Journal cover Journal topic
Atmospheric Measurement Techniques An interactive open-access journal of the European Geosciences Union

Journal metrics

  • IF value: 2.989 IF 2.989
  • IF 5-year<br/> value: 3.489 IF 5-year
    3.489
  • CiteScore<br/> value: 3.37 CiteScore
    3.37
  • SNIP value: 1.273 SNIP 1.273
  • SJR value: 2.026 SJR 2.026
  • IPP value: 3.082 IPP 3.082
  • h5-index value: 45 h5-index 45
doi:10.5194/amt-2017-70
© Author(s) 2017. This work is distributed
under the Creative Commons Attribution 3.0 License.
Research article
21 Apr 2017
Review status
This discussion paper is under review for the journal Atmospheric Measurement Techniques (AMT).
A method for measuring total aerosol oxidative potential (OP) with the dithiothreitol (DTT) assay and comparisons between an urban and roadside site of water-soluble and total OP
Dong Gao1, Ting Fang2, Vishal Verma3, Linghan Zeng2, and Rodney Weber2 1School of Civil and Environmental Engineering, Georgia Institute of Technology, Atlanta, GA 30332, USA
2School of Earth and Atmospheric Sciences, Georgia Institute of Technology, Atlanta, GA 30332, USA
3School of Civil and Environmental Engineering, Univer sity of Illinois at Urbana - Champaign, Urbana, IL 61801, USA
Abstract. An automated analytical system was developed for measuring the oxidative potential (OP) with the dithiothreitol (DTT) assay of filter extracts that include both water-soluble and water-insoluble (solid) aerosol species. Three approaches for measuring total oxidative potential were compared. These include using methanol as the solvent with (1) and without (2) filtering the extract, followed by removing the solvent and reconstituting with water, and (3) extraction in pure water and performing the OP analysis in the extraction vial with the filter. The water extraction method (the third approach, with filter remaining in the vial) generally yielded highest DTT responses with better precision (coefficient of variation of 1–5 %), and was correlated with a greater number of other aerosol components. Because no organic solvents were used, which must be mostly eliminated prior to DTT analysis, it was the easiest to automate by modifying an automated analytical system for measuring water-soluble OP developed by Fang et al. (2015). Daily 23h filter samples were collected simultaneously at a roadside (RS) and a representative urban (GT) site for two one-month study periods, and both water-soluble (OPWS-DTT) and total (OPTotal-DTT) OP were measured. Using PM2.5 (aerodynamic diameter < 2.5 μm) high-volume samplers with quartz filters, the OPWS-DTT to OPTotal-DTT ratio at the urban site was 65 % with a correlation coefficient (r) of 0.71 (N = 35; p-value < 0.01), compared to a ratio of 62 % and r = 0.56 (N = 31; p-value < 0.01) at the roadside site. Similar results were found using particle composition monitors (flow rate of 16.7 L min−1) with Teflon filters. Comparison of measurements between sites showed only slightly higher levels of both OPWS-DTT and OPTotal-DTT at the RS site, indicating both OPWS-DTT and OPTotal-DTT were largely spatially homogeneous. These results are consistent with roadway emissions as sources of DTT-quantified PM2.5 OP and that both soluble and insoluble aerosol components contributing to OP are largely secondary.

Citation: Gao, D., Fang, T., Verma, V., Zeng, L., and Weber, R.: A method for measuring total aerosol oxidative potential (OP) with the dithiothreitol (DTT) assay and comparisons between an urban and roadside site of water-soluble and total OP, Atmos. Meas. Tech. Discuss., doi:10.5194/amt-2017-70, in review, 2017.
Dong Gao et al.
Dong Gao et al.
Dong Gao et al.

Viewed

Total article views: 68 (including HTML, PDF, and XML)

HTML PDF XML Total Supplement BibTeX EndNote
55 11 2 68 4 0 1

Views and downloads (calculated since 21 Apr 2017)

Cumulative views and downloads (calculated since 21 Apr 2017)

Viewed (geographical distribution)

Total article views: 68 (including HTML, PDF, and XML)

Thereof 68 with geography defined and 0 with unknown origin.

Country # Views %
  • 1

Saved

Discussed

Latest update: 23 Apr 2017
Publications Copernicus
Download
Short summary
This work compares three methods to determine the optimal approach for quantifying the total oxidative potential (OP) of fine particles collected with filters using the dithiothreitol (DTT) assay. An automated system has been developed to facilitate the total OP measurements for use in generation of large data sets needed for epidemiology studies. The results from this study show that the water-insoluble components contribute to PM2.5 OP and the related DTT-active species are largely secondary.
This work compares three methods to determine the optimal approach for quantifying the total...
Share