Journal cover Journal topic
Atmospheric Measurement Techniques An interactive open-access journal of the European Geosciences Union

Journal metrics

  • IF value: 2.989 IF 2.989
  • IF 5-year<br/> value: 3.489 IF 5-year
  • CiteScore<br/> value: 3.37 CiteScore
  • SNIP value: 1.273 SNIP 1.273
  • SJR value: 2.026 SJR 2.026
  • IPP value: 3.082 IPP 3.082
  • h5-index value: 45 h5-index 45
© Author(s) 2013. This work is distributed
under the Creative Commons Attribution 3.0 License.
Research article
12 Jun 2013
Review status
This discussion paper has been under review for the journal Atmospheric Measurement Techniques (AMT). The revised manuscript was not accepted.
Technical Note: Aeolian dust proxies produce visible luminescence upon intense laser-illumination that results from incandescence of internally mixed carbon
L. Ma, T. Cao, and J. E. Thompson Department of Chemistry and Biochemistry, Texas Tech University, Lubbock, Texas, USA
Abstract. Mineral dust mimics dispersed in air produced visible luminescence between 550–800 nm when illuminated with a high peak power (MW range) Nd:YAG laser beam at 532 or 1064 nm. The luminescence persists for a few microseconds after the laser pulse and the measured emission spectrum is roughly consistent with a blackbody emitter at ≈4300 K. Both observations are consistent with assigning laser-induced incandescence (LII) as the source of the luminescence. However, light emission intensity from the mineral dust proxies is 240–4600 less intense than incandescence from fresh kerosene soot on a per-mass basis at laser pulse energies <25 mJ using a 1064 nm beam. The weak intensity of emission coupled with high emission temperature suggests a trace component of the sample may be responsible for the incandescence. To investigate further, we heated the soil samples in air to a temperature of 600 °C, and this treatment reduced light emission by >90% on average. Heating to 350 °C reduced emission by 45–72%. Since black carbon soot and char (BC) oxidizes at elevated temperatures and BC is known to be present in soils, we conclude emission of light from the mineral dust aerosol proxies is likely a result of black carbon or char internally mixed within the soil dust sample. The reduction in LII response for samples heated to temperatures of 250–350 °C may result from partial oxidation of BC, but alternatively, could implicate a role for carbon present within organic molecules. The study suggests laser-induced incandescence measurements may allow quantitation of black carbon in soils and that soil dust is not truly an interferent in BC analysis by LII, but rather, a BC containing material.

Citation: Ma, L., Cao, T., and Thompson, J. E.: Technical Note: Aeolian dust proxies produce visible luminescence upon intense laser-illumination that results from incandescence of internally mixed carbon, Atmos. Meas. Tech. Discuss., 6, 5173-5194, doi:10.5194/amtd-6-5173-2013, 2013.
L. Ma et al.
L. Ma et al.


Total article views: 1,002 (including HTML, PDF, and XML)

HTML PDF XML Total BibTeX EndNote
399 545 58 1,002 50 31

Views and downloads (calculated since 12 Jun 2013)

Cumulative views and downloads (calculated since 12 Jun 2013)



Latest update: 29 Mar 2017
Publications Copernicus