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Abstract

Nowadays many social activities require short-term (one to two hours) and local area
forecasts of extreme weather. In particular, air traffic systems have been studying how
to minimize the impact of meteorological events, such as turbulence, wind shear, ice,
and heavy rain, which are related to the presence of convective systems during all5

flight phases. This paper presents an alternative self-nowcast model, based on neu-
ral network techniques, to produce short-term and local-specific forecasts of extreme
meteorological events in the area of the landing and take-off region of Galeão, the prin-
cipal airport in Rio de Janeiro, Brazil. Twelve years of data were used for neural network
training and validation. Data are originally from four sources: (1) hourly meteorological10

observations from surface meteorological stations at five airports distributed around the
study area, (2) atmospheric profiles collected twice a day at the meteorological station
at Galeão Airport, (3) rain rate data collected from a network of twenty-nine rain gauges
in the study area; and (4) lightning data regularly collected by national detection net-
works. An investigation was done about the capability of a neural network to produce15

early warning signs – or as a nowcasting tool – for extreme meteorological events. The
self-nowcast model was validated using results from six categorical statistics, indicated
in parentheses for forecasts of the first, second, and third hours, respectively, namely:
proportion correct (0.98, 0.96, and 0.94), bias (1.37, 1.48, and 1.83), probability of de-
tection (0.84, 0.80, and 0.76), false-alarm ratio (0.38, 0.46, and 0.58), and threat score20

(0.54, 0.47, and 0.37). Possible sources of error related to the validation procedure are
discussed. Two key points have been identified in which there is a possibility of error:
i.e., subjectivity on the part of the meteorologist making the observation, and a rain
gauge measurement error of about 20 % depending on wind speed. The latter was
better demonstrated when lightning data were included in the validation. The validation25

showed that the proposed model’s performance was quite encouraging for the first and
second hours.
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1 Introduction

Extreme Meteorological Events (EMEs) are frequent in Rio de Janeiro, Brazil and the
surrounding area, where they cause considerable damage, such as landslides, floods,
loss of human life, and serious delays in landing and take-off procedures at all five
airports in the region (see Fig. 1). According to Marengo et al. (2004), an EME is5

defined as a rare meteorological phenomenon with very low statistical distribution in
a particular place. Easterling et al. (2000) defines an EME as an extraordinary event
that causes economic and social damage. EMEs were addressed by several authors,
e.g., Karl and Easterling (1999); Groisman et al. (1999); Solow (1999); Liebmann et al.
(2001); Hegerl et al. (2006), and Alexander et al. (2006), and others. In particular,10

Teixeira and Satyamurty (2007) studied EME occurrences in southeastern Brazil, using
the database from the Center for Weather Forecasting and Climate Studies (CPTEC)
and synoptic meteorological observations from the National Institute of Meteorology
(INMET). They classified a meteorological event as an EME when rainfall accumulation
is higher than one hundred millimeters (mm) in a period of twenty-four hours. EME15

phases, i.e., initiation, growth, and decay, fall into a nowcasting time scale, implying
a short-term forecast. Groisman et al. (2005) presented evidence that the incidence
of EMEs has increased about 58 % per year in southeastern Brazil since the 1940s.
Galeão Airport is located in this region and its flights are significantly affected (by delays
and trajectory changes), especially during the landing and take-off phases, by heavy20

rain, wind shear, and turbulence, which are normally associated with EME incidence.
At this airport, a meteorologist generates the nowcast using a conceptual model of
how the atmosphere works to extrapolate the location of rainstorms (or other EMEs).
This technique is not always suitable since the exact EME stage (i.e., EME initiation,
growth, and dissipation) is normally unknown. The present numerical prediction models25

do not satisfactorily model EMEs in location-specific and short-term scales. Mueller
et al. (2003) suggested a nowcast system for storm locations based on fuzzy logic and
an atmospheric model. Mass (2012) made a comprehensive review of nowcasting,
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including its history, current developments, and future challenges. The objective here
is to present an alternative Self-Nowcast Model (SNM) to generate short-term and
local-specific predictions of EMEs, based on neural network techniques, for the flight
region of Galeão Airport in the city of Rio de Janeiro, Brazil.

2 Meteorological data sets and study region5

This study used four time series, as follows:

– TEMP represents the upper atmospheric profile for temperature, humidity, wind,
and atmospheric pressure, and is collected daily at 00:00 UTC and 12:00 UTC.
The radiosonde station used is located at Galeão Airport, whose international
aviation code is SBGL, where SB and GL mean Brazil and Galeão, respectively10

(see Fig. 1). The TEMP time series was obtained online at http://weather.uwyo.
edu/upperair/sounding.html;

– the Meteorological Terminal Air Report (METAR1), from five meteorological sta-
tions (represented by red icons in Fig. 1) in the Rio de Janeiro metropolitan region.
The stations (or airports) are Galeão (SBGL), Santa Cruz (SBSC), Santos Du-15

mont (SBRJ), Jacarepaguá (SBJR), and Afonsos (SBAF). METARs are produced
hourly; however, SBGL is the only one of the stations that collects atmospheric
profiles on a daily basis, together with other pertinent meteorological information
in the study area. The data were obtained at the URL address mentioned above;

– rain rate (RR) is obtained from twenty-nine rain gauges (represented by yellow20

triangles in Fig. 1) distributed around the Rio de Janeiro metropolitan region. The
data were obtained at http://alertario.rio.rj.gov.br/; and

– lightning reports, regularly collected by the National Integrated Lightning Detec-
tion Network (RINDAT), characterize each occurrence by its location (latitude, lon-
gitude), intensity polarity (cloud to ground or ground to cloud), and time (UTC25
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with accuracy in milliseconds). The data were kindly made available by ELETRO-
BRAS FURNAS Company. These data were only used in the statistical analysis
for model validation.

Table 1 summarizes all of the information about time series used for SNM training and
validation in this study. Figure 1 shows the study region and the flight region of Galeão5

Airport.

3 Method

Presently, the nowcast at principal Brazilian airports is done by a meteorologist, who
uses his experience to integrate different in situ meteorological observations and/or at-
mospheric model output using conceptual models of how the atmosphere works. The10

problem with this is the limited time that meteorologists normally have available to inte-
grate all the data and generate a nowcast (Mueller et al., 2003). The idea is to create
a self-nowcast model in which a neural network algorithm is used for data fusion, simi-
larly to the work done by Cornman et al. (1998) for detecting and extrapolating weather
fronts. At present, one may find applications of neural networks in numerous fields of15

science, such as modeling, time series investigations, and image pattern recognition,
owing to their capability to learn from input data (Haykin, 1999). Figure 2 represents
a typical neural network. Normally, stages of neural networks are denoted by a global
function as described by Bishop (2006), for example:

yk(X,W) = σ




M∑

j=0

W(2)
kj h

(
D∑

i=0

W(1)
j i X i

)
 , (1)20

where W represents all network weights. This global function can be represented in the
form of a network diagram (Fig. 2). A neural network is simply a nonlinear function with
a set of input and output variables, which are represented by xi and yi , respectively.
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Further details about neural networks and their applications may be found in Pasini
et al. (2001); Haykin (1999); Pasero and Moniaci (2004); Bremnes and Michaelides
(2007), and Bishop (2006). Figure 3 depicts a general flowchart for the SNM. It has
five major steps: (a) extreme meteorological event data processing, (b) definitions of
input and output variables, (c) training, (d) validation; and (e) a convergence test having5

two possible results, i.e., an optimum SNM or retraining. These steps in generating the
nowcast are summarized below.

3.1 Data processing

Data processing consisted of three simple tasks. First, the METAR, TEMP, and RR time
series were sorted chronologically and their consistency observed, resulting in 63 320 h10

of meteorological recordings. Second, the rain rate time series, based on RR h−1, was
used to classify the meteorological recordings into four classes: null, light, moderate,
and heavy, for 0 ≤ RR < 0.2, 0.2 ≤ RR < 2.4, 2.4 ≤ RR < 9.9 and RR ≥ 9.9 mmh−1, re-
spectively.

3.2 Input and output15

SNM data fusion is based on a neural network which must be trained; therefore it is
necessary to define input and output variables, as described below.

3.2.1 Input variables

These variables are the predictors of the SNM and therefore are responsible for trans-
mitting all atmospheric conditions, including EME phases, to the neural network during20

its learning process. In Table 1, columns three and four are the primary and derived
variables (or predictors), respectively, initially input to the neural network. A meteoro-
logical recording is composed of primary and derived variables that are extracted from
METAR, TEMP, or RR and calculated using primary variables. The SNM’s purpose
is to nowcast EMEs; therefore all input (or predictors) should indicate EME phases,25
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i.e., initialization, growth, and decay. The criterion to select input (primary and derived)
variables is based on a conceptual model of how the atmosphere works during an
EME, which is characterized by atmospheric instability. For example, the inclusion of
input variables as atmospheric instability indices, i.e., K-index (K), Total Totals (TT),
and Lapse Rate (LR), and others defined in columns three and four of Table 1 seems5

quite constructive for the neural network learning process. At the beginning, there were
ninety-seven variables. After a simple correlation test, fifty-seven variables remained,
divided into twenty-one primary and thirty-six derived variables as listed in columns
three and four of Table 1. These variables were initially judged the best data set to
transmit atmospheric conditions during neural network training.10

3.2.2 Output variables

Output is defined as RR, which includes four classes based on RR per hour, num-
bered as zero, one, two, and three, corresponding to 0 ≤ RR ≤ 0.2, 0.2 < RR ≤ 2.4,
2.4 < RR ≤ 9.9 and RR > 9.9 mmh−1, respectively, as in Table 1, column eight. This
output represents the nowcast by the SNM (or neural network algorithm). The latter is15

responsible for converting the input (or predictors) in the event that all four RR classes
occur.

3.3 Neural network training

Neural network training is accomplished by trial and error, represented by the SNM
looping in Fig. 3. It requires previous knowledge of the phenomenon in conjunction20

with the experience of the training team. EMEs are characterized by thermodynamic
atmospheric patterns represented by local meteorological recordings. In order to carry
out the training, the meteorological recording data set was randomly divided into two
subsets, i.e., one for training and the other for validating the SNM, corresponding to
70 %, or 44 324 recordings, shown in Fig. 4a and 30 %, or 18 996 recordings, shown25

in Fig. 4b of the data population. Knowing that the EME forecast problem requires

10641

D
iscussion

P
aper

|
D

iscussion
P

aper
|

D
iscussion

P
aper

|
D

iscussion
P

aper
|

categorical output, it was decided to use probabilistic neural networks, as suggested by
Specht (1990, 1991). The EME is defined as a nowcast corresponding to “yes= class
three (RR > 9.9 mmh−1)” or “no= class one, two, or three”.

3.4 Validation and other procedure steps

This step consists of comparing SNM forecasts (or output) to one of three true obser-5

vation conditions, namely: (a) weather conditions (class three of Table 2) reported by
METAR, and/or (b) a rain rate higher than 9.9 mmh−1 reported by at least one rain
gauge in the network, and/or (c) lightning reported inside a fifty-kilometer (km) radius
centered at Galeão Airport during a one-hour period. The lightning data series was
only used for validation purposes. There is a possibility of all three conditions occurring10

simultaneously. The main reasons for including three different sources of comparison
vs. the SNM forecast are: (a) the forecasts represent RR for one, two, and three hours;
however, it is well known that rainfall varies highly in time and space and sometimes
is not properly registered by rain gauges. Accordingly to Lanza and Vuerich (2009),
the error rate associated with rain gauges could be as much as 20 % depending on15

the wind speed at the gauge edge during rainfall, (b) weather conditions reported in
a METAR represent an observation by the meteorologist in an instant of time (ten min-
utes before the hour); therefore, sometimes it does not correctly represent an entire
one-hour period, which is the minimum time interval for an SNM forecast, and (c) the
lightning data will be continuously generated during the entire SNM forecast time. Its20

capability to identify lightning locations (the location error is about five hundred meters
in the studied area) beyond the METAR observation depends on the meteorologist’s
observation skill. The lightning data allows for spreading out the SNM forecast verifica-
tion to encompass the entire flight area of the Galeão Airport. Following the workflow
in Fig. 3, when the validation criteria (e.g., values for statistics) are satisfied, optimum25

SNM configurations will be obtained. Otherwise, trial and error looping will continue
modifying the training data set or number of input variables. The SNM training pro-
cess is discussed in the next section. The validation criterion is the comparison of EME
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forecasts and true observations using a two-dimensional contingency table, which al-
lows the calculation of five categorical statistics used to verify the frequency of correct
and incorrect forecasted values, as follows: (1) proportion correct (PC), which shows
the frequency of the SNM forecasts that were correct (a perfect score equals one),
(2) bias, which represents the ratio between the frequency of SNM estimated events5

and the frequency of SNM observed events (a perfect score equals one), (3) proba-
bility of detection (POD), which represents the probability of those occasions where
the forecast event really occurred (hits). The scale varies from zero to one, where one
indicates a perfect forecast, (4) false-alarm ratio (FAR), which indicates the fraction of
SNM-predicted EMEs that did not occur (a perfect score equals zero), and (5) threat10

score (TS), which indicates how the SNM forecasts correspond to the observed EMEs
(a perfect score equals one). In particular, the TS is relatively sensitive to the climatol-
ogy of the studied event, tending to produce poorer scores for rare events such as, for
example, an EME. Therefore the model is considered optimum when it creates EME
nowcasting with scores as near perfect as possible for the five statistics described15

(Wilks, 2006).

4 Analysis and results

In order to assess the performance of the nowcasting system proposed for the flight
region of Galeão Airport in Rio de Janeiro, the SNM output variables were divided into
four event classes based on RR, namely: class zero: no significant weather; class one:20

light RR; class two: moderate RR, and class three: EME. Figure 4a and d depicts the
classes’ frequency in training and validation data sets, respectively, corresponding to
70 and 30 % of the total number of meteorological recordings. It may be observed that
class frequencies are not proportionally distributed. In particular, class three (defined
as EME) is poorly represented, accounting for about two percent of all meteorological25

recordings. The latter makes the neural network learning process harder, as that re-
quires – for phenomenon knowledge – a better representation of target class three in
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the training data set, i.e. class three should have higher weight than other classes, or
at least a similar weight to other classes, in the training data set in order to allow for
better neural network training. The next paragraphs present detailed information about
the neural network training strategies that were used, attempting to compensate for the
low frequency of EME events in the studied data set.5

4.1 Neural network training

Neural network training is a time-consuming activity. A common strategy is to modify
the training data set, for example, taking the original data as a reference to artificially
create other new training data sets by modifying the classes’ representation in the
data population, and/or gradually decreasing input variables by evaluating a particular10

variable relevance (or contribution) for output results. There is no straightforward set
of calculations to accomplish this goal. It is important to mention that the validation
data set shown in Fig. 4d has similar class frequencies to the original training data
set, shown in Fig. 4a. The idea is to input real scenarios of rare events during the
validation process. Table 3 gives information about training strategies used during the15

first, second, and optimum training sequences. These training strategies are discussed
below.

4.1.1 First training

Table 3 helps in understanding the results of the training strategies showing that the
first training strategy assumes the following conditions: (a) the starting number of the20

meteorological recordings is 43 638, (b) the training data set was gradually decreased
by reducing recordings from classes zero, one, and two, and the number of recordings
in class three was kept constant during each looping step in Fig. 3, (c) the input vari-
ables a constant equal to correspond sum of primary and derived variables in columns
3 and 4 of Table 1, (d) the validation are weather condition observations (represented25

by class in Table 2) in METAR code and/or RR > 9.9mmh−1 (registered by one of the
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rain gauge networks), and (e) the model convergence is when statistics parameters are
kept unaltered in next looping step as in Fig. 3. Table 3 (training) the neural network
converged when the number of meteorological recordings was 22 498 (or about 52 %
of the total training recordings). Excepting PC, the other statistic results show that neu-
ral network were not capable learn much how to forecast EMEs for period of one, two5

three hours. This could be qualified to: (a) the low frequency of class three vs. the other
classes, not allowing enough knowledge about EME phases (i.e., initialization, growth
and decay) to be transmitted as required, and (b) possibly an inappropriate number of
input variables.

4.1.2 Second training10

Figure 4b shows the class frequency of the initial data set. It demonstrates that the
percentage of the EME class (class three) seems slightly better represented than in
previous training. Generally speaking, it can be observed from Table 3 that PC re-
mained similar to the first training results, FAR increased and bias, POD and TS were
slightly enhanced, which possibly means that the SNM learning process had improved15

somewhat, but not enough. In other words, it appears that this training strategy is pro-
ceeding in the right direction.

4.1.3 Optimum SNM training

Table 3 presents the training strategy and tries to give an idea about successive train-
ings used in the present study. In particular, line three presents the training strategy20

that produced optimum results. The strategy that was used is similar to the previous
trainings apart from the number of input variables, which was previously kept constant;
here, the input variables decreased for each looping step in Fig. 2 by taking out the
variables with low representativeness for the neural network results. Based on the pos-
sibility that heavy rain could occur without simultaneous lightning and vice-versa, the25

validation statistics results were achieved by two options: first, by considering items
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(a) and (b), and second, by considering items (a), (b) and (c) of Sect. 3.4, respectively.
The latter item (item c) shows that lightning occurrences, reported inside a radius of fifty
kilometers centered at SBGL, represent an EME. Table 3, line four, shows categorical
statistical verifications of the optimum model results. The SNM forecast performance
slowly declines from the first to the second hour and declines more rapidly from the5

second to the third hour. By including the lightning (L) data in the validation, the SNM
results were improved, as shown by the first(L), second(L), and third(L) hours (as in Ta-
ble 3, lines eight, ten, and twelve). The comparison between the two validation data
sets (with and without lightning data) shows that bias, POD, and FAR values improved
by 19, 11, and 25 % (for the first, second, and third hours); 5, 3, and 6 % (for the first,10

second, and third hours) and 11, 5, and 8 % (for the first, second, and third hours),
respectively. In particular, the bias values improved more than the other statistics as
a result of the inclusion of the lightning data in the validation. In addition, although TS
is tending to produce poorer scores for rare events, in here, his results have also im-
proved with the inclusion of lightning data in the validation of optimum training as in15

Table 3, column thirteen. The best SNM result corresponds to the first hour. The bias
is the lowest, equal to 1.37 (which means that the results slightly overestimated the
observations for the considered forecasts); however, the readings for PC, POD, FAR,
and TS are quite respectable, equal to 0.84, 0.38, 0.01, and 0.54, respectively. The
results of the SNM for the second hour are slightly less useful than for the first hour20

forecast, but still acceptable. On the other hand, the statistical values for the third hour
forecast are poorer than those for the second hour. One cause of the SNM’s overall
performance degeneration is that a neural network is a statistical model rather than
a physical one, which means that the physical aspects are not included. In summary, it
is possible to state that an optimum SNM should be able to forecast strong atmospheric25

instability in the study area for up to two hours.
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4.2 Possible sources of error in the SNM validation

The SNM optimum model output is considered a hit when it corresponds to event ob-
servations, if at least one of the following two weather conditions is satisfied, i.e., (1)
weather conditions (it is class three in Table 2. In particular, this information is obtained
from a human observer and may have some inconsistencies. The latter is common in5

meteorological observations, thus, consciousness of such matters is important when
interpreting results) from METAR at a specific time; and/or (2) RR > 9.9mmh−1 (reg-
istered by one of the rain gauge networks). The SNM results are slightly biased as
previously presented; therefore, in an attempt to explain that bias, the study pursued
an investigation of possible sources of error in the meteorological observations used to10

verify the model forecasts. First of all, as far as the learning process was concerned,
the training data set was composed only of meteorological records with a unique true
association between their output (as class three and/or RR > 9.9mmh−1) and input
variables (representing the thermodynamic atmospheric pattern of an EME from the 15
METAR records, and derived variables). In other words, the training used only meteo-15

rological recordings whose output was characterized as true EME. However, in the vali-
dation data set, there is a large number of meteorological records where such a unique
association (one-to-one relationship between input and output) is not always true; i.e.,
some meteorological records have a typical thermodynamic pattern of EME (input),
but the weather condition (output) does not correspond to an EME (or prevailing ac-20

tual weather situation). These records were used in the present study to verify SNM
forecasts and have consequently produced the results in Table 3. Possible reasons for
false alarms and consequently biased SNM results are: (1) hourly METAR records rep-
resent quasi-instantaneous meteorological observations (these take about ten minutes
to be generated and may carry inconsistencies); therefore the weather condition (out-25

put) may be affected by a certain amount of subjectivity on the part of the meteorologist
(see discussion below and results in Table 4), and (2) errors associated with the rain
gauges, which can be up to 20 % depending on the wind speed. The SNM results for

10647

D
iscussion

P
aper

|
D

iscussion
P

aper
|

D
iscussion

P
aper

|
D

iscussion
P

aper
|

the first hour which were classified as false alarms were those whose RR was higher
than 8.0 mmh−1 and lower than 9.9 mmh−1, representing a maximum SNM error be-
low 10 % for the RR threshold of EMEs (RR > 9.9 mmh−1). Such a number of false
alarms produced by the SNM could easily be attributed to rain gauge measurement
error, and (3) isolated heavy rain events causing serious material damage during the5

summertime, but that were not always registered by the rain gauge network or even
by the METAR, since such conditions are not always observed by meteorologists. One
example of this would be where the input represents an EME and the output does not;
consequently, such a situation may be one of the causes of the biased results obtained
in this study. Finally, the comparisons between SNM forecasts and lightning detection10

have slightly improved all statistical values. These results have provided plenty of evi-
dence that the validation parameters (i.e., RR and class three in Table 2) are not totally
appropriated for the SNM validation, so some errors are certainly being introduced into
the SNM results; consequently, the actual optimum SNM statistics may be even better
than those shown in Table 3.15

4.3 Study case

Attempting to elucidate the above discussion, this section shows the SNM results for
an EME event that occurred from 16:00 to 23:00 (LT) on 18 March 2009. Figure 5 de-
picts a synoptic weather situation through an enhanced GOES-10 (channel 4) satellite
image at 18:00 (LT), where a cloud (or cloud complex) is classified, by an automatic20

stretch process, as convective (or EME) if its top temperature is lower than −30 ◦C. The
red box roughly represents the flight region of Galeão Airport in Rio de Janeiro which
is influenced by EMEs (located approximately at the center of the red box) and where
a complex convective cloud (with cloud top temperature equal to −70 ◦C) is clearly ob-
served in the east. On this day, the K, TT, and LR index values, calculated from the25

SBGL atmospheric profile, were equal to 33.64, 44.97, and 5.5, respectively, indicating
that a typical atmospheric instability pattern was dominating the region. Table 4 shows
a comparison between SNM forecasts (column four) and the weather observations
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made by the meteorologist and registered in the METAR (columns two and three) for
the studied period. From this result, it seems that the SNM overestimated the possibility
of an EME (compare columns three and four). However, the problem of verification of
the output of the SNM is difficult, since the meteorologist’s observation does not always
give a more appropriate weather condition (or a prevailing condition) to be compared5

with it; therefore, biased results may be obtained from the SNM. Lightning has been co-
incidently detected (column five) for all SNM forecasts of EMEs during the time period
of this particular case study, which indicates an unstable atmospheric pattern in the
flight area of the airport influenced by the event. There is quite strong evidence from
previous analysis that the bias results in Table 3, line three, are unreliable and would10

certainly be very much lower if appropriate or steady output was used in SNM verifica-
tion. In summary, the SNM forecasts have usually captured the signs of an atmospheric
instability pattern.

5 Conclusions

Numerical prediction models have demonstrated certain difficulties in attempting to15

forecast the local or short-term heavy rain, strong wind, and turbulence that are nor-
mally associated with EME occurrences. Hence, this study presents an alternative self-
nowcast model for short-term and local-specific forecasting of EMEs based on a neural
network technique for the flight region of the Galeão’s Airport. The main findings of this
study are summarized as follows:20

a. the optimum SNM results of EME forecasts for the first and second hours are
encouraging, since the categorical statistical values are quite acceptable. The
proposed model has a very low computational cost and it is also possible to state
that the SNM could alternatively forecast short-term strong atmospheric instability
for the flight region of the Galeão’s Airport;25
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b. the third hour SNM forecast is biased (best bias is 1.83); perhaps the main reason
of such SNM performance degeneration in time is that the neural network model
is purely statistical rather than physical, and its use should therefore be limited to
short-term nowcasting, possibly up to a two-hour time,

c. there is visible evidence that the validation data contain a certain amount of un-5

certainty. Three key considerations about the SNM results vs. validation data and
possible sources of error should be addressed. First, the use of METAR weather
conditions is affected by subjectivity on the part of the meteorologist and some-
times does not represent prevailing weather conditions. Second, rain gauges used
for data verification can have an error of about 20 % depending on the wind speed.10

The results showed that SNM forecasts might falsely be classified as hits due to
possible rain gauge error. Third, isolated heavy rain events sometimes are not
registered by the rain gauge and can contribute to biased SNM results; and

d. the inclusion of lightning data in the validation significantly improved the SNM
statistic results and also provided evidence that weather conditions discussed in15

the previous item are not totally appropriate for the SNM validation. Finally, the
study may conclude that the optimum SNM developed here is clearly capable of
predicting signs of a local atmospheric instability pattern in the flight region of
Galeão Airport. Future studies are planned which will include other data sources
in the learning process, such as meteorological satellites, RADAR, and SODAR20

wind profiles.
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Table 1. Information from four time series. The lightning time series is the only one whose data
period differs from the others. It covers a period from 1 January 2007 to 31 December of 2009.
This is not important, since it is used only for validation.

Time series Frequency and
data period

Primary3 Variables to-
tal number: 21

Derived3 Variables total
number: 36

Data percent-
age data used
for SNM train-
ing

Data percent-
age data used
for SNM vali-
dation

Validation variables Output variable

Predictors purpose: characterization
of atmospheric conditions

METAR (data are from
SBGL, SBSC, SBJR,
SBAF and SBRJ)

Hourly from
1 Jan 1997 to
31 Dec 2008

Data-time, wind direc-
tion, wind speed, vis-
ibility, current weather
(represented by 4
classes, see Table 2);
cloud layers, tempera-
ture, dew point, and at-
mospheric pressure

Julian day atmospheric
pressure (AP) and tem-
perature (AT) for the
three previous hours,
i.e., AP(t=−1 h) and
AT(t=−1 h), AP(t=−2 h) and
AT(t=−2 h), and AP(t=−3 h)
and AT(t=−3 h)

70 % 30 % Class 3 as in Table 2 Rain Rate
(RR)2 =Yes or No
(Yes= class 3) or
(No= class 0, 1, or
2)

TEMP (data are from
SBGL)

Daily at 00:00 and
12:00 UTC from
1 Jan 1997 to
31 Dec 2008

Atmospheric profile of
temperature and hu-
midity at 1000, 850,
700 and 500 hPa

(a) three instability in-
dices (K, TT and LR)1,
(b) potential tempera-
ture, vapor pressure, sat-
uration of vapor pres-
sure, zonal, and merid-
ional wind components
at 1000, 850, 700 and
500 hPa

–

Rain Rate (RR) h−1

(data are from the 29
rain gauges)

Every 15 min from
1 Jan 1997 to
31 Dec 2008

RR for 1 h (a) RR2 (classified as
null, light, moderate, and
heavy), and (b) RR trend
for the previous three
hours (i.e., RR(t=−1 h),
RR(t=−2 h), and RR(t=−3 h))

RR2 (classified as null,
light, moderate, and
heavy, corresponding
to class 0, 1, 2, and 3,
as in Table 2)

Lightning(4) inside a ra-
dius of 50 km centered
at SBGL

Varies – – – 100 1 (lightning) or 0 (no
lightning)

1 K-index (K)= (T850 − T500)+ Td850 − (T700 − Td500), where Ti and Tdi represent temperature and dew point, respectively, in ◦C, and i is the given atmospheric pressure in hPa, Total Totals (TT)= T850 + Td850 −2T500 and Lapse Rate
(LR), represented by LR= 1000(T500 − T500)/(GPH500 −GPH700), where GPH means the geopotential height.
2 Rain Rate (RR) h−1, as null (class zero), light (class one), moderate (class two), and heavy (class three) for RR= insignificant, 0 ≤ RR ≤ 2.4, 2.4 < RR ≤ 9.9, and RR > 9.9 mmh−1.
3 Primary variables are directly extracted from METAR, TEMP, and RR time series, and derived variables are calculated using primary variables.
(4) Lightning data is only used for SNM validation.
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Table 2. Weather condition classification in METAR and attributed SNM classes.

Class METAR code Weather condition Class METAR code Weather condition

0 H haze 2 R moderate rain
0 K smog 2 RF moderate rain with fog
0 F fog 3 R+ heavy rain
0 L− light drizzle 3 R+ F heavy rain with fog
0 L− F light drizzle with fog 3 RW showers
0 L moderate drizzle 3 RW+ heavy showers
0 LF moderate drizzle with fog 3 T thunderstorms
0 L heavy drizzle 3 TL thunderstorms with light drizzle
1 R− light rain 3 TRW− thunderstorms with showers
1 R− H light rain with haze 3 TRW thunderstorms with moderate showers
1 R− F light rain with fog 3 TRW+ thunderstorms with heavy showers
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Table 3. Training conditions for the neural network training (NNT). RR h−1 is shown as null
(class zero), light (class one), moderate (class two), and heavy (class three). Where the SNM
output equal to class three represents a true EME (or yes), and the others (classes zero, one,
and two) represent no EME forecasts, the static values associated with first(L), second(L), and
third(L) are those hours that the SNM validation using the lightning data were included.

Training Strategy Output RR class Validation data Neural Statistics for EMEs and no EMEs
network
configuration
(Number of
neurons
hidden)

Training Training data set and and strategy Number of
strategy and strategy inputs and hour PC Bias Pod Far TS

strategy

1st Gradually modifies for Number started 57 0, 1, 2 and 3 Yes (or hit) means one 43 1st 0.95 0.34 0.28 0.16 0.27
each looping in Fig. 2 with 43 638 and of the conditions in 138 2nd 0.95 0.29 0.23 0.21 0.22
by decreasing class 0 decreased to column 8 in Table 2, 128 3rd 0.96 0.29 0.21 0.28 0.20
and keeping class 3 fixed 22 498 excepting lightning data

2nd Gradually modifies for Number started 57 0, 1, 2 and 3 Yes (or hit) means one 134 1st 0.95 0.84 0.47 0.44 0.34
each looping in Fig. 2 with 22 498 and of the conditions in 122 2nd 0.95 0.73 0.38 0.48 0.28
by decreasingclass 0 decreased to column 8 in Table 2, 129 3rd 0.92 0.74 0.21 0.72 0.14
and keeping class 3 fixed 14 308 excepting lightning data

nth Gradually modifies Number started Number started Yes or No (Yes= class Yes (or hit) means one 146 1st 0.98 1.56 0.79 0.49 0.44
Optimum for each looping in Fig. 2 with 11 498 and with 57 and 3) or (No= class 0 or 1 of the conditions in 1st(L) 0.98 1.37 0.84 0.38 0.54
Training by decreasing classes decreased to decreased to 14 or 2) column 8 in Table 2 and 148 2nd 0.96 1.59 0.77 0.51 0.42

0, 1, and 2 and 7296 including lighting data 2nd(L) 0.96 1.48 0.80 0.46 0.47
keeping class 3 fixed 144 3rd 0.94 2.08 0.70 0.66 0.29

3rd(L) 0.94 1.83 0.76 0.58 0.37
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Table 4. SNM forecasts vs. meteorological observations on 18 March 2009.

Local Weather condition Observed SNM class Lightning
time (METAR) class forecasts detection

15 H 0 0 no
16 TRW- 3 3 yes
17 R 2 3 yes
18 R− 1 3 yes
19 H 1 3 yes
20 TRW− 3 3 yes
21 R+ 3 3 yes
22 T 3 3 yes
23 TRW+ 3 3 yes
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Figure 1. This is a satellite photo of the Rio de Janeiro metropolitan region. The yellow triangles
and red squares represent the twenty-nine rain gauges and five meteorological stations (or
airports), respectively.
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Figure 2. An example of a neural network diagram.
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Figure 3. Self-Nowcast Model flowchart.
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Figure 4. Histograms of frequency accordingly to four event classes: (a) represents 70 % of the
original training data set, whose distribution for meteorological recordings for classes zero, one,
two, and three are 32 428, 7564, 2412, and 1219, respectively; (b) and (c) similarly present the
initial distribution for meteorological recordings for the third and optimum trainings; (d) repre-
sents 30 % of the original data set used for SNM validation.
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Figure 5. GOES-10 (channel 4) that represents the synoptic weather situation at 18:00 (LT) on
18 March 2009, where the top convective cloud temperatures are categorized by a temperature
range from −30 to −80 ◦C. The red box roughly represents the study region.
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