Journal cover Journal topic
Atmospheric Measurement Techniques An interactive open-access journal of the European Geosciences Union

Journal metrics

  • IF value: 3.089 IF 3.089
  • IF 5-year<br/> value: 3.700 IF 5-year
    3.700
  • CiteScore<br/> value: 3.59 CiteScore
    3.59
  • SNIP value: 1.273 SNIP 1.273
  • SJR value: 2.026 SJR 2.026
  • IPP value: 3.082 IPP 3.082
  • h5-index value: 45 h5-index 45
https://doi.org/10.5194/amt-2016-382
© Author(s) 2017. This work is distributed under
the Creative Commons Attribution 3.0 License.
Research article
03 Apr 2017
Review status
A revision of this discussion paper is under review for the journal Atmospheric Measurement Techniques (AMT).
CH4 emission estimates from an active landfill site inferred from a combined approach of CFD modelling and in situ FTIR measurements
Hannah Sonderfeld1, Hartmut Bösch1,2, Antoine P. R. Jeanjean1, Stuart N. Riddick3, Grant Allen4, Sébastien Ars5, Stewart Davies6, Neil Harris7, Neil Humpage1, Roland Leigh1, and Joseph Pitt4 1Earth Observation Science Group, Department of Physics and Astronomy, University of Leicester, Leicester, UK
2National Centre for Earth Observation, University of Leicester, Leicester, UK
3Department of Civil and Environmental Engineering, Princeton University, NJ, USA
4Centre for Atmospheric Science, The University of Manchester, Manchester, UK
5Laboratoire des Sciences du Climat et de l’Environnement (LSCE/IPSL), CNRS-CEA-UVSQ, Université de Paris-Saclay, Gif-sur-Yvette, France
6Viridor Waste Management Limited, Peninsula House, Rydon Lane, Exeter, Devon, UK
7Centre for Atmospheric Informatics and Emissions Technology, Cranfield University, Cranfield, UK
Abstract. Globally, the waste sector contributes to nearly a fifth of anthropogenic methane emitted to the atmosphere and is the second largest source of methane in the UK. In recent years great improvements to reduce those emissions have been achieved by installation of methane recovery systems at landfill sites and subsequently methane emissions reported in national emission inventories have been reduced. Nevertheless, methane emissions of landfills remain uncertain and quantification of emission fluxes is essential to verify reported emission inventories and to monitor changes in emissions. Here we present a new approach for methane emission quantification from a complex source like a landfill site by applying a Computational Fluid Dynamics (CFD) model to calibrated in situ measurements of methane as part of a field campaign at a landfill site near Ipswich, UK, in August 2014. The methane distribution for different meteorological scenarios is calculated with the CFD model and compared to methane mole fractions measured by an in situ Fourier Transform Infrared (FTIR) spectrometer downwind of the prevailing wind direction. Assuming emissions only from the active site, a mean daytime flux of 0.83 mg m−2 s−1, corresponding to 53.26 kg h−1, was estimated. The addition of a secondary source area adjacent to the active site, where some methane hotspots were observed, improved the agreement between the simulated and measured methane distribution. As a result, the flux from the active site was reduced slightly to 0.71 mg m−2 s−1 (45.56 kg h−1), at the same time an additional flux of 0.32 mg m−2 s−1 (30.41 kg h−1) was found from the secondary source area. This highlights the capability of our method to distinguish between different emission areas of the landfill site, which can provide more detailed information about emission source apportionment compared to other methods deriving bulk emissions.

Citation: Sonderfeld, H., Bösch, H., Jeanjean, A. P. R., Riddick, S. N., Allen, G., Ars, S., Davies, S., Harris, N., Humpage, N., Leigh, R., and Pitt, J.: CH4 emission estimates from an active landfill site inferred from a combined approach of CFD modelling and in situ FTIR measurements, Atmos. Meas. Tech. Discuss., https://doi.org/10.5194/amt-2016-382, in review, 2017.
Hannah Sonderfeld et al.
Hannah Sonderfeld et al.
Hannah Sonderfeld et al.

Viewed

Total article views: 364 (including HTML, PDF, and XML)

HTML PDF XML Total BibTeX EndNote
268 69 27 364 11 25

Views and downloads (calculated since 03 Apr 2017)

Cumulative views and downloads (calculated since 03 Apr 2017)

Viewed (geographical distribution)

Total article views: 364 (including HTML, PDF, and XML)

Thereof 362 with geography defined and 2 with unknown origin.

Country # Views %
  • 1

Saved

Discussed

Latest update: 28 Jun 2017
Publications Copernicus
Download
Short summary
The waste sector is the second largest source of methane in the UK. But, uncertainties of methane emissions from landfill sites still remain. In this study we present a new approach for estimation of methane emissions from a landfill site by applying a Computational Fluid Dynamics (CFD) model to precise measurements of methane with in situ Fourier Transform Infrared (FTIR) spectroscopy. Different source areas could be distinguished with this method and their emissions were assessed.
The waste sector is the second largest source of methane in the UK. But, uncertainties of...
Share