Journal cover Journal topic
Atmospheric Measurement Techniques An interactive open-access journal of the European Geosciences Union

Journal metrics

  • IF value: 2.989 IF 2.989
  • IF 5-year<br/> value: 3.489 IF 5-year
    3.489
  • CiteScore<br/> value: 3.37 CiteScore
    3.37
  • SNIP value: 1.273 SNIP 1.273
  • SJR value: 2.026 SJR 2.026
  • IPP value: 3.082 IPP 3.082
  • h5-index value: 45 h5-index 45
doi:10.5194/amt-2016-409
© Author(s) 2017. This work is distributed
under the Creative Commons Attribution 3.0 License.
Research article
12 Jan 2017
Review status
This discussion paper is under review for the journal Atmospheric Measurement Techniques (AMT).
An empirical QPE method based on polarimetric variable adjustments
Jungsoo Yoon, Jong-Sook Park, Hae-Lim Kim, Mi-Kyung Suk, and Kyung-Yeub Nam Weather Radar Center, Korea Meteorological Adimistration
Abstract. This study presents an empirical method for optimizing polarimetric variables in order to improve the accuracy of dual-polarization radar rainfall estimation using data derived from radars operated by different agencies. The empirical method was developed using the Yong-In Testbed (YIT) radar operated by the Korea Meteorological Administration (KMA). The method is based on the determination of relations between polarimetric variables. Relations for ZZDR and ZKDP are derived from the measurements of a two-dimensional video disdrometer installed about 30 km away from the YIT radar. These relations were used to adjust the polarimetric variables of the dual-polarization constant altitude plan position indicator (CAPPI) at a height of 1.5 km. The CAPPI data with the adjusted polarimetric variables were used to estimate rainfalls using three different radar rainfall estimation algorithms. The first algorithm is based on Z, the second on Z and ZDR, and the third on Z, ZDR, and KDP. The accuracy of the radar-estimated rainfall was then assessed using raingauge observations. Three rainfall events with more than 40 mm of maximum hourly rainfall were shown to have the best estimation when the method using Z, ZDR, and KDP was used. However, stratiform precipitation events were better estimated by the algorithm using Z and ZDR. The method was also applied to the data of three radars that belong to KMA and the Ministry of Land, Infrastructure, and Transport. The evaluation was done for six months (May–October) in 2015. The results show an improvement in radar rainfall estimation accuracy for stratiform, frontal, and convective precipitation from approximately 50 % to 70 %.

Citation: Yoon, J., Park, J.-S., Kim, H.-L., Suk, M.-K., and Nam, K.-Y.: An empirical QPE method based on polarimetric variable adjustments, Atmos. Meas. Tech. Discuss., doi:10.5194/amt-2016-409, in review, 2017.
Jungsoo Yoon et al.
Jungsoo Yoon et al.
Jungsoo Yoon et al.

Viewed

Total article views: 192 (including HTML, PDF, and XML)

HTML PDF XML Total BibTeX EndNote
146 33 13 192 13 15

Views and downloads (calculated since 12 Jan 2017)

Cumulative views and downloads (calculated since 12 Jan 2017)

Viewed (geographical distribution)

Total article views: 192 (including HTML, PDF, and XML)

Thereof 192 with geography defined and 0 with unknown origin.

Country # Views %
  • 1

Saved

Discussed

Latest update: 30 Mar 2017
Publications Copernicus
Download
Short summary
This study presents an empirical method for optimizing polarimetric variables in order to improve the accuracy of dual-polarization radar rainfall estimation using data derived from radars operated by different agencies. The method is based on the determination of relations between polarimetric variables. The results show an improvement in radar rainfall estimation accuracy for stratiform, frontal, and convective precipitation from approximately 50 % to 70 %.
This study presents an empirical method for optimizing polarimetric variables in order to...
Share