Journal cover Journal topic
Atmospheric Measurement Techniques An interactive open-access journal of the European Geosciences Union

Journal metrics

  • IF value: 2.989 IF 2.989
  • IF 5-year<br/> value: 3.489 IF 5-year
    3.489
  • CiteScore<br/> value: 3.37 CiteScore
    3.37
  • SNIP value: 1.273 SNIP 1.273
  • SJR value: 2.026 SJR 2.026
  • IPP value: 3.082 IPP 3.082
  • h5-index value: 45 h5-index 45
doi:10.5194/amt-2017-60
© Author(s) 2017. This work is distributed
under the Creative Commons Attribution 3.0 License.
Research article
20 Mar 2017
Review status
This discussion paper is under review for the journal Atmospheric Measurement Techniques (AMT).
Simultaneous multicopter-based air sampling and sensing of meteorological variables
Caroline Brosy1, Karina Krampf1, Matthias Zeeman1, Benjamin Wolf1, Wolfgang Junkermann1, Klaus Schäfer1, Stefan Emeis1, and Harald Kunstmann1,2 1Institute of Meteorology and Climate Research (IMK - IFU) , Karlsruhe Institute of Technology, Garmisch - Partenkirchen, 82467, Germany
2Institute of Geography, University of Augsburg, Augsburg, 86159 , Germany
Abstract. The state and composition of the lowest part of the planetary boundary layer (PBL), i.e., the atmospheric surface layer (SL), reflects the interactions of external forcing, land surface, vegetation, human influence and the atmosphere. Vertical profiles of atmospheric variables in the SL at high spatial and temporal resolution increase our understanding of these interactions, but are still challenging to measure appropriately. Traditional ground-based observations include towers that often cover only few measurement heights on a fixed location. At the same time, remote sensing techniques and aircraft measurements are challenged to achieve sufficient detail close to the ground. Vertical and horizontal sounding of the PBL can be complemented by unmanned aerial vehicles (UAV). Our aim in this case study is to assess the use of a multicopter-type UAV to simultaneously support the spatial sampling of air and the sensing of meteorological variables for the study of the surface exchange processes. To this end, a UAV was equipped with onboard air temperature and humidity sensors, while wind conditions were determined from the UAV’s flight control sensors. Further, the UAV was used to systematically change the location of a sample inlet connected to a sample tube, allowing the observation of methane abundance using a ground-based analyzer. Vertical methane gradients were found during stable atmospheric conditions with a gradient of about 300 ppb. Our results showed that both methane and meteorological conditions were in agreement with other observations at the site during the ScaleX-2015 campaign. The multicopter-type UAV was capable of simultaneous in situ sensing of meteorological state variables and sampling of air up to 50 m above the surface, which extended the vertical profile height of existing tower-based infrastructure by a factor of five.

Citation: Brosy, C., Krampf, K., Zeeman, M., Wolf, B., Junkermann, W., Schäfer, K., Emeis, S., and Kunstmann, H.: Simultaneous multicopter-based air sampling and sensing of meteorological variables, Atmos. Meas. Tech. Discuss., doi:10.5194/amt-2017-60, in review, 2017.
Caroline Brosy et al.
Caroline Brosy et al.
Caroline Brosy et al.

Viewed

Total article views: 212 (including HTML, PDF, and XML)

HTML PDF XML Total BibTeX EndNote
141 67 4 212 0 3

Views and downloads (calculated since 20 Mar 2017)

Cumulative views and downloads (calculated since 20 Mar 2017)

Viewed (geographical distribution)

Total article views: 212 (including HTML, PDF, and XML)

Thereof 212 with geography defined and 0 with unknown origin.

Country # Views %
  • 1

Saved

Discussed

Latest update: 28 Mar 2017
Publications Copernicus
Download
Short summary
Vertical and horizontal sounding of the planetary boundary layer can be complemented by unmanned aerial vehicles (UAV). Utilizing a multicopter-type UAV spatial sampling of air and simultaneously sensing of meteorological variables is possible for the study of surface exchange processes. During stable atmospheric conditions, vertical methane gradients of about 300 ppb were found. This approach extended the vertical profile height of existing tower-based infrastructure by a factor of five.
Vertical and horizontal sounding of the planetary boundary layer can be complemented by unmanned...
Share