

- 1 Limb-nadir matching using non-coincident NO2
- 2 observations: Proof of concept and the OMI-minus-OSIRIS
- 3 prototype product
- 4

5 Cristen Adams^{1,2}, Elise N. Normand¹, Chris A. McLinden³, Adam E. Bourassa¹,

- Nicholas D. Lloyd¹, Douglas A. Degenstein¹, Nickolay A. Krotkov⁴, Maria
 Belmonte Rivas⁵, K. Folkert Boersma^{5,6}, Henk Eskes⁵
- 8 [1] Institute of Space and Atmospheric Studies, University of Saskatchewan, Saskatoon,9 Canada
- 10 [2] Alberta Environmental Monitoring, Evaluation, and Reporting Agency, Edmonton, Canada
- 11 [3] Air Quality Research Division, Environment Canada, Toronto, Ontario
- 12 [4] NASA Goddard Space Flight Center, Greenbelt, MD, USA
- 13 [5] Royal Netherlands Meteorological Institute (KNMI), De Bilt, The Netherlands
- [6] Wageningen University, Meteorology and Air Quality Group, Wageningen, TheNetherlands
- 16 Correspondence to: Cristen Adams (cristenlfadams@gmail.com)
- 17

18 Abstract

19 A variant of the limb-nadir matching technique for deriving tropospheric NO₂ columns is 20 presented in which the stratospheric component of the NO₂ slant column density (SCD) 21 measured by the Ozone Monitoring Instrument (OMI) is removed using non-coincident profiles 22 from the Optical Spectrograph and InfraRed Imaging System (OSIRIS). In order to correct their 23 mismatch in local time and the diurnal variation of stratospheric NO₂, OSIRIS profiles, which 24 were measured just after sunrise, were mapped to the local time of OMI observations using a 25 photochemical box model. Following the profile time adjustment, OSIRIS NO₂ stratospheric 26 vertical columns densities (VCDs) were calculated. For profiles that did not reach down to the 27 tropopause, VCDs were adjusted using the photochemical model. Using air mass factors from the OMI Standard Product (SP), a new tropospheric NO₂ VCD product – referred to as OMI-28

1 minus-OSIRIS (OmO) – was generated through limb-nadir matching. To accomplish this, the 2 OMI total SCDs were scaled using correction factors derived from the next-generation SCDs 3 that improve upon the spectral fitting used for the current operational products. One year, 2008, of OmO was generated for 60°S to 60°N and a cursory evaluation was performed. The OmO 4 5 product was found to capture the main features of tropospheric NO₂ including a background 6 value of about 0.3×10^{15} molecules/cm² over the tropical Pacific and values comparable to the 7 OMI operational products over anthropogenic source areas. While additional study is required, 8 these results suggest that a limb-nadir matching approach is feasible for the removal of 9 stratospheric NO₂ measured by a polar orbiter from a nadir-viewing instrument in a 10 geostationary orbit such as Tropospheric Emissions: Monitoring of Pollution (TEMPO) or 11 Sentinel-4.

12

13 **1** Introduction

Nadir satellite instruments can measure daily global maps of tropospheric nitrogen dioxide (NO₂), which, at the surface, is a pollutant linked to smog and acid rain. Tropospheric NO₂ was first successfully retrieved from the Global Ozone Monitoring Experiment (GOME) (Burrows et al., 1999), and has since also been measured by the Scanning Imaging Absorption Spectrometer for Atmospheric Chartography (SCIAMACHY) (Bovensmann et al., 1999), Ozone Monitoring Instrument (OMI) (Levelt et al., 2006) and GOME 2 (Callies et al., 2000) nadir-viewing instruments.

High concentrations of NO₂ are also found in the stratosphere, where NO₂ has a large seasonal and diurnal variability due to photochemistry, and, in some case, due to dynamics as well (e.g., Dirksen et al., 2011). Therefore retrievals for tropospheric NO₂ from nadir instruments typically rely on extrapolation or assimilation approaches to determine the stratospheric contribution to NO₂. A correct and unbiased removal of stratospheric NO₂ is a major challenge and represents a significant source of uncertainty in tropospheric NO₂ retrieval products.

Various methods have been used to separate stratospheric and tropospheric contributions from the total NO₂ vertical column density (VCD) measured by nadir satellites. Several of these techniques assume that the NO₂ distribution over a remote, non-polluted location, like the Pacific Ocean, is dominated by the stratospheric component. These stratospheric NO₂ values are then extrapolated to other locations. Hilboll et al. (2013) give a good overview of the development of these methods from early analyses, which assumed that stratospheric NO₂ does

1 not vary within a latitude band (Martin et al., 2002; Richter and Burrows, 2002) to more 2 complex techniques, such as the planetary wave-2 zonal analysis technique (Bucsela et al., 3 2006). Chemical transport model information can also be used to infer stratospheric NO₂. In 4 order to account for biases between the modeled stratosphere and the satellite measurements, 5 the model data can be scaled to the satellite measurements through comparisons in the Pacific 6 Ocean (Richter et al., 2005) or the measured total column NO₂ can be assimilated in the model 7 (e.g., Boersma et al., 2007). These techniques, as applied to operational data products for OMI, 8 are described in more detail in Sect. 2.1. Another approach is the cloud slicing method 9 (Belmonte Rivas et al., 2015; Choi et al., 2014), which yields information on the NO₂ vertical 10 profile. When there is cloud cover, the lower part of the atmosphere is obscured, so the levels 11 of NO_2 in various layers of the atmosphere above the clouds can be inferred. This approach is 12 not currently used for any operational data products.

13 Another promising technique involves using the global, vertically resolved stratospheric NO₂ 14 profiles from satellite instruments that measure in the limb-viewing geometry. Near-daily 15 global resolution can be obtained using limb instruments that measure scattered sunlight, such 16 as the Optical Spectrograph and InfraRed Imaging System (OSIRIS) (Llewellyn et al., 2004; 17 McLinden et al., 2012b) and SCIAMACHY (Bovensmann et al., 1999), as well as instruments 18 that measure emissions, such as the Michelson Interferometer for Passive Atmospheric 19 Sounding (MIPAS) (Fischer et al., 2008) and the High Resolution Dynamics Limb Sounder 20 (HIRDLS) (Gille et al., 2008). These limb-viewing measurements of stratospheric NO_2 can 21 then be matched to and subtracted from the nadir total column measurement.

22 The limb-nadir matching method has been employed for SCIAMACHY NO₂ (Beirle et al., 23 2010; Hilboll et al., 2013; Sierk et al., 2006; Sioris et al., 2004), which provides both limb and 24 nadir measurements virtually simultaneously and at the same local time. In the most recent 25 analysis, Hilboll et al. (2013) calculate a stratospheric NO₂ VCD from limb measurements for 26 each nadir measurement. They adjust the stratospheric VCDs to match the levels observed in 27 the nadir columns using a latitude-dependent factor calculated daily over the Pacific Ocean, 28 where levels of tropospheric NO₂ are expected to be low. Since the SCIAMACHY limb and 29 nadir instruments measure at the same local time, the diurnal variation of NO2 does not 30 complicate the limb-nadir matching.

In this proof of concept study, the potential of deriving tropospheric NO₂ from measurements
 taken by limb and nadir instruments at different local times is explored. OSIRIS limb-viewing

1 stratospheric NO₂ from the descending node of the orbit, measured toward sunrise, and OMI 2 nadir-viewing column NO₂, measured near midday, are used to quantify the abundance of 3 tropospheric NO₂. OMI tropospheric NO₂ has been well-characterized against other 4 instruments (Boersma et al., 2011; Lamsal et al., 2014) and has been used in many scientific 5 studies of tropospheric air pollution (e.g., Duncan et al., 2016; Krotkov et al., 2016; McLinden 6 et al., 2012a; Russell et al., 2012; Veefkind et al., 2011; Zhou et al., 2012) as well as some work 7 on stratospheric NO₂ (e.g., Dirksen et al., 2011). OSIRIS stratospheric NO₂ agrees well with 8 other instruments (Brohede et al., 2007; Kerzenmacher et al., 2008) and provides daily near-9 global coverage, which is necessary to match to OMI measurement dates and locations. The 10 resulting tropospheric VCDs are referred to as the OMI-minus-OSIRIS (OmO) data product. 11 Although, the local time mismatch between OSIRIS and OMI adds a significant complication

12 due to the diurnal nature of NO_2 , it is also a more realistic scenario in the merging of limb 13 measurements for some future missions. Nadir-viewing instruments on geostationary platforms 14 such as the Tropospheric Emissions: Monitoring of Pollution (TEMPO) (Chance et al., 2013; 15 Zoogman et al., 2014), Sentinel-4 (Ingmann et al., 2012), and Geostationary Environmental 16 Monitoring Spectrometer (GEMS) (Kim, 2012) will be measuring throughout the sunlit day at 17 many local times. These measurements could be paired with limb-viewing instruments on polar 18 orbiters. Ideally, a limb-nadir merging would be carried out through a data assimilation system, 19 but it is important nonetheless to understand their compatibility in a much simpler framework. 20 In order to create the OmO dataset, the following steps were taken. OSIRIS, OMI, and photochemical model data were used, as described in Sect. 2. A series of 3-day average 21 22 stratospheric VCD maps on a uniform latitude and longitude grid were created from OSIRIS 23 data for various local times, using scale factors from the photochemical model, as described in 24 Sect. 3. The OmO data product was then calculated using OMI VCDs and air mass factors

(AMFs), along with matched stratospheric VCDs interpolated from the OSIRIS VCD maps.
These calculations and a correction factor for a known bias in the OMI data (Marchenko et al.,
2015; van Geffen et al., 2015), as well as an assessment of the OmO prototype data, are

described in Sect. 4. A discussion of these results and future applications is given Sect. 5.

1 2 Measurements and Modelling Tools

2 2.1 OMI on Aura

3 OMI (Levelt et al., 2006) is a nadir-viewing solar backscatter spectrometer on-board the Aura 4 satellite (Schoeberl et al., 2006), which was launched into a polar orbit about the Earth on 15 5 July 2004. The satellite was designed to further our understanding of stratospheric and tropospheric chemistry as well as climate systems through high spectral resolution 6 7 measurements in the UV/visible (270-500 nm). OMI follows a sun-synchronous orbit with a 8 98.2° inclination and an ascending equatorial node crossing of approximately 13:45 local time. 9 OMI captures a 114° field of view, which covers a width of 2600 km. The swath direction is 10 perpendicular to the satellite flight path, so with 14 orbits per day there is near complete global 11 coverage. There are a total of 60 binned pixel positions across the entire swath with an 12 outermost swath-angle of 57°. In the centered nadir position, the ground pixel size covers 13×24 13 $\rm km^2$ (along track by across track) for the UV-2 and visible channels, and 13×48 $\rm km^2$ for the 14 UV-1 channel. As the swath-angle increases, the pixel footprint increases to a maximum of 15 ~ 15×150 km² at the outermost pixel positions. NO₂ is retrieved with the visible channel between 16 405 and 465 nm, where there is little interference from other absorbers.

17 There are two operational NO₂ data products: the Dutch-OMI NO₂ (DOMINO v2) product 18 (Boersma et al., 2011) and the NASA standard product (SP v2) (Bucsela et al., 2013). These 19 two data products are referred to as OMI-SP and OMI-DOMINO, respectively, throughout this 20 paper. Both products employ a multi-step approach with a common first step. Differential 21 optical absorption spectroscopy (DOAS) is used to determine the NO₂ slant column densities 22 (SCDs) by fitting the ratio of earthshine radiance to extra-terrestrial irradiance spectra to 23 laboratory reference data, Ring spectrum (Chance and Spurr, 1997) and polynomial. 24 Physically, the SCD represents the total absorption by NO_2 along the average path of the 25 sunlight through the atmosphere, which includes absorption in both the stratosphere and 26 troposphere.

Different approaches are used for the second step, which is to execute the stratospheretroposphere separation. OMI-DOMINO accomplishes stratosphere-troposphere separation by assimilating the OMI slant columns within the TM4 chemistry-transport model (Boersma et al., 2007; Dirksen et al., 2011), effectively determining how much NO₂ resides in the stratosphere, which is then subtracted from the total slant column. For OMI-SP, the stratospheric column is

recovered by performing a local analysis of the stratospheric field in cloudy regions or regions
 where there is no tropospheric pollution. These values are then extrapolated to polluted regions
 using spatial interpolation and smoothing technique technique (Bucsela et al., 2013), which
 assumes that changes in tropospheric NO₂ occur on relatively shorter geographical scales than
 stratospheric ones.

6 The final step for both operational NO_2 data products is the determination of the tropospheric 7 VCD from the residual SCD in the troposphere. In general, the total SCD, S, is related to the 8 total VCD, V, through the tropospheric air mass factor (AMF), A, by, S=V·A and is а 9 measure of the changes in absorption when light traverses an effective or "slant" path through 10 a tropospheric layer. The AMF is dependent on the path length, which in turn depends on the 11 solar zenith angle (SZA), the satellite viewing angle, the vertical distribution of absorbing 12 species, cloud and aerosol properties, and albedo. In the troposphere, a key dependence is the 13 vertical distribution of NO₂ which is taken from model simulations: the TM4 model (at the time 14 of the measurement) for the DOMINO product and the Global Modeling Initiative (GMI) model 15 (monthly) for the SP product. AMFs are calculated using radiative transfer models that 16 accurately simulate absorption, multiple-scattering, and surface reflection.

17 The OmO prototype dataset was constructed using the AMFs and VCDs from the OMI-SP v2 18 dataset (Bucsela et al., 2013). An alternate OmO-DOMINO prototype was also constructed 19 using OMI-DOMINO v2.0 (Boersma et al., 2011) AMFs and VCDs. The OSIRIS stratospheric 20 VCDs and OmO tropospheric VCDs were compared with both OMI-SP and OMI-DOMINO 21 v2.0. For all figures and statistics presented in this paper, OMI and OmO data for OMI cloud 22 radiance fractions (CRF) < 0.3 and SZA $< 75^{\circ}$ were used. Additionally, OMI pixels affected 23 by the row anomaly were removed. Note that both the OMI-SP and OMI-DOMINO retrieval 24 algorithms correct for across-track variability, or stripes, for pixels that are not affected by the 25 row anomaly.

26 **2.2 OSIRIS on Odin**

OSIRIS (Llewellyn et al., 2004; McLinden et al., 2012b) measures the atmospheric limb radiance of scattered sunlight as a function of tangent altitude from the upper troposphere to the lower mesosphere. This Canadian instrument is on-board Odin (Murtagh et al., 2002), a Swedish satellite, which was launched 20 February 2001 into a sun-synchronous orbit near 600 km in altitude with about a 90-minute period. The satellite track is near-terminator and closely

follows the local dusk and dawn terminators on the ascending and descending tracks with
northward and southward equatorial crossings at 18:00 and 06:00 local time, respectively.
OSIRIS has near-global coverage from 82°S to 82°N with an orbital inclination of 98° from the
equator. At the tangent point, the atmosphere is in darkness when the SZA is greater than 90°;
the winter hemisphere is largely darkened at the local time of the measurements.

OSIRIS includes an optical spectrograph, which is comprised of an optical grating and a chargecoupled device detector, and an infrared imager. Atmospheric limb radiance is measured by the

8 optical spectrograph between 280 and 810 nm with a spectral resolution of about 1 nm. Vertical 9 profiles from approximately 7 to 110 km in tangent altitude are acquired by nodding the 10 spacecraft. The field of view at the tangent point is roughly $40 \times 1 \text{ km}^2$ (horizontal by vertical) 11 and successive measurements are separated by about 2 km tangent altitude.

In this work, stratospheric profiles from the v5.0 NO₂ dataset (Haley and Brohede, 2007) were used. Slant column densities are retrieved in the 435-451 nm range, using the DOAS technique. NO₂ profiles are then retrieved using an optimal estimation technique on a fixed retrieval grid, from 10-46 km at 2 km intervals. The OSIRIS NO₂ stratospheric VCDs agree to within 0.25×10^{15} molecules/cm² of the other limb instruments for most latitudes and seasons, as shown in Appendix A.

18 OSIRIS data from the descending node only were used in this analysis. Due to the diurnal 19 variation of NO₂, there are systematic differences between descending and ascending track 20 measurements, which are taken at morning and evening local times respectively. The 21 descending node was selected because in the ascending node OSIRIS measures at larger SZAs, 22 leading to fewer valid measurements in the winter hemisphere. Furthermore, the solar scattering angle on the ascending track is closer to the forward scattering scenario, which causes 23 24 clouds and aerosols to appear very bright leading to the saturation of pixels and the rejection of 25 some measurements.

Additionally, only data for SZA < 88° were used. This largely eliminates errors introduced by the "diurnal effect", also called "chemical enhancement" (Hendrick et al., 2006; McLinden et al., 2006), which is not currently accounted for in the NO₂ retrieval. This occurs because sunlight passes through a range of SZAs in the atmosphere before reaching the OSIRIS instrument, and therefore samples NO₂ at different points in its diurnal cycle. This effect is largest toward SZA = 90° , where NO₂ varies rapidly.

- 1 The 2008 period was chosen because it covers the time when the descending node measurement
- 2 time drifts closest to 07:00 before the sampling time drifts back toward 06:00. This maximizes
- 3 the number of valid descending node measurements.

4 2.3 Photochemical box model

5 In this work, a stratospheric photochemical box model (Brohede et al., 2008; McLinden et al., 2000; Prather, 1992), is employed to simulate the NO₂ diurnal cycle (see Sect. 3.1) and to adjust 6 7 OSIRIS stratospheric VCDs for NO₂ profiles that terminate above the tropopause (see Sect. 8 3.2). For a particular simulation, the background pressure and temperature atmospheric 9 profiles, ozone, long-lived tracers (N₂O, H₂O, CH₄), and the NO_y, Cl_y, and Br_y families need to 10 be specified for each altitude of the OSIRIS profiles. All remaining species are calculated to be 11 in a 24-h steady-state by integrating the model over 30 days, but fixed to a given Julian day. 12 Heterogeneous chemistry on background stratospheric aerosols is prescribed by the model, but 13 no polar stratospheric clouds are included.

- 14 For the present study, the photochemical model was run at each altitude layer of every OSIRIS NO2 profile measurement. N2O, CH4, NOy, Cly, and Bry from the Canadian Middle Atmosphere 15 Model (CMAM) (Jonsson et al., 2004; Scinocca et al., 2008) were interpolated to the month 16 17 and latitude of the OSIRIS NO2 measurement. H2O was derived from tracer correlations with 18 CH₄ (McLinden et al., 2000). OSIRIS ozone profiles (Degenstein et al., 2009), measured at the 19 same time as NO₂, were included in the analysis. Outside of the OSIRIS ozone altitude range 20 and for scans with missing ozone data, the CMAM ozone climatology (Jonsson et al., 2004; 21 Scinocca et al., 2008) was used. Albedo was also from OSIRIS retrievals (Degenstein et al., 22 2009) from the same scan as the NO_2 measurement. Aerosol extinction was interpolated from 23 2-week OSIRIS aerosol extinction averages (Rieger et al., 2015) and converted to aerosol 24 surface area assuming a lognormal distribution with a mode radius of 80 nm and a mode width of 1.6, which is consistent with the OSIRIS aerosol retrieval assumptions. Pressure and 25 26 temperature profiles were obtained from the European Centre for Medium-Range Weather 27 Forecasts (ECWMF) analysis data for the time and location of each OSIRIS scan.
- 28

29 3 OSIRIS Stratospheric VCD Maps

In order to create the OmO data product, stratospheric VCDs must be available at the latitude,
longitude, date, and local time of each OMI measurement. Therefore, individual OSIRIS

stratospheric profiles were scaled to a uniform grid of local times using the photochemical box model and stratospheric VCDs were calculated from these profiles. The stratospheric VCDs were gridded uniformly in space and time, so that they could be interpolated to OMI measurements latitude, longitude, date, and local time. The detailed procedure used to create the OSIRIS stratospheric VCD maps is described in this section.

6 3.1 Scaling the local time of OSIRIS measurements

7 A key challenge in comparing and merging measurements of stratospheric NO₂ made at 8 different local times lies in reconciling the impact of its diurnal cycle due to photochemistry. 9 For a detailed description of the diurnal variation of NO₂ and its impact on comparisons 10 between satellite instruments, see, e.g., Belmonte Rivas et al. (2014). Over short time-scales 11 (~1 minute), NO₂ and NO are in fast photochemical equilibrium and are referred to as NO_x. 12 Since NO is produced by the photolysis of NO_2 , more NO_x is in the form of NO_2 when there is 13 less available sunlight. Therefore, levels of NO_2 are typically lower during the day than 14 overnight, with sharp gradients over sunrise and sunset. Furthermore, slower reactions affect 15 the overall amount of NO_x available. The most significant of these reactions is the reaction 16 with N_2O_5 , which occurs over longer time-scales (~hours to days): overnight NO_x is converted 17 to N_2O_5 and during the day it is released again, causing the amount of NO_2 at sunset to be higher 18 than the amount of NO₂ at sunrise.

19 The local times of OSIRIS and OMI measurements are shown in Figure 1. At most latitudes, 20 OSIRIS measurements are taken at local times in the morning, while OMI measurements are 21 taken in the early afternoon. This affects the matching of OSIRIS and OMI datasets for the 22 calculation of the OmO data product. For example, at low latitudes, OSIRIS descending node 23 measurements are taken shortly after sunrise, when due to the photochemistry described above, 24 there is less NO_2 in the stratosphere than during the OMI afternoon measurements. Therefore, the diurnal variation of NO₂ must be accounted for before subtracting OSIRIS stratospheric 25 26 NO₂ from the OMI measurements.

The photochemical box model (see Sect. 2.3) was used to adjust, or map, the local time by applying a photochemical scaling factor to each layer in the profile (*z*). This is shown in Eq. (1):

30
$$\rho_{OSIRIS}(z, t_{new}) = \rho_{OSIRIS}(z, t_{OSIRIS}) \cdot \frac{\rho_{model}(z, t_{new})}{\rho_{model}(z, t_{OSIRIS})} , \quad (1)$$

11

1 where ρ_{OSIRIS} and ρ_{model} are the OSIRIS and modelled NO₂ number densities at a given altitude 2 layer, respectively, and t_{OSIRIS} and t_{new} are the local times of the OSIRIS measurement and the 3 new adjusted time. This approach has been successfully applied using the same photochemical 4 box model to the validation of NO₂ profiles (Brohede et al., 2007) and the merging of data 5 products (Brohede et al., 2008).

6 3.2 OSIRIS stratospheric VCD calculations

Stratospheric NO₂ VCDs were calculated from OSIRIS profiles that had been adjusted to the desired local time. When NO₂ profile data is available from the tropopause (z_{trop}) to the top of the atmosphere (z_{toa}), the stratospheric VCD is the integral of the NO₂ number densities over altitude layers, as shown in Eq. (2).

$$V_{strat} = \int_{z_{trop}}^{z_{toa}} \rho(z) dz \qquad . \tag{2}$$

12 OSIRIS v5.0 NO₂ profiles extend to 46 km, which is effectively the top of atmosphere since 13 NO₂ number densities are very low above this altitude. The altitude of the thermal tropopause 14 was calculated using lapse rates from the National Center for Environmental Prediction (NCEP) 15 reanalysis data (Kalnay et al., 1996). The OMI-DOMINO algorithm also uses the thermal 16 tropopause (Dirksen et al., 2011), but the OMI-SP algorithm uses a dynamical tropopause 17 definition (Bucsela et al., 2013). The method used to calculate the tropopause is expected to 18 have a minimal impact on stratospheric VCDs because concentrations of NO₂ are small near 19 the tropopause. Furthermore, the tropopause definition was found to have very little effect on 20 the OMI-SP retrievals (Bucsela et al., 2013).

For OSIRIS profiles that extend to or below the thermal tropopause, the NO_2 number density was interpolated to the tropopause altitude and a trapezoidal integration was performed from the tropopause to the top of the NO_2 profile to calculate the stratospheric VCD. For OSIRIS profiles that do not extend below the tropopause, the stratospheric VCD was calculated using information from the photochemical model, as shown in Eq. (3):

26
$$V_{strat} = V_{part}^{OSIRIS} \cdot \left(\frac{V_{strat}^{model}}{V_{part}} \right).$$
(3)

The modelled stratospheric VCD (V_{strat}^{model}) was integrated using the same technique as for the OSIRIS profiles that extend below the tropopause (Eq. (2)). Partial VCDs from the OSIRIS

1 (V_{part}^{OSIRIS}) and model profiles (V_{part}^{model}) were calculated by a summation over the altitude 2 layers with valid OSIRIS NO₂ measurements, as shown in Eq. (4):

3
$$V_{part} = \sum_{z \min}^{z\max} \rho(z_i) \cdot \Delta z$$
, (4)

4 where z_min and z_max are the minimum and maximum altitude levels of available NO₂ data 5 in the given OSIRIS profile and Δz is the altitude difference between OSIRIS profile layers, 6 which is 2-km for the OSIRIS v5.0 NO₂ dataset. This summation technique was chosen for the 7 calculation of the partial stratospheric columns because, compared with a trapezoidal 8 integration, this maximized the amount of information coming from the lowermost available 9 layer of the OSIRIS measurements.

10 Figure 2 shows statistics for the lowest altitude of the OSIRIS measurement relative to the thermal tropopause for individual scans. Negative altitude differences indicate that OSIRIS 11 12 measured to altitude below the thermal tropopause. Positive altitude differences indicate that 13 the OSIRIS profiles terminated above the thermal tropopause and that therefore the OSIRIS 14 VCDs were scaled to the full atmosphere using Eq. (3). For 45°S to 45°N, median altitude 15 differences are negative, indicating the more than 50% of the profiles reach the tropopause. Between 65°S and 55°N, 75% of the profiles reach within 4 km of the tropopause. At high 16 17 latitudes, the tropopause can be very low and therefore more OSIRIS profiles terminate higher 18 above the tropopause. In order to avoid relying too heavily on the model scale factors at high 19 latitudes, the OmO data product was calculated between 60°S and 60°N only. Additionally, 20 profiles that terminate > 5 km above the tropopause were excluded from the analysis.

21 OSIRIS profiles that extended below the tropopause were used to test the effect of the VCD scaling given in Eq. (3). The results of these tests are shown in Figure 3. VCD_{strat}^{full} are the 22 23 OSIRIS stratospheric VCDs calculated using the full OSIRIS profiles and Eq. (2). Data from 24 the same OSIRIS profiles are removed for two layers above the tropopause. This yields profiles that, on average, terminate 3.4 km above the tropopause. VCD^{cor}_{strat} is then calculated from these 25 profiles using Eq. (3). At most latitudes, VCD^{cor}_{strat} is within 2% of VCD^{full}_{strat}, which amounts 26 27 to roughly 5×10^{13} molecules/cm² of the stratospheric VCD, suggesting that the model 28 corrections are performing well. This yields conservative estimates because most OSIRIS 29 profiles used in this analysis extend closer to the tropopause, as shown in Figure 2. However, 30 it should be noted that there is a sampling bias in these tests as OSIRIS profiles that extend 31 below the tropopause are more often available for higher tropopauses.

1 3.3 Calculation of gridded stratospheric VCD maps

For interpolation to OMI measurements (latitude, longitude, date, local time), daily sets of OSIRIS VCD maps were created for hourly local times, ranging from 0-23 hours. Note that the hourly local time resolution of these maps is sufficient for interpolation to OMI NO₂ measurements because OMI measures for SZA < 80° when NO₂ is not varying rapidly with local time.

7 In order to calculate these maps, OSIRIS profiles for the time-period of interest were selected. Profiles for 65°S to 65°N were used to produce VCD maps that were reliable for 60°S to 60°N, 8 9 the latitude range over which OmO is calculated. These profiles were scaled to the 0-23 hour 10 local time grid using the photochemical box model (see Sect. 3.1) and stratospheric VCDs were 11 calculated from these profiles (see Sect. 3.2). For each local time, a filtering function was 12 applied to the stratospheric VCDs in order to ensure a smooth field and account for irregular 13 sampling. The filtering algorithm calculates the great circle distances between the regular grid-14 point and each sparse VCD data point in latitude and longitude. It then averages the sparse data 15 at the grid-point, weighting it by a Gaussian function of the great circle distances in latitude and 16 longitude. If the total weight of data at a given grid-point is < 1, the grid-point is left empty. 17 This essentially smooths the data to a finer grid; a 1° latitude and 1° longitude grid was used 18 here.

Various combinations of Gaussian weighting standard deviations and time averaging windows 19 20 (1-day, 2-day, 3-day, and 5-day) were tested. A three day averaging window was selected, i.e., 21 each daily map includes measurements from the given date, the previous day, and the next day. 22 Standard deviations for the Gaussian weighting of 6° in latitude and 10° longitude were chosen, 23 reflecting the spatial coverage of OSIRIS measurements. These settings yield good spatial 24 coverage in the stratospheric maps, while providing reasonable resolution of features in the 25 VCDs. Due to the averaging and smoothing of the data, rapid changes or sharp spatial gradients in NO₂, for example when vortex remnants reach mid-latitudes, may be smoothed out. This is 26 27 a limitation of OSIRIS sampling.

Figure 4 shows examples of the OSIRIS VCD maps for 4 March 2008 and 21 June 2008 at the approximate OSIRIS and OMI measurement times. Note that, as described above, each of these maps is made up using 3 days of OSIRIS data. The 4 March VCD maps have global coverage from 65°S to 65°N, the latitude range over which OSIRIS profiles were included in the analysis. The 21 June maps have limited coverage in the southern hemisphere. This is because OSIRIS

does not measure NO₂ in the winter hemisphere. The VCD maps for 07:00 LT, the approximate OSIRIS measurement time, have lower levels of NO₂ than the VCD maps for 13:00 LT, the approximate OMI measurement time. These differences with local time are typically ~0.4- 0.5×10^{15} molecules/cm², and can locally reach values of up to ~1 $\times 10^{15}$ molecules/cm². This demonstrates the effect of the diurnal scaling of NO₂ prior to matching the OSIRIS and OMI measurements.

7

8 4 Calculation of OMI-minus-OSIRIS (OmO) Tropospheric NO₂

9 This section describes the steps involved in creating the OmO prototype dataset, using 10 stratospheric VCDs from OSIRIS and AMFs and VCDs from the operational OMI-SP data 11 product, and presents comparisons of the OmO and OMI operational datasets. OSIRIS 12 stratospheric VCD maps were interpolated to the OMI measurement date, location and local time. The interpolated OSIRIS stratospheric VCDs were compared against OMI-SP and OMI-13 14 DOMINO stratospheric VCDs, as described in Sect. 4.1. Corrections for a known high bias in OMI SCDs are presented in Sect. 4.2. OmO tropospheric NO₂ VCDs were calculated using to 15 16 the equations given in Sect. 4.3. The quality of the matching between the OMI and OSIRIS 17 stratospheres is discussed in Sect. 4.4, and the OmO tropospheric VCDs are presented and 18 assessed in Sect. 4.5. In Sect. 4.6, an alternate OmO-DOMINO tropospheric VCD dataset is 19 constructed and is used to interpret the relative contributions of the data used to calculate OmO.

20 4.1 Comparison of Stratospheric VCDs from OMI-SP and OSIRIS

21 In order to obtain an OSIRIS stratospheric VCD for each OMI pixel, a linear interpolation in 22 latitude, longitude, and local time was performed over the OSIRIS stratospheric VCD maps 23 (see Sect. 3.3) corresponding to the OMI measurement day. Figure 5 shows the number of 24 OMI-SP measurements that were successfully matched to the OSIRIS stratosphere using the 25 OSIRIS gridded VCD maps. In the tropics ~90% of OMI profiles were matched to the OSIRIS stratosphere. Toward mid-latitudes, this drops to ~75-80% in the northern hemisphere and ~60-26 27 70% in the southern hemisphere, because OSIRIS coverage is limited to the summer 28 hemisphere.

Figure 6 shows a comparison between OMI-SP stratospheric VCDs and OSIRIS stratospheric
VCDs, interpolated from the VCD maps. Percent differences in VCD were binned according
to latitude and month for 2008. The OSIRIS VCDs are smaller than the OMI-SP VCDs for all

1 latitudes and months, with percent differences of ~ -20% to -30% in the tropics and ~ -15% to 2 -25% at mid-latitudes. This is due to a known bias in the OMI data, as discussed in Sect. 4.2. 3 For the most-part, percent differences at a given latitude are reasonably consistent across 4 months. This suggests that the modelled diurnal variation scale factors, which vary seasonally, 5 are performing well. There are, however, some outliers, particularly in the winter hemisphere 6 for April – July for 15°S to 35°S and November – December for 25°N to 45°N. The largest 7 discrepancies occur toward the edge of the OSIRIS measurement range, and are therefore may 8 suggest uncertainties in the OSIRIS measurements and/or photochemical model scale factors 9 for larger SZAs ~85-88° at these latitudes.

10

11 4.2 OMI SCD Bias Correction

A high bias in the OMI stratospheric VCDs has been observed in comparisons with other satellite instruments (Belmonte Rivas et al., 2014) and is largely explained by a known high bias in the OMNO2A v1 SCDs of roughly 20-30% due to issues with the spectral fitting (Marchenko et al., 2015; van Geffen et al., 2015). The OMNO2A v1 SCDs are used for both the OMI-DOMINO v2.0 and OMI-SP v2.1 retrievals. OMI tropospheric VCDs are ~10-15% smaller in polluted regions and ~30% smaller in non-polluted regions after SCDs are corrected for the spectral fitting bias (Marchenko et al., 2015).

19 In order to match the OSIRIS stratospheric VCDs to the OMI measurements, the OMI total SCD must be corrected for its high bias. Marchenko et al. (2015) found that the best predictor 20 of the relative SCD bias is the SCD itself, with small SCDs ($<5 \times 10^{15}$ molecules/cm²) having a 21 ~30% positive bias and large SCDs ($\sim 5 \times 10^{16}$ molecules/cm²) a ~10% bias. Therefore, the 22 23 SCD-dependent correction factors shown in Table 1 were applied to the OMI total SCDs, using 24 the methodology described in Sect. 3.3. Outside the range of SCDs listed in Table 1, correction 25 factors were estimated using a linear extrapolation. 26 Figure 7 shows an example of bias correction factors, for all OMI-SP measurements on 4 March

20 Figure 7 shows an example of blas correction factors, for an OVII-51 incasticinents on 4 March 2008. The correction factors vary with latitude, with values closer to one at higher latitudes, 28 where SCDs are larger. The shape of this curve is consistent with the variation in biases 29 between the OSIRIS and OMI-SP stratospheric VCD datasets, as shown in Sect. 4.1. At 30 northern hemisphere mid-latitudes, there is a wider range of bias correction factors because a 31 larger range of SCDs are observed in polluted regions.

6

10

13

1 4.3 Calculation of OMI-minus-OSIRIS Tropospheric VCD

2 This section outlines the methodology used to calculate the OmO tropospheric NO₂ VCD data

3 product. The OMI total SCD (S_{tot}^{OMI}) can be expressed as the sum of the stratospheric and

4 tropospheric SCDs (S_s^{OMI} and S_t^{OMI}), which are calculated from the stratospheric and

5 tropospheric AMFs (A_s^{OMI} and A_t^{OMI}) and VCDs (V_s^{OMI} and V_t^{OMI}) as follows:

$$S_{tot}^{OMI} = S_s^{OMI} + S_t^{OMI} = V_s^{OMI} \cdot A_s^{OMI} + V_t^{OMI} \cdot A_t^{OMI}.$$
(5)

7 Similarly, the bias-corrected OMI SCDs can be related to the OSIRIS stratospheric VCD

8 (V_s^{OSIRIS}) and the inferred (OmO) tropospheric VCD component (V_t^{OmO}) , using the AMFs from

9 the OMI operational products:

$$S_{tot}^{OMI} \cdot \gamma = V_s^{OSIRIS} \cdot A_s^{OMI} + V_t^{OmO} \cdot A_t^{OMI}, \tag{6}$$

11 where γ is the OMI SCD bias correction factor described in Sect. 4.2. Solving for the OmO 12 VCD gives,

$$V_t^{OMO} = (\gamma \cdot S_{tot}^{OMI} - V_s^{OSIRIS} \cdot A_s^{OMI}) / A_t^{OMI}$$
(7)

An alternate form, and the one used to compute the OmO product, is obtained by combining Eq. (5) and Eq. (7):

16
$$V_t^{OmO} = \gamma \cdot V_t^{OMI} + (\gamma \cdot V_s^{OMI} - V_s^{OSIRIS}) \cdot A_s^{OMI} / A_t^{OMI}$$
 (8)

17 OmO tropospheric VCDs were computed using AMFs and VCDs from the OMI-SP product. 18 The ratio of air mass factors represents the different sensitivities to NO₂ located in the troposphere and in the stratosphere. Typically, the ratio A_s^{OMI} / A_t^{OMI} is greater than one, 19 indicating that OMI is more sensitive to NO2 within the stratosphere. OmO was not calculated 20 for the small number of OMI measurements for which the ratio $A_s^{OMI} / A_t^{OMI} > 15$, indicating 21 that the OMI measurement is not very sensitive to the troposphere. For each OMI pixel, V_s^{OSIRIS} 22 23 was interpolated from the OSIRIS gridded VCD maps (see Sect. 4.1) and γ was interpolated to 24 the OMI SCD (see Sect. 4.2).

25 4.4 Matching of OSIRIS and OMI stratospheres

Over unpolluted regions, the OmO tropospheric VCDs should be small and, subsequently, the ($\gamma \cdot V_s^{OMI} - V_s^{OSIRIS}$) term in Eq. (8) should also be small. Therefore, the matching of the OSIRIS and OMI stratospheres can be assessed by comparing OSIRIS stratospheric VCDs with OMI VCDs scaled with γ , over unpolluted regions. Figure 8 shows annual average stratospheric

VCDs for OMI-SP, OMI-DOMINO, and OSIRIS, binned by latitude over unpolluted regions 1 (OMI tropospheric VCDs < 0.5x10¹⁵ molecules/cm²). Annual average OMI-SP and OMI-2 DOMINO stratospheric VCDs are larger than OSIRIS VCDs by $\sim 0.6 \times 10^{15}$ for all latitudes. 3 When OMI-SP and OMI-DOMINO stratospheric VCDs are scaled with γ , agreement with 4 OSIRIS is to within 0.2×10^{15} molecules/cm² at all latitudes. This suggests that the OMI and 5 6 OSIRIS stratospheres are well-matched. Standard deviations over the year of the individual the 7 γ-scaled OMI VCDs are similar to OSIRIS VCDs at most latitudes. At 25°S, 35°S, and 55°N, 8 the standard deviation in the OSIRIS VCDs is larger than the standard deviation in the OMI-9 SP or OMI-DOMINO VCDs. 10 OMI-SP, OMI-DOMINO and OSIRIS stratospheric VCD maps are shown for 4 March 2008 in

Figure 9. The OMI VCDs are larger than the OSIRIS VCDs, due to the high bias in the OMI 11 SCDs. There is somewhat less structure in the OSIRIS VCDs than in the OMI VCDs. For 12 13 example, OMI-DOMINO and OMI-SP stratospheric VCDs are enhanced across the northern 14 hemisphere Pacific and Mexico, but enhancements are not apparent in the OSIRIS data. There 15 is a large maximum in the OMI-DOMINO stratospheric VCDs over eastern China and Korea, 16 which is not apparent in the OMI-SP or OSIRIS VCDs. These features across the northern 17 hemisphere Pacific and Mexico, and over eastern China and Korea all persist in the OMI data 18 over the OSIRIS 3-day sampling period and cover a large enough area that they could be 19 resolved, although perhaps somewhat distorted, by the OSIRIS VCD maps. Therefore, these 20 local differences between the OSIRIS and OMI stratospheric VCDs cannot be attributed to the 21 smoothing and averaging of the OSIRIS measurements.

22 4.5 OmO Tropospheric VCDs

23 Figure 10 shows the OmO tropospheric VCDs, also for 4 March 2008. At most locations, OmO 24 VCDs are similar to the OMI-SP and OMI-DOMINO VCDs, with a few notable differences. OmO VCDs are larger than OMI-SP and OMI-DOMINO VCDs over the northern hemisphere 25 26 Pacific and Mexico, which is consistent with the differences in the observed features in the 27 stratospheric VCDs. OmO VCDs are larger than OMI-DOMINO VCDs over eastern China and Korea, as OmO effectively redistributes NO₂ from the stratosphere into the troposphere 28 29 through the second term in Eq. (8). Over much of India and China, OmO VCDs are smaller 30 than the OMI-SP VCDs.

1 Maps of annual average comparisons between OmO, OMI-SP, and OMI-DOMINO 2 tropospheric NO₂ are shown in Figure 11. Over unpolluted regions, differences between OmO 3 and the operational OMI data products are fairly small, suggesting that the matching of the OSIRIS and OMI stratospheres was effective. OmO has less NO₂ than OMI-SP and OMI-4 5 DOMINO over polluted regions such as the eastern United States, Europe, and eastern China. 6 This is expected as the OMI-SP and OMI-DOMINO tropospheric VCDs are biased high by 7 ~10-15% over polluted regions due to the bias in the SCDs (Marchenko et al., 2015). Over 8 Korea, both the OMI-SP and OmO VCDs are larger than the OMI-DOMINO VCDs. At 9 southern hemisphere midlatitudes, both the OmO and OMI-DOMINO VCDs are biased low 10 relative to OMI-SP VCDs. Overall, the differences between the OmO VCDs and the 11 operational OMI data products are within the range of the differences between the two 12 operational OMI data products.

13 Tropospheric VCDs over the Pacific Ocean can be used to assess the quality of the stratosphere-14 troposphere separation because tropospheric VCDs are expected to be near background levels. 15 Figure 5 from Hilboll et al. (2013) shows climatological monthly mean tropospheric VCDs over 16 the Pacific (180°W to 150°W) binned according to month and latitude over 1998-2007, as 17 calculated from Oslo CTM2 model simulations (Søvde et al., 2008). At most latitudes, tropospheric VCDs are $< 3x10^{14}$ molecules/cm² according to the model results. For northern 18 19 hemisphere mid-latitudes, tropospheric VCDs are somewhat larger, ranging from ~2-7x10¹⁴ 20 molecules/cm², with the largest values at \sim 55°N in winter months.

Figure 12 shows monthly mean tropospheric VCDs from OMI-SP, OMI-DOMINO and OmO 21 22 over the Pacific (180°W to 150°W). The OMI-SP VCDs vary less with latitude and have no 23 mean negative values, unlike the OMI-DOMINO and OmO VCDs. This is expected as the 24 OMI-SP stratosphere-troposphere separation uses measurements over unpolluted regions, 25 including the Pacific, to estimate stratospheric NO₂. In the tropics, average VCDs from all 26 three datasets are $< 3 \times 10^{14}$ molecules/cm², which is consistent with background levels. At northern hemisphere mid-latitudes, OmO mean VCDs increase slightly, ranging from ~2.5x10¹⁴ 27 to $\sim 5 \times 10^{14}$ molecules/cm². This is different from the OMI-SP and OMI-DOMINO VCDs, 28 which mostly remain $< 3 \times 10^{14}$ molecules/cm², but is consistent with the Oslo CTM2 model 29 30 simulations. At 55°N, both OmO and DOMINO mean VCDs are close to zero. In the southern 31 hemisphere, VCDs for all three datasets decrease with latitude, reaching values near 0 32 molecules/cm² in the OMI-SP and negative values in the OMI-DOMINO and OmO datasets at

1 45°S and 55°S. There are some large outliers in the OmO VCDs for April-July in the southern 2 hemisphere, suggesting a positive bias in the OmO dataset, likely because the OMI and OSIRIS 3 stratospheres were not well-matched (see Sect. 4.1). This is consistent with the observed 4 differences between OSIRIS and OMI-SP stratospheric VCDs for the same latitudes and 5 months. The standard deviations of the individual OmO and DOMINO tropospheric VCDs 6 over each month are also shown. All three datasets have smaller standard deviations in the 7 tropics and larger standard deviations toward mid-latitudes in both hemispheres. For the most-8 part, the variability in the OmO VCDs is slightly smaller than the variability in the OMI-9 DOMINO VCDs.

10 4.6 Alternate OmO-DOMINO Tropospheric VCDs

11 The OmO dataset is affected by the scaling of OSIRIS stratospheric VCDs to the OMI local 12 times, OMI SCD bias correction factor, the difference between the OMI and OSIRIS 13 stratospheres, and the choice of the OMI version of AMFs and VCDs (see Eq. (8)). In order to 14 gain some insight into the impact of these various terms in the OmO calculation, an alternate 15 OmO-DOMINO dataset was constructed using the OMI-DOMINO VCDs and AMFs (Figure 16 13). Over unpolluted regions, the OmO and OmO-DOMINO VCDs are very similar. Over 17 polluted areas, the OmO-DOMINO VCDs are somewhat larger than the OmO VCDs. 18 However, these differences are smaller in magnitude than the differences between the two OmO 19 products and the operational OMI data products (Figure 11 and Figure 13). The relative 20 contribution of the various terms in Eq. (8) on the OmO and OmO-DOMINO datasets are 21 discussed in the paragraphs below.

22 In order to match the OMI and OSIRIS stratospheres, both the OSIRIS and OMI datasets were 23 scaled prior to stratospheric subtraction. The OSIRIS stratospheric VCDs, measured in the morning, were scaled to the OMI afternoon local time using a photochemical model, typically 24 increasing the OSIRIS stratospheric VCDs by ~0.5x10¹⁵ molecules/cm². The OMI SCD bias 25 correction factor was applied to OMI SCDs before creating the OmO and OmO-DOMINO 26 27 datasets. This correction factor is required in order to properly match the OMI and OSIRIS 28 stratospheres, for both the OMI-SP and OMI-DOMINO datasets (Figure 8). Without the correction factor, both the OmO and OmO-DOMINO tropospheric VCDs would be very large 29 30 (~1x10¹⁵ molecules/cm²) over the unpolluted Pacific Ocean. After the application of the diurnal 31 variation scaling and OMI SCD bias correction, the OMI-SP, OMI-DOMINO and OSIRIS stratospheres VCDs agree to within ~0.2x10¹⁵ molecules/cm² on an annual average basis over 32

unpolluted areas (Figure 8). Furthermore, good overall matching of the stratosphere is demonstrated by the OmO tropospheric VCDs over the Pacific Ocean (Figure 12). At specific locations/times, the differences in the stratospheric VCDs can be much larger (Figure 9), but this is difficult to quantify because of the role of the OMI SCD bias correction, which varies according to the magnitude of the SCD. Therefore, the scaling of OSIRIS to the OMI local time and the OMI SCD bias correction play similar and important roles for the both the OmO and OmO-DOMINO datasets.

8 The OmO VCDs also depend on the ratio of AMFs (A_s/A_t), which scales the difference between 9 the OSIRIS and OMI stratospheric VCDs. Over unpolluted regions, this ratio is ~1.25 and is 10 nearly identical for both OMI-SP and OMI-DOMINO. Over polluted regions, the ratio is larger, 11 reaching annual averages of ~3-4 in some locations. Therefore, differences between OSIRIS 12 and OMI stratospheric VCDs are amplified over unpolluted areas through the dependence on A_s/A_t in Eq. (8). Over polluted areas, A_s/A_t is somewhat smaller for OMI-SP than for OMI-13 14 DOMINO, though the relationship is complicated because Eq. (8) also depends on the OMI 15 tropospheric VCDs, which also differ between the two operational OMI products, primarily 16 over polluted regions (Figure 11). This is consistent with the observed differences between the 17 OmO and OmO-DOMINO datasets, which are largest over polluted areas.

18 Overall, these tests suggest that the stratospheric matching between OSIRIS and OMI has a 19 larger influence on the OmO dataset than the choice of OMI AMFs. The stratospheric matching 20 currently depends on the OSIRIS and operational OMI stratospheric VCDs, as well as the OMI 21 SCD bias correction. Considering the complex manner in which biases in SCDs are transferred 22 into the OMI-SP and OMI-DOMINO stratospheric VCD, which can then affect unconstrained 23 (polluted) locations, it is impossible at this time to disentangle the impact of the SCD bias from 24 the larger issue of how well each method of stratospheric removal performs. Therefore, the 25 stratospheric matching between OSIRIS and OMI will be better understood once bias-corrected 26 OMI SCDs are available.

27

28 **5** Summary and Future Applications

The technique of matching nadir- and limb-viewing satellite retrievals to quantify tropospheric NO₂ is explored in this work using OMI nadir measurements and OSIRIS limb measurements to create the OmO tropospheric NO₂ dataset. As nadir-viewing instruments cannot resolve NO₂ in the vertical, additional information or assumptions based on unpolluted regions are required

to determine quantities in the upper and lower atmospheric regions. Currently, there are two operational products for OMI, which estimate stratospheric NO₂ using different methods. The OMI-DOMINO product assimilates OMI SCDs into the TM4 model and then subtracts modelled stratospheric NO₂. The OMI-SP dataset estimates stratospheric VCDs for locations with background levels of tropospheric NO₂ and then uses an extrapolation technique to infer stratospheric VCDs across the globe.

7 The new OmO tropospheric NO₂ dataset uses information from OSIRIS profile measurements 8 in order to estimate the stratospheric contribution to OMI SCD measurements. OSIRIS NO2 stratospheric VCDs were found agree to within 0.25x10¹⁵ molecules/cm² of the SCIAMACHY, 9 10 HIRDLS, and MIPAS limb instruments for most latitudes and seasons (Appendix A). OSIRIS profile measurements of stratospheric NO2 were scaled to a range of local times using a 11 12 photochemical model. Stratospheric VCDs were calculated and were gridded onto daily maps 13 of stratospheric NO₂ for various local times. The OSIRIS VCD maps are averaged over a 3-14 day window, in order to gain sufficient coverage from the OSIRIS measurements, which could 15 smooth out rapid variations in stratospheric NO₂, such as vortex intrusions. For each OMI 16 measurement, the OSIRIS VCD maps were interpolated to the latitude, longitude, and local 17 time of the OMI measurement. Then the OSIRIS stratospheric VCD and OMI-SP VCDs and 18 AMFs were used to calculate the OmO product for $60^{\circ}S - 60^{\circ}N$. In order to match the OSIRIS 19 and OMI data products, corrections for a known bias in OMI SCDs were applied based on the 20 findings of Marchenko et al. (2015). After accounting for a bias in the OMI SCDs, the OSIRIS and OMI annual average stratospheric VCDs agree to within 0.2x10¹⁵ molecules/cm² between 21 22 60°S and 60°N. Therefore, no additional corrections were applied to the data.

23 The OmO tropospheric VCDs reproduced the broad features of the OMI-SP and OMI-24 DOMINO tropospheric VCDs. Furthermore, over the Pacific Ocean, the OmO VCDs were 25 consistent with background levels of NO_2 at most latitudes, suggesting that, overall, the 26 stratospheric NO₂ signal has been successfully removed using the OSIRIS dataset. There are 27 high biases in the OmO dataset for $\sim 20^{\circ}$ S-40°S in April – July, which are consistent with 28 observed systematic differences between the OSIRIS and OMI datasets for these latitudes and 29 months. Despite this, the matching of the OSIRIS and OMI stratospheres is very good given 30 the rudimentary nature of the OMI SCD-bias correction. No corrections were applied to 31 account for biases between the OSIRIS and OMI datasets. This differs from the technique of 32 Hilboll et al. (2013), who matched SCIAMACHY limb and nadir measurements through daily

- 1 corrections based on the comparisons over the Pacific Ocean. At present, errors remaining after
- 2 the simple OMI bias-correction cannot be separated from those in OSIRIS stratospheric VCD.
- 3 As such a more quantitative assessment of the potential of this approach can be made only once
- 4 the next version of OMI SCDs are available.

5 The results of this study show preliminary success in the compatibility of limb and nadir 6 measurements taken at different local times in a simpler framework. This technique could be 7 improved by better accounting for biases between the OMI and OSIRIS datasets. For example, 8 in a full analysis, limb-measured stratospheric NO₂ and nadir-measured columns could be 9 assimilated together in a chemical transport model to estimate stratospheric NO₂.

10 This work underlines the challenge associated with matching polar orbiting, limb-viewing 11 instruments with future geostationary nadir-viewing instruments as the measurements occur at 12 many local solar times. By the end of the decade, three geostationary satellite instruments will 13 measure NO₂ in the nadir viewing geometry: the TROPOspheric Monitoring Instrument 14 (TROPOMI) (Veefkind et al., 2012) with coverage over Europe, the Tropospheric Emissions: 15 Monitoring of Pollution (TEMPO) (Zoogman et al., 2014) with coverage over North America, 16 and the Geostationary Environmental Monitoring Spectrometer (GEMS) (Kim, 2012) with 17 coverage over eastern Asia. While this study demonstrates that limb and nadir measurements 18 could be matched to retrieve tropospheric NO₂, there are currently no planned limb instruments 19 to overlap with these geostationary missions. OSIRIS is well-beyond its expected life-time and there are no planned satellites that can measure stratospheric NO_2 beyond 2017, when the 20 Stratospheric Aerosol and Gas Experiment III (SAGE III) on the International Space Station 21 22 (ISS) reaches the end of its one-year design lifetime.

1 Appendix A: Comparison of OSIRIS NO₂ to other satellite instruments

In order to assess the OSIRIS v5 NO₂ product, OSIRIS data for 2005-2007 were compared 2 3 against the results of Belmonte Rivas et al. (2014). The study included limb satellite 4 measurements from MIPAS (IMK-IAA version 4.0; Funke et al., 2005), HIRDLS (version 7; 5 Gille et al., 2012), and SCIAMACHY (v3.1; Bauer et al., 2012), as well as satellite nadir measurements from OMI (KNMI DOMINO version 2.0 Boersma et al., 2004, 2011) and 6 7 SCIAMACHY (KNMI-BIRA TM4NO2A version 2.3; Boersma et al., 2004). Belmonte Rivas 8 et al. (2014) found that the limb stratospheric VCDs from SCIAMACHY-limb, MIPAS, and HIRDLS agree to within 0.25×10^{15} molecules/cm², which is better than 10%, when all 9 observations are adjusted to the HIRDLS local time. Nadir SCIAMACHY and OMI 10 11 stratospheric VCDs are biased relative to the limb instruments by -20% (-0.5×10^{15} molecules/cm²) and +20% (0.6×10¹⁵ molecules/cm²), respectively. 12

OSIRIS profiles were averaged using the methodology of Belmonte Rivas et al. (2014). OSIRIS profiles were scaled to the HRDLS local time of ~15:30 LT (Fig. 3 of Belmonte Rivas et al., 2014), using the photochemical model described in Sect 2.3 and the methodology described in Sect. 3.1. The photochemical model runs for the 2005-2007 OSIRIS profiles presented here use the settings described by Brohede et al. (2008). Volume mixing ratio (VMR) profiles were averaged daily in 2° latitude bins from 64°S to 80°N. Partial column profiles $n_v(z_i)$ were calculated from the VMRs (V) using

20
$$n_{\nu(z_i)} = 10 \cdot N_A / (g \cdot M_{air}) \cdot 0.5 \cdot (V_{i+1} + V_i) \cdot (p_{i+1} - p_i)$$
(A1)

where N_A is Avogadro's constant (6.022×10^{23} molecules/mole), g is the Earth's gravity (9.80 m/s²), and M_{air} is the molar mass of air (28.97 g/mole). The pressure increments in hPa were p_i = $1000 \cdot 10^{-i/24}$ for i = 0–120. Belmonte Rivas et al. (2014) imposed collocation criteria as well as some smoothing, which were not included here. Therefore, the comparisons presented here are similar to the figures of Belmonte Rivas et al. (2014), but not identical.

Figure A1 shows OSIRIS partial column profiles versus latitude averaged over four seasons for
1 February 2005 – 31 Jan 2008. The OSIRIS profiles reproduce the altitude variation and
seasonality of the other datasets, shown in Fig. 6 of Belmonte Rivas et al. (2014) over the same
altitude range. Stratospheric VCDs were calculated from the OSIRIS partial column profiles
from the top altitude of the available measurements to 287 hPa. OSIRIS stratospheric VCDs
are shown in Fig. A2, alongside SCIAMACHY limb, MIPAS, HIRDLS, SCIAMACHY nadir,

and OMI measurements. This figure is similar to Figure 8 of Belmonte Rivas et al. (2014). 1 OSIRIS stratospheric VCDs are within 0.25x10¹⁵ molecules/cm² of the other limb instruments 2 (SCIAMACHY-limb, MIPAS, and HIRDLS) for most latitudes and seasons. However, there 3 are some localized differences between all four limb instruments of $\sim 0.5 \times 10^{15}$ molecules/cm². 4 especially toward higher latitudes. These biases are not due to broad differences in sampling, 5 6 as similar differences are also observed in Figure 8 of Belmonte Rivas et al. (2014), where 7 collocation criteria were imposed. Therefore the localized differences between the limb 8 instruments are related to uncertainties in the measurements or the local time corrections.

9

10 Acknowledgements

This work was supported by the Natural Sciences and Engineering Research Council (Canada) and the Canadian Space Agency. Odin is a Swedish-led satellite project funded jointly by Sweden (SNSB), Canada (CSA), France (CNES), and Finland (Tekes). OSIRIS data are available at http://odin-osiris.usask.ca. The authors thank David Plummer for the provision of climatological fields from the Canadian Middle Atmosphere Model. Thanks to Sergey Marchenko for providing the OMI SCD bias correction factors. Thank you also to Chris Roth for help with the OSIRIS database.

1 References

- 3 Bauer, R., Rozanov, A., McLinden, C. A., Gordley, L. L., Lotz, W., Russell III, J. M., Walker,
- 4 K. A., Zawodny, J. M., Ladstätter-Weißenmayer, A., Bovensmann, H. and Burrows, J. P.:
- Validation of SCIAMACHY limb NO₂ profiles using solar occultation measurements, Atmos.
 Meas. Tech., 5, 1059–1084, doi:10.5194/amt-5-1059-2012, 2012.
- 0 Mieas. Tech., 5, 1039–1064, doi:10.3194/anii-5-1039-2012, 2012.
- 7 Beirle, S., Kühl, S., Pukīte, J. and Wagner, T.: Retrieval of tropospheric column densities of
- NO₂ from combined SCIAMACHY nadir/limb measurements, Atmos. Meas. Tech., 3, 283–
 299, doi:10.5194/amt-3-283-2010, 2010.
- Belmonte Rivas, M., Veefkind, P., Boersma, F., Levelt, P., Eskes, H. and Gille, J.:
 Intercomparison of daytime stratospheric NO₂ satellite retrievals and model simulations,
 Atmos. Meas. Tech., 7, 2203–2225, doi:10.5194/amt-7-2203-2014, 2014.
- 13 Belmonte Rivas, M., Veefkind, P., Eskes, H. and Levelt, P.: OMI tropospheric NO₂ profiles
- 14 from cloud slicing: Constraints on surface emissions, convective transport and lightning NO_x,
- 15 Atmos. Chem. Phys., 15, 13519–13553, doi:10.5194/acp-15-13519-2015, 2015.
- Boersma, K. F., Eskes, H. J. and Brinksma, E. J.: Error analysis for tropospheric NO₂ retrieval
 from space, J. Geophys. Res., 109, D04311, doi:10.1029/2003JD003962, 2004.
- Boersma, K. F., Eskes, H. J., Veefkind, J. P., Brinksma, E. J., van der A, R. J., Sneep, M., van
- der Oord, G. H. J., Levelt, P. F., Stammes, P., Gleason, J. F. and Bucsela, E. J.: Near-real time
- retrieval of tropospheric NO₂ from OMI, Atmos. Chem. Phys., 7, 2103–2118, doi:10.5194/acp-7-2103-2007, 2007.
- Boersma, K. F., Eskes, H. J., Dirksen, R. J., Van Der A, R. J., Veefkind, J. P., Stammes, P.,
 Huijnen, V., Kleipool, Q. L., Sneep, M., Claas, J., Leitão, J., Richter, A., Zhou, Y. and Brunner,
- D.: An improved tropospheric NO₂ column retrieval algorithm for the Ozone Monitoring
- 25 Instrument, Atmos. Meas. Tech., 4, 1905–1928, doi:10.5194/amt-4-1905-2011, 2011.
- Bovensmann, H., Burrows, J. P., Buchwitz, M., Frerick, J., Noël, S., Rozanov, V. V., Chance,
 K. V. and Goede, A. P. H.: SCIAMACHY: Mission Objectives and Measurement Modes, J.
 Atmos. Sci., 56(2), 127–150, doi:10.1175/1520-0469(1999)056<0127:SMOAMM>2.0.CO;2,
 1999.
- Brohede, S., McLinden, C. A., Urban, J., Haley, C. S., Jonsson, A. I. and Murtagh, D.: Odin
 stratospheric proxy NO_y measurements and climatology, Atmos. Chem. Phys., 8, 5731–5754,
 doi:10.5194/acp-8-5731-2008, 2008.
- 33 Brohede, S. M., Haley, C. S., McLinden, C. A., Sioris, C. E., Murtagh, D. P., Petelina, S. V.,
- Llewellyn, E. J., Bazureau, A., Goutail, F., Randall, C. E., Lumpe, J. D., Taha, G., Thomasson, L. W. and Gordley, L. L.: Validation of Odin/OSIRIS stratospheric NO₂ profiles, J. Geophys.
- K. and Goldey, L. L. vandation of Odin/OSIKIS stratospheric NO₂ profiles, J. G.
 Res. Atmos., 112(D07310), 1–22, doi:10.1029/2006JD007586, 2007.
- 37 Bucsela, E. J., Celarier, E. A., Wenig, M. O., Gleason, J. F., Veefkind, J. P., Boersma, K. F.
- and Brinksma, E. J.: Algorithm for NO₂ vertical column retrieval from the ozone monitoring
- 39 instrument, IEEE Trans. Geosci. Remote Sens., 44(5), 1245–1258,
- 40 doi:10.1109/TGRS.2005.863715, 2006.
- 41 Bucsela, E. J., Krotkov, N. A., Celarier, E. A., Lamsal, L. N., Swartz, W. H., Bhartia, P. K.,
- 42 Boersma, K. F., Veefkind, J. P., Gleason, J. F. and Pickering, K. E.: A new stratospheric and
- 43 tropospheric NO₂ retrieval algorithm for nadir-viewing satellite instruments: Applications to

- 1 OMI, Atmos. Meas. Tech., 6, 2607–2626, doi:10.5194/amt-6-2607-2013, 2013.
- 2 Burrows, J. P., Weber, M., Buchwitz, M., Rozanov, V., Ladstätter-Weißenmayer, A., Richter,
- 3 A., DeBeek, R., Hoogen, R., Bramstedt, K., Eichmann, K.-U., Eisinger, M. and Perner, D.: The
- 4 Global Ozone Monitoring Experiment (GOME): Mission, instrument concept, and first
- 5 scientific results, J. Atmos. Sci., 56(2), 151-175, doi:10.1175/1520-
- 6 0469(1999)056<0151:TGOMEG>2.0.CO;2, 1999.
- Callies, J., Corpaccioli, E., Eisinger, M., Hahne, A. and Lefebvre, A.: GOME-2 Metop's
 second-generation sensor for operational ozone monitoring, ESA Bull. Sp. Agency, 102, 28–
 36, 2000.
- Chance, K. V. and Spurr, R. D.: Ring effect studies: Rayleigh scattering, including molecular
 parameters for rotational Raman scattering, and the Fraunhofer spectrum, Appl. Opt., 36(21),
 5224–5230, doi:10.1364/AO.36.005224, 1997.
- Chance, K. V., Liu, X., Suleiman, R. M., Flittner, D. E., Al-Saadi, J. and Janz, S. J.:
 Tropospheric emissions: monitoring of pollution (TEMPO), in SPIE, vol. 8866, edited by J. J.
 Butler, X. Xiong, and X. Gu, SPIE International Society for Optical Engineering., 2013.
- 16 Choi, S., Joiner, J., Choi, Y., Duncan, B. N., Vasilkov, A., Krotkov, N. and Bucsela, E.: First 17 estimates of global free-tropospheric NO₂ abundances derived using a cloud-slicing technique 18 applied to satellite observations from the Aura Ozone Monitoring Instrument (OMI), Atmos.
- Chem. Phys., 14, 10565–10588, doi:10.5194/acp-14-10565-2014, 2014.
- 20 Degenstein, D. A., Bourassa, A. E., Roth, C. Z. and Llewellyn, E. J.: Limb scatter ozone
- retrieval from 10 to 60 km using a Multiplicative Algebraic Reconstruction Technique, Atmos.
 Chem. Phys., 9, 6521–6529, doi:10.5194/acp-9-6521-2009, 2009.
- Dirksen, R. J., Boersma, K. F., Eskes, H. J., Ionov, D. V., Bucsela, E. J., Levelt, P. F. and
 Kelder, H. M.: Evaluation of stratospheric NO₂ retrieved from the Ozone Monitoring
 Instrument: Intercomparison, diurnal cycle, and trending, J. Geophys. Res. Atmos.,
 116(D08305), 1–22, doi:10.1029/2010JD014943, 2011.
- Duncan, B. N., Lamsal, L. N., Thompson, A. M., Yoshida, Y., Lu, Z., Streets, D. G., Hurwitz,
 M. M. and Pickering, K. E.: A space-based, high-resolution view of notable changes in urban
 NO₂ pollution around the world (2004-2014), J. Geophys. Res., 121, 976–996, doi:10.1002/
 2015JD024121, 2016.
- 31 Fischer, H., Birk, M., Blom, C., Carli, B., Carlotti, M., von Clarmann, T., Delbouille, L.,
- 32 Dudhia, A., Ehhalt, D., Endemann, M., Flaud, J. M., Gessner, R., Kleinert, A., Koopmann, R.,
- 33 Langen, J., López-Puertas, M., Mosner, P., Nett, H., Oelhaf, H., Perron, G., Remedios, J.,
- Ridolfi, M., Stiller, G. and Zander, R.: MIPAS: an instrument for atmospheric and climate research, Atmos. Chem. Phys., 8, 2151–2188, doi:10.5194/acp-8-2151-2008, 2008.
- Funke, B., López-Puertas, M., von Clarmann, T., Stiller, G. P., Fischer, H., Glatthor, N.,
 Grabowski, U., Höpfner, M., Kellmann, S., Kiefer, M., Linden, A., Mengistu Tsidu, G., Milz,
 M., Steck, T. and Wang, D. Y.: Retrieval of stratospheric NO_x from 5.3 and 6.2 μm nonlocal
 thermodynamic equilibrium emissions measured by Michelson Interferometer for Passive
- 40 Atmospheric Sounding (MIPAS) on Envisat, J. Geophys. Res., 110, D09302, 41 doi:10.1029/2004JD005225, 2005.
- 42 Gille, J., Barnett, J., Arter, P., Barker, M., Bernath, P., Boone, C., Cavanaugh, C., Chow, J.,
- 43 Coffey, M., Craft, J., Craig, C., Dials, M., Dean, V., Eden, T., Edwards, D. P., Francis, G.,
- 44 Halvorson, C., Harvey, L., Hepplewhite, C., Khosravi, R., Kinnison, D., Krinsky, C., Lambert,
- 45 A., Lee, H., Lyjak, L., Loh, J., Mankin, W., Massie, S., McInerney, J., Moorhouse, J., Nardi,

- 1 B., Packman, D., Randall, C., Reburn, J., Rudolf, W., Schwartz, M., Serafin, J., Stone, K.,
- 2 Torpy, B., Walker, K., Waterfall, A., Watkins, R., Whitney, J., Woodard, D. and Young, G.:
- 3 High Resolution Dynamics Limb Sounder: Experiment overview, recovery, and validation of
- 4 initial temperature data, J. Geophys. Res. Atmos., 113(D16S43), 1–23, 5 doi:10.1029/2007JD008824, 2008.
- Gille, J., Cavanaugh, C., Halvorson, C., Hartsough, C., Nardi, B., Rivas, M., Khosravi, R.,
 Smith, L. and Francis, G.: Final correction algorithms for HIRDLS version 7 data, Proc. SPIE,
 8511, 85110K, doi:10.1117/12.930175, 2012.
- 9 Haley, C. S. and Brohede, S.: Status of the Odin/OSIRIS stratospheric O_3 and NO_2 data 10 products, Can. J. Phys., 85(11), 1177–1194, doi:10.1139/P07-114, 2007.
- Hendrick, F., Van Roozendael, M., Kylling, A., Petritoli, A., Rozanov, A., Sanghavi, S.,
 Schofield, R., von Friedeburg, C., Wagner, T., Wittrock, F., Fonteyn, D. and De Mazière, M.:
 Intercomparison exercise between different radiative transfer models used for the interpretation
 of ground-based zenith-sky and multi-axis DOAS observations, Atmos. Chem. Phys., 6, 93–
- 15 108, doi:10.5194/acp-6-93-2006, 2006.

Hilboll, A., Richter, A., Rozanov, A., Hodnebrog, Ø., Heckel, A., Solberg, S., Stordal, F. and
Burrows, J. P.: Improvements to the retrieval of tropospheric NO₂ from satellite - Stratospheric
correction using SCIAMACHY limb/nadir matching and comparison to Oslo CTM2
simulations, Atmos. Meas. Tech., 6, 565–584, doi:10.5194/amt-6-565-2013, 2013.

Ingmann, P., Veihelmann, B., Langen, J., Lamarre, D., Stark, H. and Courrèges-Lacoste, G. B.:
Requirements for the GMES Atmosphere Service and ESA's implementation concept:
Sentinels-4/-5 and -5p, Remote Sens. Environ., 120, 58–69, doi:10.1016/j.rse.2012.01.023,
2012.

Jonsson, A. I., de Grandpré, J., Fomichev, V. I., McConnell, J. C. and Beagley, S. R.: Doubled
 CO₂-induced cooling in the middle atmosphere: Photochemical analysis of the ozone radiative
 feedback, J. Geophys. Res., 109, D24103, doi:10.1029/2004JD005093, 2004.

Kalnay, E., Kanamisu, M., Kistler, R., Collins, W., Deaven, D., Gandin, L., Iredell, M., Saha,
S., White, G., Woollen, J., Zhu, Y., Chelliah, M., Ebisuzaki, W., Higgins, W., Janowiak, J.,
Mo, K. C., Ropelewski, C., Wang, J., Leetmaa, A., Reynolds, R., Jenne, R. and Dennis, J.: The
NCEP/NCAR 40 Year Reanalysis Project, Bull. Am. Meteorol. Soc., 77, 437–471,
doi:http://dx.doi.org/10.1175/1520-0477(1996)077<0437:TNYRP>2.0.CO;2, 1996.

- 32 Kerzenmacher, T., Wolff, M. A., Strong, K., Dupuy, E., Walker, K. A., Amekudzi, L. K., 33 Batchelor, R. L., Bernath, P. F., Berthet, G., Blumenstock, T., Boone, C. D., Bramstedt, K., 34 Brogniez, C., Brohede, S., Burrows, J. P., Catoire, V., Dodion, J., Drummond, J. R., Dufour, 35 D. G., Funke, B., Fussen, D., Goutail, F., Griffith, D. W. T., Haley, C. S., Hendrick, F., Höpfner, 36 M., Huret, N., Jones, N., Kar, J., Kramer, I., Llewellyn, E. J., López-Puertas, M., Manney, G., 37 McElroy, C. T., McLinden, C. A., Melo, S., Mikuteit, S., Murtagh, D., Nichitiu, F., Notholt, J., Nowlan, C., Piccolo, C., Pommereau, J.-P., Randall, C., Raspollini, P., Ridolfi, M., Richter, A., 38 39 Schneider, M., Schrems, O., Silicani, M., Stiller, G. P., Taylor, J., Tétard, C., Toohey, M., 40 Vanhellemont, F., Warneke, T., Zawodny, J. M. and Zou, J.: Validation of NO₂ and NO from 41 the Atmospheric Chemistry Experiment (ACE), Atmos. Chem. Phys., 8, 5801-5841, 42 doi:10.5194/acp-8-5801-2008, 2008. 43 Kim, J.: GEMS(Geostationary Environment Monitoring Spectrometer) onboard the
- 44 GeoKOMPSAT to Monitor Air Quality in high Temporal and Spatial Resolution over Asia-45 Pacific Region, EGU Gen. Assem. [online] Available from:
- 46 http://adsabs.harvard.edu/abs/2012EGUGA..14.4051K (Accessed 12 April 2016), 2012.

- 1 Krotkov, N. A., McLinden, C. A., Li, C., Lamsal, L. N., Celarier, E. A., Marchenko, S. V.,
- 2 Swartz, W. H., Bucsela, E. J., Joiner, J., Duncan, B. N., Boersma, K. F., Veefkind, J. P., Levelt,
- 3 P. F., Fioletov, V. E., Dickerson, R. R., He, H., Lu, Z. and Streets, D. G.: Aura OMI
- 4 observations of regional SO₂ and NO₂ pollution changes from 2005 to 2015, Atmos. Chem.
- 5 Phys., accepted, doi:10.5194/acpd-15-26555-2015, 2016.
- 6 Lamsal, L. N., Krotkov, N. A., Celarier, E. A., Swartz, W. H., Pickering, K. E., Bucsela, E. J.,
- Gleason, J. F., Martin, R. V., Philip, S., Irie, H., Cede, A., Herman, J., Weinheimer, A.,
 Szykman, J. J. and Knepp, T. N.: Evaluation of OMI operational standard NO₂ column
- 9 retrievals using in situ and surface-based NO₂ observations, Atmos. Chem. Phys., 14, 11587-
- 10 11609, doi:10.5194/acp-14-11587-2014, 2014.
- 11 Levelt, P. F., Van den Oord, G. H. J., Dobber, M. R., Mälkki, A., Visser, H., de Vries, J.,
- 12 Stammes, P., Lundell, J. O. V. and Saari, H.: The ozone monitoring instrument, IEEE Trans.
- 13 Geosci. Remote Sens., 44(5), 1093–1101, doi:10.1109/TGRS.2006.872333, 2006.
- 14 Llewellyn, E. J., Lloyd, N. D., Degenstein, D. A., Gattinger, R. L., Petelina, S. V., Bourassa, 15 A. E., Wiensz, J. . T., Ivanov, E. V., McDade, I. C., Solheim, B. H., McConnell, J. C., Haley, 16 C. S., von Savigny, C., Sioris, C. E., McLinden, C. A., Griffioen, E., Kaminski, J., Evans, W. 17 F. J., Puckrin, E., Strong, K., Wehrle, V., Hum, R. H., Kendall, D. J. W., Matsushita, J., 18 Murtagh, D. P., Brohede, S., Stegman, J., Witt, G., Barnes, G., Payne, W. F., Piché, L., Smith, 19 K., Warshaw, G., Deslauniers, D.-L., Marchand, P., Richardson, E. H., King, R. A., Wevers, I., 20 McCreath, W., Kyrölä, E., Oikarinen, L., Leppelmeier, G. W., Auvinen, H., Mégie, G., 21 Hauchecorne, A., Lefèvre, F., de La Nöe, J., Ricaud, P., Frisk, U., Sjoberg, F., von Schéele, F. 22 and Nordh, L.: The OSIRIS instrument on the Odin spacecraft, Can. J. Phys., 82, 411–422, 23 doi:10.1139/p04-005, 2004.
- Marchenko, S., Krotkov, N. A., Lamsal, L. N., Celarier, E. A., Swartz, W. H. and Bucsela, E.
 J.: Revising the slant column density retrieval of nitrogen dioxide observed by the Ozone
 Monitoring Instrument, J. Geophys. Res. Atmos., 120(11), 1–23, doi:10.1002/2014JD022913,
 2015.
- Martin, R. V., Chance, K., Jacob, D. J., Kurosu, T. P., Spurr, R. J. D., Bucsela, E., Gleason, J.
 F., Palmer, P. I., Bey, I., Fiore, A. M., Li, Q., Yantosca, R. M. and Koelemeijer, R. B. A.: An
 improved retrieval of tropospheric nitrogen dioxide from GOME, J. Geophys. Res. Atmos.,
 107(D20), doi:10.1029/2001JD001027, 2002.
- 32 McLinden, C. A., Olsen, S. C., Hannegan, B., Wild, O., Prather, M. J. and Sundet, J.:
- Stratospheric ozone in 3-D models: A simple chemistry and the cross-tropopause flux, J.
 Geophys. Res., 105(D11), 14653–14665, doi:10.1029/2000JD900124, 2000.
- McLinden, C. A., Haley, C. S. and Sioris, C. E.: Diurnal effects in limb scatter observations, J.
- 36 Geophys. Res. Atmos., 111(D14302), 1–10, doi:10.1029/2005JD006628, 2006.
- 37 McLinden, C. A., Fioletov, V., Boersma, K. F., Krotkov, N., Sioris, C. E., Veefkind, J. P. and
- Yang, K.: Air quality over the Canadian oil sands: A first assessment using satellite
 observations, Geophys. Res. Lett., 39(L04804), 1–8, doi:10.1029/2011GL050273, 2012a.
- 40 McLinden, C. A., Bourassa, A. E., Brohede, S., Cooper, M., Degenstein, D. A., Evans, W. J.
- 41 F., Gattinger, R. L., Haley, C. S., Llewellyn, E. J., Lloyd, N. D., Loewen, P., Martin, R. V.,
- 42 McConnell, J. C., McDade, I. C., Murtagh, D., Rieger, L., Von Savigny, C., Sheese, P. E.,
- 43 Sioris, C. E., Solheim, B. and Strong, K.: Osiris: A Decade of scattered light, Bull. Am.
- 44 Meteorol. Soc., 93, 1845–1863, doi:10.1175/BAMS-D-11-00135.1, 2012b.
- 45 Murtagh, D., Frisk, U., Merino, F., Ridal, M., Jonsson, A., Stegman, J., Witt, G., Eriksson, P.,
- 46 Jiménez, C., Megie, G., Noë, J. D. La, Ricaud, P., Baron, P., Pardo, J. R., Hauchcorne, A.,

- 1 Llewellyn, E. J., Degenstein, D. A., Gattinger, R. L., Lloyd, N. D., Evans, W. F. J., McDade, I.
- 2 C., Haley, C. S., Sioris, C., von Savigny, C., Solheim, B. H., McConnell, J. C., Strong, K.,
- 3 Richardson, E. H., Leppelmeier, G. W., Kyrölä, E., Auvinen, H. and Oikarinen, L.: An
- overview of the Odin atmospheric mission, Can. J. Phys., 80, 309–319, doi:10.1139/p01-157,
 2002.
- Prather, M.: Catastrophic loss of stratospheric ozone in dense volcanic clouds, J. Geophys. Res.,
 97(D9), 10187–10191, doi:10.1029/92JD00845, 1992.
- Richter, A. and Burrows, J. P.: Tropospheric NO₂ from GOME measurements, Adv. Sp. Res.,
 29(11), 1673–1683, doi:10.1016/S0273-1177(02)00100-X, 2002.
- Richter, A., Burrows, J. P., Nüß, H., Granier, C. and Niemeier, U.: Increase in tropospheric
 nitrogen dioxide over China observed from space, Nat. Lett., 437, 129–132,
 doi:10.1038/nature04092, 2005.
- Rieger, L. A., Bourassa, A. E. and Degenstein, D. A.: Merging the OSIRIS and SAGE II
 stratospheric aerosol records, J. Geophys. Res., 12(17), 1–15, doi:10.1002/2015JD023133,
 2015.
- 16 Russell, A. R., Valin, L. C. and Cohen, R. C.: Trends in OMI NO₂ observations over the United
- States: Effects of emission control technology and the economic recession, Atmos. Chem.
 Phys., 12, 12197–12209, doi:10.5194/acp-12-12197-2012, 2012.
- 19 Schoeberl, M. R., Douglass, A. R., Hilsenrath, E., Bhartia, P. K., Beer, R., Waters, J. W.,
- 20 Gunson, M. R., Froidevaux, L., Gille, J. C., Barnett, J. J., Levelt, P. F. and DeCola, P.: Overview
- 21 of the EOS aura mission, IEEE Trans. Geosci. Remote Sens., 44(5), 1066–1072,
- doi:10.1109/TGRS.2005.861950, 2006.
- Scinocca, J. F., McFarlane, N. A., Lazare, M., Li, J. and Plummer, D.: The CCCma third
 generation AGCM and its extension into the middle atmosphere, Atmos. Chem. Phys., 8, 7055–
 7074, doi:10.5194/acp-8-7055-2008, 2008.
- Sierk, B., Richter, A., Rozanov, A., Von Savigny, C., Schmoltner, A. M., Buchwitz, M.,
 Bovensmann, H. and Burrows, J. P.: Retrieval and monitoring of atmospheric trace gas
 concentrations in nadir and limb geometry using the space-borne SCIAMACHY instrument,
 Environ. Monit. Assess., 120, 65–77, doi:10.1007/s10661-005-9049-9, 2006.
- Sioris, C. E., Kurosu, T. P., Martin, R. V. and Chance, K.: Stratospheric and tropospheric NO₂
 observed by SCIAMACHY: First results, Adv. Sp. Res., 34, 780–785,
 doi:10.1016/j.asr.2003.08.066, 2004.
- Søvde, O. A., Gauss, M., Smyshlyaev, S. P. and Isaksen, I. S. A.: Evaluation of the chemical
 transport model Oslo CTM2 with focus on arctic winter ozone depletion, J. Geophys. Res., 113,
 D09304, doi:10.1029/2007JD009240, 2008.
- van Geffen, J. H. G. M., Boersma, K. F., Van Roozendael, M., Hendrick, F., Mahieu, E., De
 Smedt, I., Sneep, M. and Veefkind, J. P.: Improved spectral fitting of nitrogen dioxide from
 OMI in the 405–465 nm window, Atmos. Meas. Tech., 8, 1685–1699, doi:10.5194/amt-8-16852015, 2015.
- 40 Veefkind, J. P., Boersma, K. F., Wang, J., Kurosu, T. P., Krotkov, N., Chance, K. and Levelt,
- P. F.: Global satellite analysis of the relation between aerosols and short-lived trace gases,
 Atmos. Chem. Phys., 11, 1255–1267, doi:10.5194/acp-11-1255-2011, 2011.
- 43 Veefkind, J. P., Aben, I., McMullan, K., Förster, H., de Vries, J., Otter, G., Claas, J., Eskes, H.
- 44 J., de Haan, J. F., Kleipool, Q., van Weele, M., Hasekamp, O., Hoogeveen, R., Landgraf, J.,
- 45 Snel, R., Tol, P., Ingmann, P., Voors, R., Kruizinga, B., Vink, R., Visser, H. and Levelt, P. F.:

- 1 TROPOMI on the ESA Sentinel-5 Precursor: A GMES mission for global observations of the
- 2 atmospheric composition for climate, air quality and ozone layer applications, Remote Sens.
- 3 Environ., 120, 70–83, doi:10.1016/j.rse.2011.09.027, 2012.
- 4 Zhou, Y., Brunner, D., Hueglin, C., Henne, S. and Staehelin, J.: Changes in OMI tropospheric
- 5 NO₂ columns over Europe from 2004 to 2009 and the influence of meteorological variability,
- 6 Atmos. Environ., 46, 482–495, doi:10.1016/j.atmosenv.2011.09.024, 2012.
- 7 Zoogman, P., Jacob, D. J., Chance, K., Liu, X., Lin, M., Fiore, A. and Travis, K.: Monitoring
- 8 high-ozone events in the US Intermountain West using TEMPO geostationary satellite
- 9 observations, Atmos. Chem. Phys., 14, 6261–6271, doi:10.5194/acp-14-6261-2014, 2014.
- 10

1 Tables

- 2
- 3 Table 1: Correction factors, γ , applied to the OMI SCDs as a function of the OMI SCD.
- 4 Correction factors are from Marchenko et al. (2015) and account for the high bias in the
- 5 OMI SCDs.

SCD	γ
$\times 10^{16}$ molecules/cm ²	
0.5755	0.7645
0.8518	0.8049
1.2147	0.8152
1.7336	0.8475
2.3842	0.8721
3.3740	0.8912
4.4346	0.9017
5.4794	0.9082
6.4403	0.9169
7.5376	0.9218

6

7

1 Figures

2

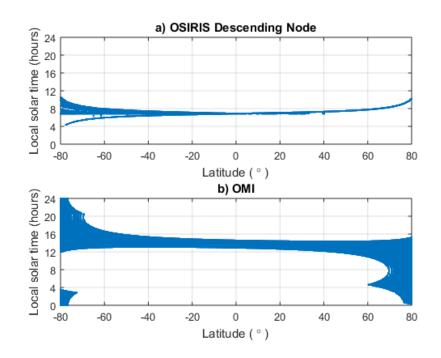
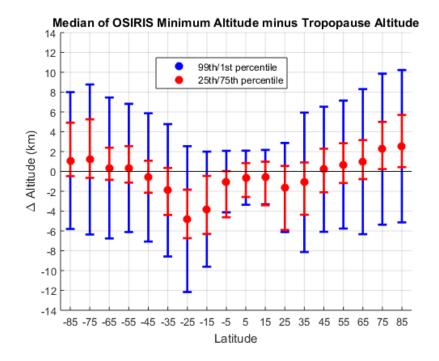



Figure 1: Local solar time versus latitude for (a) OSIRIS descending node and (b) OMI
measurements in 2008. OSIRIS local times are for all profiles in 2008. OMI local times
are sampled for one day in each month.

1

Figure 2: Difference between OSIRIS minimum measurement altitude and the tropopause altitude. Median and percentiles (red: 1st and 99th, blue: 25th and 5th) are shown within 10° latitude bins. Altitude differences < 0 indicate that OSIRIS profiles extended below the tropopause. Altitude differences > 0 indicate that OSIRIS profiles terminated above the tropopause.

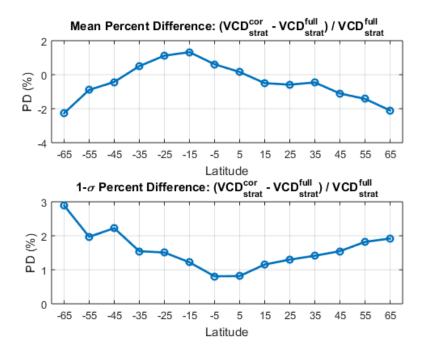


Figure 3: Effect of model scaling of OSIRIS partial VCDs for OSIRIS profiles that
 terminate ~3-4 km above the thermal tropopause. (a) Mean and (b) 1-sigma of percent

- 4 difference of VCD_{strat}^{cor} minus VCD_{strat}^{full} within 10° latitude bins.
- 5

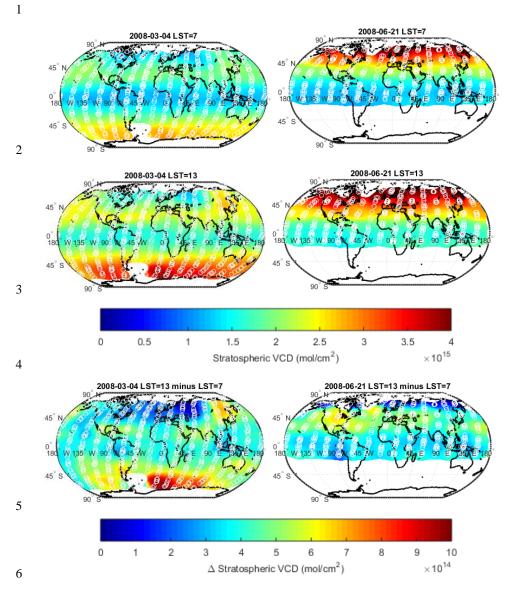
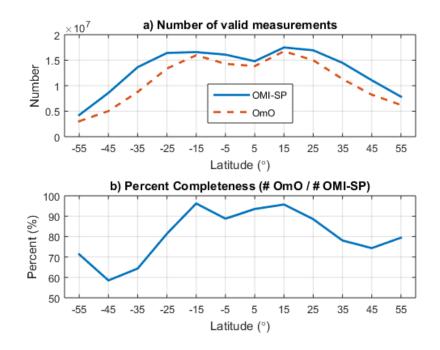
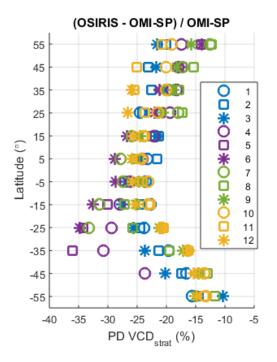
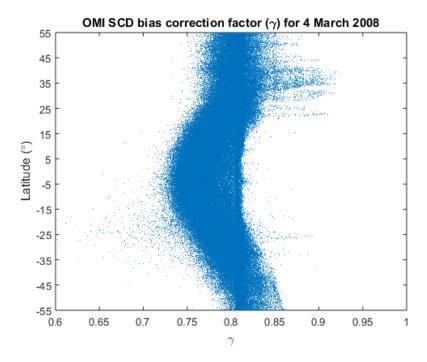



Figure 4: OSIRIS stratospheric VCD maps for 4 March 2008 (left panels) and 21 June
2008 (right panels). The maps are shown for LST = 07:00 (top panels), corresponding to
the approximate OSIRIS measurement time, and LST = 13:00 (middle panels),
corresponding to the approximate OMI measurement time. Difference maps for LST =
13:00 minus 07:00 (bottom panels) are also shown. The white circles indicate the locations
of the OSIRIS measurements used to create the maps.

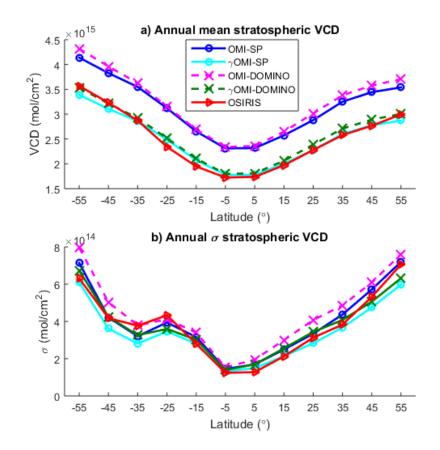


1

Figure 5: (a) Number of valid measurements for OMI-SP (blue line) and for OmO (red
dashed line). (b) Percent completeness of the OmO-SP dataset (number of valid OmO
measurements / number of valid OMI-SP measurements). Statistics were calculated in
10° latitude bins.



- 2 Figure 6: Percent difference of OSIRIS minus OMI-SP stratospheric VCDs (x-axis),
- 3 binned according to latitude (y-axis) and month (legend).



- 2 Figure 7: OMI SCD bias correction factors versus latitude for OMI-SP measurements on
- 3 4 March 2008.
- 4

1

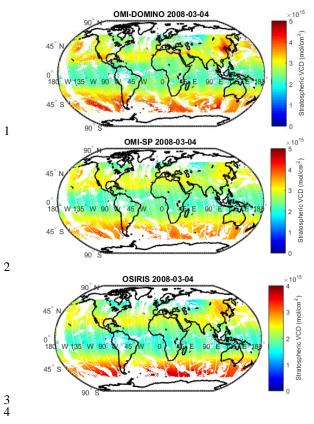
1

2 Figure 8: Annual (a) mean and (b) standard deviation of stratospheric VCDs for 2008 in

3 10° latitude bins for measurements with OMI tropospheric VCDs < 0.5x10¹⁵

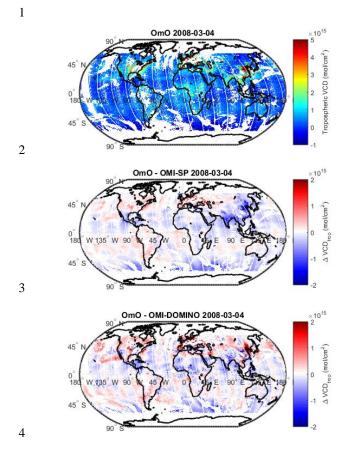
4 molecules/cm². Stratospheric VCDs for OMI-SP (blue circles), OMI-SP scaled by γ

5 (cyan circles), OMI-DOMINO (magenta X's), OMI-DOMINO scaled by γ (green X's),

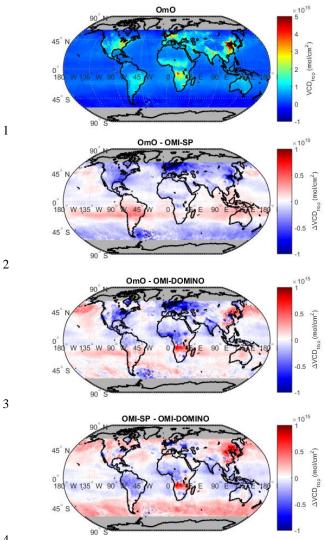

6 and OSIRIS VCD maps interpolated to the OMI measurement time/location (red

7 triangles) are shown. Mean and standard deviation are calculated over individual OMI

- 8 measurements for the entire year.
- 9



- 5 Figure 9: Maps of stratospheric VCDs for 4 March 2008 for OMI-SP (top), OMI-
- 6 DOMINO (middle) and OSIRIS interpolated to the location of OMI measurements
- 7 (bottom). Note that different color scales are used for the OMI and OSIRIS VCDs.
- 8


5 Figure 10: Maps of tropospheric VCDs for 4 March 2008 for OmO (top), the difference

6 between OmO and OMI-SP (middle), and the difference between OmO and OMI-

7 **DOMINO** (bottom).

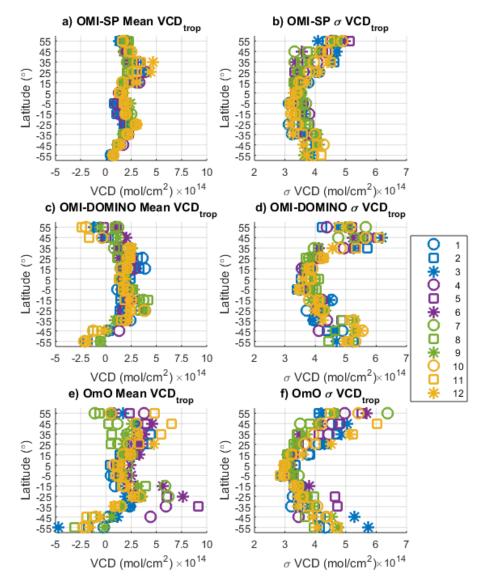
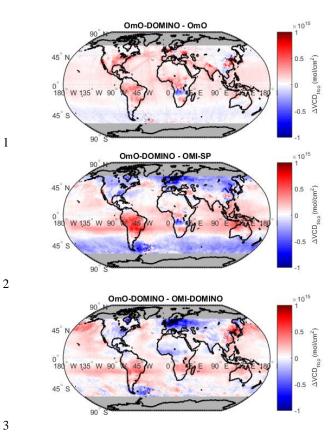

4

Figure 11: Maps of annual average (top) OmO tropospheric VCDs and differences
between tropospheric VCDs for (top-middle) OmO minus OMI-SP, (bottom-middle)
OmO minus OMI-DOMINO, and (bottom) OMI-SP minus OMI-DOMINO. Maps are
averaged on a 1°x1° grid.

9

2 Figure 12: Mean and standard deviation of VCDs in the Pacific (150°W to 180°W),

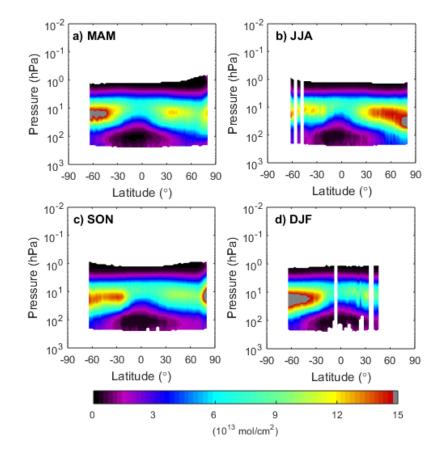

- 3 calculated monthly (legend) in 10° latitude bins. (a) OMI-SP mean VCD, (b) OMI-SP
- 4 standard deviation of VCD, (c) OMI-DOMINO mean VCD, (d) OMI-DOMINO

5 standard deviation of VCD, (e) OmO mean VCD, and (f) OmO standard deviation of

- 6 VCD.
- 7
- 8

3

1


4 Figure 13: Maps of differences between OmO-DOMINO and (top) OmO, (middle) OMI-

5 SP, and (bottom) OMI-DOMINO annual average tropospheric VCDs. Map is averaged

- on a 1x1° grid. 6
- 7
- 8

1

Figure A1. OSIRIS seasonal mean NO₂ partial column profiles in 2° latitude bins for (a)
 March-April-May (MAM), (b) June-July-August (JJA), (c) September-October November (SON) and (d) December-January-February (DJF).

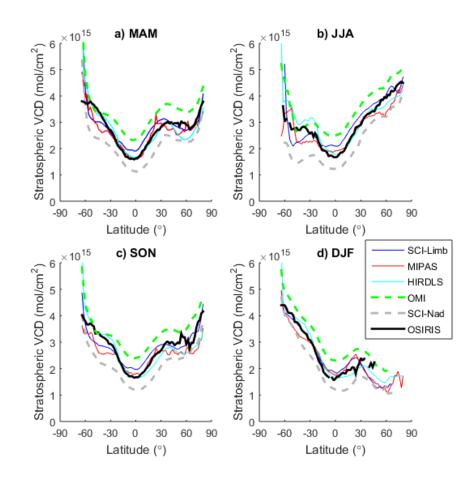


Figure A2: Seasonal averages of stratospheric NO₂ VCDs for 2005-2007 in 2° latitude bins
for (a) March-April-May (MAM), (b) June-July-August (JJA), (c) September-OctoberNovember (SON) and (d) December-January-February (DJF). SCIAMACHY limb (blue
line), MIPAS (red line), HIRDLS (cyan line), OMI (green dashed line), SCIAMACY nadir
(grey dashed line), and OSIRIS (thick black line) are all shown. Figure is adapted from
Belmonte Rivas et al. (2014).