Interactive comment on “Water vapor total column measurements using the Elodie Archive at Observatoire de Haute Provence from 1994 to 2004” by A. Sarkissian and J. Slusser

A. Sarkissian and J. Slusser
alain.sarkissian@latmos.ipsl.fr

Received and published: 3 June 2009

1) Trend Calculation

1.a) Section 5 Chapter 5 p1083 line 11Sentence A negative trend of $-0.44 \pm 0.24 \times 10^{22} \times cm^{-2}$ per 10 years is obtained after removing the sine fit.
is replaced by

A negative slope of $-0.44 \pm 0.24 \times 10^{22} \times cm^{-2}$ per 10 years is obtained after removing the sine fit, indicating a not significant trend because it is larger than two times its error. This is in agreement with the review of measured trends over Europe made by cite{morland}. This negative slope might be introduced by the high summer values in 1994 and 1995. We believe that more detailed trend calculation, including seasonal trends calculations, could be made after we extend this analysis to the full Elodie Archive and to the Sophie Archive.

Also in caption of fig 7:

A negative trend of $-0.44 \pm 0.24 \times 10^{22} \times cm^{-2}$ per 10 years is obtained after removing the sine fit.
is replaced by

A negative slope of $-0.44 \pm 0.24 \times 10^{22} \times cm^{-2}$ per 10 years is obtained after removing the sine fit.

1.b) Validation

p1084 line 5

The calibration of the lidar gives by few percent better agreement with our measurements than with radiosondes, but we need more co-located and simultaneous observations for validation.
is replaced by

The calibration procedure uses the variance between radiosonde profile and lidar profiles between 2 and 8 km calibrated with our total column values on available days of lidar observation. This variance varies from 0.4 at 2 km to nearly 1 at 5 km, decreasing to 0.6 at 8 km is due to the natural time variability of atmospheric water vapor. The decrease of this variance by few percent observed when using Elodie water vapor data gives information on the validity of our measurements, but we need more co-located and simultaneous observations for better validation.

2) Minor suggestions, all agreed
its involvement in stratospheric ozone equilibrium due to the contribution of the troposphere-stratosphere exchanges

The differential optical absorption spectroscopy (DOAS) method is used commonly because using scattered light increases the path length up to 20 air masses.

Secondly, saturation effects on strong absorption lines in the 5ν range are not negligible