The detection of nocturnal N_2O_5 as HNO_3
by alkali- and aqueous-denuder techniques

G. J. Phillips1, U. Makkonen2, G. Schuster1, N. Sobanski1, H. Hakola2, and J. Crowley1

1Department of Atmospheric Chemistry, Max Planck Institute of Chemistry, Mainz, Germany
2Finnish Meteorological Institute, 00560, Helsinki, Finland

Received: 19 September 2012 – Accepted: 8 October 2012 – Published: 15 October 2012
Correspondence to: G. J. Phillips (gavin.phillips@mpic.de)
Published by Copernicus Publications on behalf of the European Geosciences Union.
Abstract

The almost total anthropogenic control of the nitrogen cycle has led to wide ranging trans-national and national efforts to quantify the effects of reactive nitrogen on the environment. A number of monitoring techniques have been developed for the measurement of nitric acid and subsequent estimation of nitrogen deposition within large networks and for process studies on shorter measurement campaigns. We discuss the likelihood that many of these techniques are sensitive to another important gas-phase component of oxidized nitrogen; dinitrogen pentoxide (N$_2$O$_5$). We present measurements using a MARGA wet annular denuder device alongside measurements of N$_2$O$_5$ with a discussion of evidence from the laboratory and the field which suggests that alkali- and aqueous-denuder measurements are sensitive to the sum of HNO$_3$ + N$_2$O$_5$. Nocturnal data from these denuder devices should be treated with care before using HNO$_3$ concentrations derived from these data. This is a systematic error which is highly dependent on ambient conditions and is likely to cause systematic misinterpretation of datasets in periods where N$_2$O$_5$ is significant proportion of NO$_x$. It is also likely that deposition estimates of HNO$_3$ via data obtained with these methods is compromised to greater or lesser extents depending on the season and environment of the sampling location.

1 Introduction

Nitric acid (HNO$_3$) is an important fraction of gas-phase oxidised nitrogen and has been monitored and measured for a number of years as part of national and trans-national government sponsored efforts to understand the important issue of eco-system acidification and transboundary air pollution (Sutton et al., 2011). HNO$_3$ can be considered to be the end-point for the gas-phase chemical processing of NO$_x$ (NO$_2$ + NO) via the reaction of NO$_2$ with the hydroxyl radical (OH) in the troposphere and the reaction of the nitrate radical, NO$_3$, with dimethyl sulphide (DMS) (Yvon et al., 1996) and a number
of VOC species (Finlayson-Pitts and Pitts, 1997). HNO₃ is efficiently deposited on surfaces (Huebert and Robert, 1985) or can partition into the particulate phase in the presence of alkaline dust, sea salt or excess ammonia (Wexler and Seinfeld, 1992). However, not all NOₓ is lost from the atmosphere via formation of HNO₃.

Dinitrogen pentoxide (N₂O₅) is an important fraction of oxidised nitrogen which frequently relegated as a minor player with respect to its contribution to N deposition. Methodological descriptions of monitoring techniques for HNO₃ rarely mention N₂O₅ (e.g. Tang et al., 2009; Bytnerowicz et al., 2001; Markovic et al., 2012; Dong et al., 2012; Thomas et al., 2009) and do not consider the possibility that it may cause measurement interferences despite its ubiquity and reactivity. This may be for a number of reasons, including the technical challenges in its detection and, in the main, nocturnal occurrence. It is also true that, until relatively recently, the vast majority of N₂O₅ was thought to end up as nitrate and, therefore, it is possible that its role was considered trivial. This may be true for wet and dry deposition; however, these are not sufficient reasons for its neglect when considering the mechanisms at work within the environmental nitrogen cycle for, as we shall see, the mechanisms of N₂O₅ production, its fate, and its temporal occurrence differ markedly from HNO₃.

N₂O₅ is formed via a number of steps beginning with the reaction of NO₂ with O₃:

\[\text{NO}_2 + \text{O}_3 \rightarrow \text{NO}_3 \]

(R1)

In the daytime NO₃ is rapidly photolysed reforming NO or NO₂, or reacts with NO to reform NO₂. However, during the night, when photolysis frequencies are low and NO has been removed by reaction with O₃, NO₃ can react with NO₂ to form N₂O₅ which is in thermal equilibrium with its precursors:

\[\text{NO}_2 + \text{NO}_3 + \text{M} \rightarrow \text{N}_2\text{O}_5 + \text{M} \]

(R2)

\[\text{N}_2\text{O}_5 + \text{M} \rightarrow \text{NO}_2 + \text{NO}_3 + \text{M} \]

(R3)

With the equilibrium given by,

\[[\text{N}_2\text{O}_5] = K_{\text{eq}}[\text{NO}_3][\text{NO}_2] \]

(1)

With the equilibrium given by,
K_{eq} is strongly dependent on temperature, varying with $\sim \exp^{(11000/T)}$ with cold conditions favouring the formation of N_2O_5. At an NO$_2$ mixing ratio of 1 ppbv and temperature of 270 K the ratio of N_2O_5 to NO$_3$ is about 300 : 1 which drops to a ratio of approximately 1 : 1 at a temperature of 295 K (Brown and Stutz, 2012). Losses of N_2O_5 can be divided into direct and indirect losses. Indirect losses are processes resulting in the loss of precursor species, e.g. reactions of NO$_3$ with biogenic VOCs, or reaction with NO, which drive the equilibrium (1) to the right. Direct losses of N_2O_5 are mainly heterogeneous hydrolysis on particles (Brown and Stutz, 2012) and other surfaces, or the reaction with aqueous particle chloride (Finlayson-Pitts et al., 1989), the total uptake efficiency depending strongly on the particle composition (Bertram et al., 2009; Chang et al., 2011):

\begin{align}
N_2O_5 + H_2O_{(net)} & \rightarrow 2HNO_3 \quad (R4) \\
N_2O_5 + Cl^-_{(aq)} & \rightarrow ClNO_2 + HNO_3 \quad (R5) \\
ClNO_2 + h_\nu & \rightarrow Cl + NO_2 \quad (R6)
\end{align}

ClNO$_2$ is photolysed in the morning following production, reforming NO$_x$ in addition to Cl radical. Ambient measurements of the formation of ClNO$_2$ are relatively recent and scarce. However, they show the importance of the chloride channel of the heterogeneous loss of N_2O_5 in the marine (Osthoff et al., 2008; Riedel et al., 2012), continental North American (Thornton et al., 2010; Mielke et al., 2011), and Western European environments (Phillips et al., 2012).

A number of studies and monitoring networks have used data derived from denuder sampling techniques for both the estimation of acid deposition and the investigation of gas-particle dynamics of nitrogen in the atmosphere. In North America, the Clean Air Status and Trends Network (CASTNET) (http://epa.gov/castnet/javaweb/index.html) measures nitric acid data by both nylon filter packs (Bytnerowicz et al., 2001) and, more recently, is assessing the performance of the MARGA system for the measurement of fluxes and concentrations reactive gases and aerosols (Cowen et
al., 2011). In Asia, the Acid Deposition and Monitoring Network in East Asia (EANET) (http://www.eanet.cc/index.html) uses denuder methods to monitor nitric acid concentrations and estimate acid deposition. In the UK, the United Kingdom Eutrophying and Acidifying Pollutants (UKEAP) network uses monthly alkaline-denuder samplers to measure concentrations of nitric acid and estimate acid deposition. Across Europe as a whole, the NitroEurope project (Sutton et al., 2011) and European Monitoring and Evaluation Programme (EMEP) under the Convention of Long-range Transboundary Air Pollution use network of filter-pack systems and denuders in addition to a number of intensive monitoring periods (Aas et al., 2012) using higher time-resolution techniques to estimate acid deposition and study the processes controlling nitrogen chemistry and dynamics in the atmosphere. Data from these programs is freely available.

Denuder methods for the detection of nitric acid using the higher time resolution rotating annular denuder type measurements are becoming more common. Recent datasets obtained with the GRAEGOR/MARGA and used for the evaluation of models and the investigation of gas-to-particle partitioning of nitrate have been reported by a number of authors (Aan de Brugh et al., 2012; Aas et al., 2012; Makkonen et al., 2012; Schaap et al., 2011). The hourly time resolution of these datasets has a number of advantages over the monthly and weekly data available from monitoring networks, allowing researchers to investigate in more detail the chemistry and dynamics of nitrogen in the lower atmosphere.

2 Methods

We present data measured during August 2012 from the Taunus Observatory, Kleiner Feldberg, to the NW of Frankfurt, Germany. The Taunus Observatory is situated at the summit of the Kleiner Feldberg, 825 m above sea-level, just north of the heavily populated Rhein-Main area of South-western Germany. The site has been described in detail by Handisides (2001). A MARGA 1S annular denuder system was deployed on top of the observatory roof, approximately 3 m from a cavity ring-down absorption
spectrometer (CRDS) system for the measurement of N$_2$O$_5$ previously deployed at this location in both 2008 and 2011 (Crowley et al., 2010b; Phillips et al., 2012). The instruments were deployed as part of larger study of the heterogeneous chemistry of N$_2$O$_5$.

2.1 N$_2$O$_5$ by off-axis cavity ring-down spectroscopy

The N$_2$O$_5$ system is a two-channel off-axis cavity ring-down system (OA-CRDS) which detects NO$_3$ radical in one channel and the sum of N$_2$O$_5$ and NO$_3$ via thermal dissociation in the second channel. The instrument has been deployed on a number of previous occasions and is described in detail by (Crowley et al., 2010b). The concentration of N$_2$O$_5$ is calculated by subtraction and total uncertainty is estimated at 15%.

2.2 Monitor for Aerosols and Gases in Ambient Air (MARGA)

The MARGA system is a commercialised version of the GRAEGOR analyser developed by ECN, Netherlands (Thomas et al., 2009; ten Brink et al., 2009) and produced by Applikon Analytical BV, the Netherlands. The methodology and instrument description is contained in references above and so a brief description of the method follows. The MARGA was operated as per the manufacturer instructions as it would usually be operated in the field. The air sample was drawn, at 1 m3 h$^{-1}$, through a short, < 25 cm length of high density polyethylene (HDPE) tube, through a Teflon coated PM10 cut-off cyclone into a wet rotating denuder (WRD). The WRD consists of two concentric glass tubes wetted with IC grade water. The gases are efficiently denuded in the WRD, but the low mobility of particles prevents them from diffusing to the walls of the WRD. The air sample then enters the steam-jet aerosol collector (SJAC) where the water soluble particle fraction is condensed using steam and collected. The samples from both the WRD and SJAC are analysed on-line every hour using ion chromatography. Standard additions are made to determine the retention times of the analytes and to calibrate the analytical system.
3 Results and discussion

3.1 Co-located MARGA HNO$_3$ and OA-CRDS N$_2$O$_5$

The time series of gas-phase HNO$_3$ detected as NO$_3^-$ in the ion chromatograph and N$_2$O$_5$, both as N-equivalent mass, are plotted in Fig. 1, bottom panel. N$_2$O$_5$ mixing ratios were variable with peak concentrations of approximately 800 pptv. The nocturnal portion of the MARGA time series exhibits clear portions, see Fig. 2, with high correlation to the N$_2$O$_5$ series and on certain days, e.g. 16/17 August, the nocturnal MARGA signal is dominated, > 90%, by signal most likely arising from the hydrolysis of N$_2$O$_5$ in the denuder. This short series of data was obtained in the high summer with nocturnal temperatures ranging between 15 and 25$^\circ$C. Even in these summer conditions the average campaign contribution of N$_2$O$_5$ to the nocturnal MARGA HNO$_3$ signal is 17%. We expect the contribution to be higher in colder regions during the winter, with longer nights and lower NO$_3$ losses, both resulting in large N$_2$O$_5$ mixing ratios relative to HNO$_3$.

3.2 Alkaline denuder and filter methods

The absorption of constituents of ambient air by denuding technology followed by determination of the nitrate anion concentration is a frequent method for the determination of ambient HNO$_3$ concentrations. For example, the Nitro Europe (NEU) monitoring network using the DELTA denuder system (Tang et al., 2009) to determine monthly HNO$_3$ concentrations from which deposition maps are developed and against which dispersion models are tested (Flechard et al., 2011). The acid gases are denuded by passing ambient air through alkali coated glass tubes and subsequently tested for nitrate anion by ion chromatography. The efficient removal of N$_2$O$_5$ (and NO$_3$) is likely to occur on the surface of alkali-coated denuder tubes resulting in the detection of two NO$_3^-$ for every N$_2$O$_5$ sampled (Crowley et al., 2010a). It is therefore likely that a similar sensitivity to ambient N$_2$O$_5$ will be observed in datasets using denuder and filter
pack techniques. We are uncertain as to whether systems which use nylon filters, e.g. CASTNET (Bytnerowicz et al., 2001), to remove HNO$_3$ for analysis are likely to suffer from N$_2$O$_5$ detection artefacts in ambient conditions, though we expect that this would be favoured at high relative humidity resulting in the presence of water leading to N$_2$O$_5$ hydrolysis on the filter surface.

3.3 Ambient measurements of N$_2$O$_5$

N$_2$O$_5$ is not a commonly measured trace gas owing to the technically difficult nature of its detection Brown and Stutz (2012) present a comprehensive review of the current state of knowledge with respect to NO$_3$ and N$_2$O$_5$ in the atmosphere. Ambient point measurements are usually achieved via absorption spectroscopy such as cavity ring-down spectroscopy (CRDS) (Schuster et al., 2009; Simpson, 2003; Brown et al., 2001). Mixing ratios of N$_2$O$_5$ are highly variable (e.g. Matsumoto et al., 2005; Ayers and Simpson, 2006; Osthooff et al., 2006; Brown et al., 2003, 2007). In regions with high concentrations of NO or VOCs, the steady-state concentration of N$_2$O$_5$ can be below the detection limit, e.g. < 1 pptv, of current analytical instrumentation (e.g. Rinne et al., 2012). However, in situations with long NO$_3$ lifetimes and low particle surface areas, atmospheric mixing fractions can exceed several ppbv (e.g. Phillips et al., 2012) tying up a significant proportion of NO$_x$. In general, large N$_2$O$_5$ mixing ratios are likely to be favoured in Northern Hemisphere winter owing to the longer nights, colder temperatures and high NO$_2$ mixing ratios along with lower emission rates of NO$_3$ scavengers such as terpenes.

3.4 The likely significance of the detection of N$_2$O$_5$ as HNO$_3$

The chemical processes which control the formation and loss of N$_2$O$_5$ and HNO$_3$ are not the same and therefore analytical techniques reporting N$_2$O$_5$ as HNO$_3$ are systematically incorrect. HNO$_3$ will be produced in the presence of NO$_2$ in periods, usually the daytime, with sufficient OH radical concentrations and, to lesser extent owing to the lower reactivity, at night via NO$_3$ reactions with VOCs. The resulting HNO$_3$ may partition into the aerosol phase or be lost via dry and wet deposition. Further chemical
transformations do not occur in atmospherically relevant timescales. Conversely N₂O₅ is produced via Reaction (R2) which, owing to the rapid photolysis of the nitrate radical, only occurs with sufficient rate during periods of low sunlight, i.e. the night. N₂O₅ losses are, to some extent, similar to HNO₃. N₂O₅ is lost into the aqueous particle phase via hydrolysis producing NO₃⁻ and additionally lost via dry and wet deposition. Although daytime deposition velocities can be assumed to be similar (Zhang et al., 2012) and turbulence limited, N₂O₅ being present only at night, will be lost to dry deposition less favourably than to aqueous aerosol surface; the final deposition rate via hydrolysis being mediated via the losses of particle NO₃⁻. In addition, there is a second chemical pathway open to N₂O₅; N₂O₅ can react on the surface of Cl⁻ containing aqueous particles, e.g. aged sea salt or NH₄Cl, and produce CINO₂ and HNO₃. CINO₂ is not soluble and will leave the aqueous particle system. The nighttime losses of CINO₂ are negligible and result in the survival of NOₓ in an unreactive form until the morning. At daybreak CINO₂ is photolysed, liberating an active chlorine radical and NO₂. The presence of this loss pathway for N₂O₅ will prolong the atmospheric lifetime of NOₓ, and consequently the atmospheric transport distance, as it cycles back via the HOₓ-NOₓ chemical cycles. Measurements of HNO₃ that are sensitive to N₂O₅ will therefore, during periods of significant mixing ratios of N₂O₅, will over estimate the concentrations of HNO₃ and also the deposition of nitrate estimated from those measurements.

The consequences of the detection of N₂O₅ as an artefact within analytical systems are also dependent on the use to which the data is put, and the characteristics of the dataset. For example if, in high time resolution data, the diurnal pattern of HNO₃ concentration can be observed, then interpretations and comparison with models should not be affected during daylight hours or periods where NO₃ lifetimes are short. However, when weekly or monthly integrated concentrations of HNO₃ are measured and data is analysed on a seasonal basis, then some periods during the year may be affected to greater extents than others, for example in regions with low BVOC emissions and longer periods of darkness. We are not aware of long-term seasonal datasets
reporting the simultaneous contribution of \(\text{N}_2\text{O}_5 \) and \(\text{HNO}_3 \) to the total concentration of \(\text{NO}_y \).

4 Conclusions

Aqueous denuders are sensitive to \(\text{N}_2\text{O}_5 \) in addition to \(\text{HNO}_3 \) and it is likely that alkaline denuders are at least partially sensitive to \(\text{N}_2\text{O}_5 \). The main question remaining is to what extent are \(\text{HNO}_3 \) datasets using these techniques affected. The detection of the sum of \(\text{N}_2\text{O}_5 + \text{HNO}_3 \) as \(\text{HNO}_3 \) in systems using alkaline or aqueous denuder acid gas removal will likely result in the misrepresentation of seasonal and geographic pattern of gas-phase oxidised nitrogen deposition. The detection of \(\text{N}_2\text{O}_5 \) is a systematic error and it is possible that in some cases, in high time-resolution datasets, a large proportion of the \(\text{HNO}_3 \) signal is due to the detection of \(\text{N}_2\text{O}_5 \). Data presented here show that a significant portion of nighttime \(\text{HNO}_3 \) measured via an aqueous annular denuder system is \(\text{N}_2\text{O}_5 \). The warm-temperature summertime during which these measurements were obtained may be a lower limit of the effect as higher VOCs and warmer temperatures both militate against the formation of \(\text{N}_2\text{O}_5 \). The campaign average of nocturnal \(\text{N}_2\text{O}_5 \) contribution was 17\%, of the \(\text{HNO}_3 \) signal. Previous modelling work by (Riemer et al., 2003) found that the inclusion of \(\text{N}_2\text{O}_5 \) heterogeneous processes in chemical transport models “causes remarkable changes in the nocturnal concentrations of nitrogen containing species” illustrating the importance of \(\text{N}_2\text{O}_5 \) in the anthropogenic nitrogen cycle. In addition, the confusion of attempting to compare model output of \(\text{HNO}_3 \) with measures which are essentially the sum of two separate chemical entities with differing lifetimes and environmental fates may be partly the reason why modelled surface \(\text{HNO}_3 \) concentrations sometimes fail to agree with measurement data when model performance seems to be good for other forms of reactive N, such as \(\text{NO}_2 \) and \(\text{NH}_3 \) (Fowler et al., 2012). The standard network detection systems which use alkali and/or aqueous denuder systems should be tested for the effect of erroneous \(\text{N}_2\text{O}_5 \) detection, possible in addition to possible artefacts arising from newly observed molecules such as \(\text{ClNO}_2 \). Owing to the fast photolysis of \(\text{NO}_3 \), it would be possible to eliminate the
contribution of the artefact N_2O_5 by using a daytime-only sampling methodology, although for many purposes this is unsatisfactory. Measurements of N_2O_5 should be made with a wide seasonal and geographical reach to assess the extent of monitoring bias and also to help validate the difficult task of modelling the contribution of NO_3 and N_2O_5 to the NO_y budget. It is also important that the chloride production channel of heterogeneous N_2O_5 loss should be correctly included in models assessing reactive N deposition and chemical transport of reactive nitrogen. The uncertainties associated with this process are still relatively large and consequently more work is needed to ascertain its importance, both with respect to the nitrogen cycle, but also for the effect of chlorine activation on atmospheric radical cycling in the troposphere.

Acknowledgements. We thank H. Bingemer and the staff and department of Geophysics of the Johann Wolfgang Goethe-University, Frankfurt am Main for logistical support and the use of the Taunus Observatory. We also thank Johannes Schneider of the MPIC for the logistical aspects of the INUIT-TO campaign.

The service charges for this open access publication have been covered by the Max Planck Society.

References

The detection of nocturnal N$_2$O$_5$ as HNO$_3$

G. J. Phillips et al.

7502

Fig. 1. Bottom panel: time series of N$_2$O$_5$ measured by CRDS and HNO$_3$ measured by MARGA during August 2012 from the Taunus observatory, Kleiner Feldberg, Germany. Top panel: nocturnal contribution of measured N$_2$O$_5$ to the MARGA HNO$_3$ signal and the calculated remaining contribution of HNO$_3$ when data was measured concurrently. There was no N$_2$O$_5$ data available on the nights of 13 and 27 August and partial data available on the nights of 16/22/23 August.
Fig. 2. Expanded time series of the effect of N₂O₅ on the detection of HNO₃ by an aqueous denuder technique. Left panel: 7 August to 12 August 2012. Right panel: 16 August to 17 August 2012.