOC ratios

I. Ortega et al.

Correspondence to: R. Volkamer (rainer.volkamer@colorado.edu)
Figure S1. Sensitivity studies of the spectral window for the fit of HCHO (see figure 3 and tables 3 and 4). The top row (A-C) shows the RMS achieved using different polynomial degree (columns). Middle row shows the HCHO dSCD (D-F), and bottom row shows the degree of correlation between HCHO and BrO (G-H) - positive values correspond to some correlation and negative values anti-correlation. As can be seen the retrieval of HCHO is stable under different conditions and the retrieval window applied in this work (black open circle) with a polynomial degree of 3 shows less correlation with BrO with minimum RMS in agreement with Pinardi et al. (2013).
Fig S2. $O_4$ input parameters to equations 5 and 6; and fc as a function of SRAA and SZA. The error bars in $O_4$ dSCD reflect the variability of the measurements, and the error bars in $O_4$ dAMF and fc reflect sensitivity studies from Table 5.
Fig S3. Azimuth and time dependence of NO$_2$ VMR$_2$ and VMR$_3$. The data from Figure 9 is binned using data from 2hr time intervals. The error bars represent the overall uncertainty after error propagation.

Figure S4. Tropospheric NO$_2$ VCD obtained on June 17 2013 with the OMI instrument (data derived with the DOMINO v2.0). On the right it is shown the NO$_2$ VCD pixel around Mainz (cross). The two pixels representative of the path length probed by the CU 2D-MAX-DOAS are marked. The size of the pixel is ~15x30km.